Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Basic Definition of Coastal Vulnerability
1.2.2. Coastal Vulnerability Index: A Main Assessment Method
1.2.3. Application of the InVEST Coastal Vulnerability Model
1.2.4. Calls for Coastal Protection and Adaptation
1.2.5. Importance of Natural Habitats
1.3. Research Aims & Objectives
- Produce maps that depict the spatial distribution of coastal vulnerability under the current situation and under scenarios without certain natural habitats;
- Compare the differences in the distribution of coastal vulnerability between different scenarios;
- Discuss the characteristics of the spatial distribution of the current coastal vulnerability;
- Identify priority areas for implementing interventions;
- Propose recommendations for interventions that can improve the city’s resilience to coastal hazards.
2. Materials and Methods
2.1. Study Area
2.2. Main Phases of the Study
2.3. InVEST Coastal Vulnerability Model
2.4. Data Preparation
2.5. Scenario Creation
2.6. Data and Result Analysis
3. Results
3.1. Coastal Vulnerability of the Current Situation and Simulated Scenarios
3.2. Spatial Aggregation Analysis of Current Costal Vulnerability
3.2.1. Spatial Autocorrelation Analysis
3.2.2. Cluster and Outliers Analysis
3.2.3. Hotspot Analysis
4. Discussion
4.1. Important Factors for Coastal Vulnerability
4.2. Intervention Suggestions
4.2.1. Maintenance and Development of Natural Habitats
4.2.2. Improvement of Coastal Defense Structures
4.3. Limitations and Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Rank 1 (Very Low Exposure) | Rank 2 (Low Exposure) | Rank 3 (Medium Exposure) | Rank 4 (High Exposure) | Rank 5 (Very High Exposure) | |
---|---|---|---|---|---|
Relief | 81 to 100 Percentile | 61 to 80 Percentile | 41 to 60 Percentile | 21 to 40 Percentile | 0 to 20 Percentile |
Natural Habitats | Coral reef; mangrove; coastal forest | High dune; marsh | Low dune | Seagrass; kelp | No habitat |
Geomorphology | Rocky; high cliffs; fjord; fiard; seawalls | Medium cliff; indented coast; bulkheads and small seawalls | Low cliff; glacial drift; alluvial plain; revetments; rip-rap walls | Cobble beach; estuary; lagoon; bluff | Barrier beach; sand beach; mud flat; delta |
Wind Exposure | 0 to 20 Percentile | 21 to 40 Percentile | 41 to 60 Percentile | 61 to 80 Percentile | 81 to 100 Percentile |
Wave Exposure | |||||
Surge Potential |
Appendix B
Water | Developed Area | Vegetated Area | Bare Land | Total | User’s Accuracy | Kappa | |
---|---|---|---|---|---|---|---|
Water | 46 | 0 | 1 | 3 | 50 | 0.92 | |
Developed Area | 3 | 31 | 2 | 14 | 50 | 0.62 | |
Vegetated Area | 0 | 2 | 42 | 6 | 50 | 0.84 | |
Bare Land | 6 | 9 | 2 | 33 | 50 | 0.66 | |
Total | 55 | 42 | 47 | 56 | 200 | ||
Producer’s Accuracy | 0.836364 | 0.738095 | 0.893617 | 0.589286 | 0.76 | ||
Kappa | 0.68 |
References
- Mukhopadhyay, A.; Dasgupta, R.; Hazra, S.; Mitra, D. Coastal hazards and vulnerability: A review. Int. J. Geol. Earth Environ. Sci. 2012, 2, 57–69. [Google Scholar]
- Telford, J.; Cosgrave, J. Joint Evaluation of the International Response to the Indian Ocean Tsunami: Synthesis Report; Tsunami Evaluation Coalition: London, UK, 2006. [Google Scholar]
- Villholth, K.G.; Neupane, B. Tsunamis as long-term hazards to coastal groundwater resources and associated water supplies. In Tsunami: A Growing Disaster; Mokhtari, M., Ed.; InTechOpen: Rijeka, Croatia, 2011; pp. 87–104. [Google Scholar]
- Lau, Y.Y.; Yip, T.L.; Dulebenets, M.A.; Tang, Y.M.; Kawasaki, T. A review of historical changes of tropical and extra-tropical cyclones: A comparative analysis of the United States, Europe, and Asia. Int. J. Environ. Res. Public Health 2022, 19, 4499. [Google Scholar] [CrossRef] [PubMed]
- Shuckburgh, E.; Mitchell, D.M.; Stott, P. Hurricanes Harvey, Irma and Maria: How natural were these ‘natural disasters’? Weather 2017, 17, 353–354. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Hearty, P.; Ruedy, R.; Kelley, M.; Masson-Delmotte, V.; Russell, G.; Tselioudis, G.; Cao, J.; Rignot, E.; et al. Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmos. Chem. Phys. 2016, 16, 3761–3812. [Google Scholar] [CrossRef]
- Climate Change: Global Sea Level. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level (accessed on 1 September 2023).
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Change 2004, 64, 41–58. [Google Scholar] [CrossRef]
- Gutierrez, B.T.; Plant, N.G.; Thieler, E.R. A Bayesian network to predict coastal vulnerability to sea level rise. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Yates, M.L.; Le Cozannet, G.; Garcin, M.; Salaï, E.; Walker, P. Multidecadal atoll shoreline change on Manihi and Manuae, French Polynesia. J. Coast. Res. 2013, 29, 870–882. [Google Scholar] [CrossRef]
- Shearman, P.; Bryan, J.; Walsh, J.P. Trends in deltaic change over three decades in the Asia-Pacific region. J. Coast. Res. 2013, 29, 1169–1183. [Google Scholar] [CrossRef]
- Wahl, T.; Jain, S.; Bender, J.; Meyers, S.D.; Luther, M.E. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Change 2015, 5, 1093–1097. [Google Scholar] [CrossRef]
- Bevacqua, E.; Maraun, D.; Vousdoukas, M.I.; Voukouvalas, E.; Vrac, M.; Mentaschi, L.; Widmann, M. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Sci. Adv. 2019, 5, e5531. [Google Scholar] [CrossRef]
- Reimann, L.; Vafeidis, A.; Honsel, L. Population development as a driver of coastal risk: Current trends and future pathways. Camb. Prism. Coast. Futures 2023, 1, E14. [Google Scholar] [CrossRef]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Yin, J.; Lin, N.; Yang, Y.; Pringle, W.J.; Tan, J.; Westerink, J.J.; Yu, D. Hazard assessment for typhoon-induced coastal flooding and inundation in Shanghai, China. J. Geophys. Res. Oceans 2021, 126, e2021JC017319. [Google Scholar] [CrossRef]
- Yan, B.; Li, S.; Wang, J.; Ge, Z.; Zhang, L. Socio-economic vulnerability of the megacity of Shanghai (China) to sea-level rise and associated storm surges. Reg. Environ. Change 2016, 16, 1443–1456. [Google Scholar] [CrossRef]
- Wang, J.; Gao, W.; Xu, S.; Yu, L. Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Clim. Change 2012, 115, 537–558. [Google Scholar] [CrossRef]
- Füssel, H.M. Vulnerability: A generally applicable conceptual framework for climate change research. Glob. Environ. Change 2007, 17, 155–167. [Google Scholar] [CrossRef]
- Koroglu, A.; Ranasinghe, R.; Jiménez, J.A.; Dastgheib, A. Comparison of coastal vulnerability index applications for Barcelona Province. J. Ocean. Coast. Manag. 2019, 178, 104799. [Google Scholar] [CrossRef]
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, People’s Vulnerability and Disasters; Routledge: London, UK, 2014. [Google Scholar]
- Climate Change Vulnerability Mapping for Southeast Asia. Available online: https://www.semanticscholar.org/paper/Climate-change-vulnerability-mapping-for-Southeast-Yusuf-Francisco/2f440f99e43ef8421cb32e8da4dc7e2cc36e341c (accessed on 2 August 2023).
- Eriyagama, N.; Smakhtin, V.; Chandrapala, L.; Fernando, K. Impacts of climate change on water resources and agriculture in Sri Lanka: A review and preliminary vulnerability mapping. IWMI Res. Rep. 2010, 135. [Google Scholar]
- Webersik, C.; Esteban, M.; Shibayama, T. The economic impact of future increase in tropical cyclones in Japan. Nat. Hazards 2010, 55, 233–250. [Google Scholar] [CrossRef]
- Yoo, G.; Kim, A.R.; Hadi, S. A methodology to assess environmental vulnerability in a coastal city: Application to Jakarta, Indonesia. J. Ocean. Coast. Manag. 2014, 102, 169–177. [Google Scholar] [CrossRef]
- Jiang, L.; Huang, X.; Wang, F.; Liu, Y.; An, P. Method for evaluating ecological vulnerability under climate change based on remote sensing: A case study. Ecol. Indic. 2018, 85, 479–486. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, T.; Arkema, K.K.; Han, B.; Lu, F.; Ruckelshaus, M.; Ouyang, Z. Coastal vulnerability to climate change in China’s Bohai Economic Rim. Environ. Int. 2021, 147, 106359. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Bukvic, A.; Rohat, G.; Apotsos, A.; de Sherbinin, A. A systematic review of coastal vulnerability mapping. Sustainability 2020, 12, 2822. [Google Scholar] [CrossRef]
- Debortoli, N.S.; Clark, D.G.; Ford, J.D.; Sayles, J.S.; Diaconescu, E.P. An integrative climate change vulnerability index for Arctic aviation and marine transportation. Nat. Commun. 2019, 10, 2596. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Bonetti, J.; Rogers, K.; Woodroffe, C.D. Indicator-based assessment of climate-change impacts on coasts: A review of concepts, methodological approaches and vulnerability indices. J. Ocean. Coast. Manag. 2016, 123, 18–43. [Google Scholar] [CrossRef]
- Balica, S.F.; Wright, N.G.; Van der Meulen, F. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat. Hazrds 2012, 64, 73–105. [Google Scholar] [CrossRef]
- Baker, S.M. Vulnerability and resilience in natural disasters: A marketing and public policy perspective. J Public Policy Mark. 2009, 28, 114–123. [Google Scholar] [CrossRef]
- Sudha Rani, N.N.V.; Satyanarayana, A.N.V.; Bhaskaran, P.K. Coastal vulnerability assessment studies over India: A review. Nat. Hazards 2015, 77, 405–428. [Google Scholar] [CrossRef]
- Malone, E.L.; Engle, N.L. Evaluating regional vulnerability to climate change: Purposes and methods. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 462–474. [Google Scholar] [CrossRef]
- McIntosh, R.D.; Becker, A. Expert evaluation of open-data indicators of seaport vulnerability to climate and extreme weather impacts for US North Atlantic ports. J. Ocean. Coast. Manag. 2019, 180, 104911. [Google Scholar] [CrossRef]
- Biswas, S. A review of socio-economic vulnerability: The emergence of its theoretical concepts, models and methodologies. Nat. Hazards 2023, in press. [Google Scholar] [CrossRef]
- Gornitz, V. Vulnerability of the East Coast, USA to future sea level rise. J. Coast. Res. 1990, 9, 201–237. [Google Scholar]
- Gornitz, V.M.; Daniels, R.C.; White, T.W.; Birdwell, K.R. The development of a coastal risk assessment database: Vulnerability to sea-level rise in the US Southeast. J. Coast. Res. 1994, 4, 327–338. [Google Scholar]
- Abuodha, P.; Woodroffe, C.D. Assessing vulnerability of coasts to climate change: A review of approaches and their application to the Australian coast. In GIS for the Coastal Zone: A Selection of Papers from CoastGIS 2006; Woodroffe, C.D., Bruce, E., Puotinen, M., Furness, R.A., Eds.; Australian National Centre for Ocean Resources and Security University of Wollongong: Wollongong, Australia, 2007; p. 458. [Google Scholar]
- Kumar, A.A.; Kunte, P.D. Coastal vulnerability assessment for Chennai, east coast of India using geospatial techniques. Nat. Hazards 2012, 64, 853–872. [Google Scholar] [CrossRef]
- Islam, M.A.; Mitra, D.; Dewan, A.; Akhter, S.H. Coastal multi-hazard vulnerability assessment along the Ganges deltaic coast of Bangladesh: A geospatial approach. J. Ocean. Coast. Manag. 2016, 127, 1–15. [Google Scholar] [CrossRef]
- Cutter, S.L. The vulnerability of science and the science of vulnerability. Ann. Am. Assoc. Geogr. 2003, 93, 1–12. [Google Scholar] [CrossRef]
- Roukounis, C.N.; Tsihrintzis, V.A. Indices of coastal vulnerability to climate change: A review. Environ. Process. 2022, 9, 29. [Google Scholar] [CrossRef]
- Hahn, M.B.; Riederer, A.M.; Foster, S.O. The livelihood vulnerability index: A pragmatic approach to assessing risks from climate variability and change: A case study in Mozambique. Glob. Environ. Change 2009, 19, 74–88. [Google Scholar] [CrossRef]
- Onat, Y.; Marchant, M.; Francis, O.P.; Kim, K. Coastal exposure of the Hawaiian Islands using GIS-based index modeling. J. Ocean. Coast. Manag. 2018, 163, 113–129. [Google Scholar] [CrossRef]
- Szlafsztein, C.; Sterr, H. A GIS-based vulnerability assessment of coastal natural hazards, State of Pará, Brazil. J. Coast. Conserv. 2007, 11, 53–66. [Google Scholar] [CrossRef]
- Murali, R.M.; Ankita, M.; Amrita, S.; Vethamony, P. Coastal vulnerability assessment of Puducherry coast, India, using the analytical hierarchical process. Nat. Hazards Earth Syst. Sci. 2013, 13, 3291–3311. [Google Scholar] [CrossRef]
- Krishnan, P.; Ananthan, P.S.; Purvaja, R.; Jeevamani, J.J.J.; Infantina, A.J.; Rao, S.C.; Anand, A.; Mahendra, R.S.; Sekar, I.; Kareemulla, K.; et al. Framework for mapping the drivers of coastal vulnerability and spatial decision making for climate-change adaptation: A case study from Maharashtra, India. Ambio 2019, 48, 192–212. [Google Scholar] [CrossRef] [PubMed]
- Furlan, E.; Dalla Pozza, P.; Michetti, M.; Torresan, S.; Critto, A.; Marcomini, A. Development of a multi-dimensional coastal vulnerability index: Assessing vulnerability to inundation scenarios in the Italian coast. Sci. Total Environ. 2021, 772, 144650. [Google Scholar] [CrossRef] [PubMed]
- Mclaughlin, S.; Cooper, J.A.G. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ. Hazards 2010, 9, 233–248. [Google Scholar] [CrossRef]
- Weis, S.W.M.; Agostini, V.N.; Roth, L.M.; Gilmer, B.; Schill, S.R.; Knowles, J.E.; Blyther, R. Assessing vulnerability: An integrated approach for mapping adaptive capacity, sensitivity, and exposure. Clim. Change 2016, 136, 615–629. [Google Scholar] [CrossRef]
- Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.A.; Guerry, A.; Ruckelshaus, M.; Kareiva, P.; Lacayo, M.; Silver, J.M. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 2013, 3, 913–918. [Google Scholar] [CrossRef]
- InVEST User’s Guide: Coastal Vulnerability Model. Available online: http://releases.naturalcapitalproject.org/invest-userguide/latest/en/coastal_vulnerability.html# (accessed on 15 June 2023).
- Hopper, T.; Meixler, M.S. Modeling coastal vulnerability through space and time. PLoS ONE 2016, 11, e0163495. [Google Scholar] [CrossRef]
- Ruckelshaus, M.H.; Guannel, G.; Arkema, K.; Verutes, G.; Griffin, R.; Guerry, A.; Silver, J.; Faries, J.; Brenner, J.; Rosenthal, A. Evaluating the benefits of green infrastructure for coastal areas: Location, location, location. Coast. Manag. 2016, 44, 504–516. [Google Scholar] [CrossRef]
- Ballesteros, C.; Esteves, L.S. Integrated assessment of coastal exposure and social vulnerability to coastal hazards in East Africa. Estuar. Coast. 2021, 44, 2056–2072. [Google Scholar] [CrossRef]
- Ai, B.; Tian, Y.; Wang, P.; Gan, Y.; Luo, F.; Shi, Q. Vulnerability analysis of coastal zone based on InVEST model in Jiaozhou Bay, China. Sustain. Sci. 2022, 14, 6913. [Google Scholar] [CrossRef]
- Re, A.; Minola, L.; Pezzoli, A. Climate scenarios for coastal flood vulnerability assessments: A case study for the Ligurian Coastal Region. Climate 2023, 11, 56. [Google Scholar] [CrossRef]
- Spalding, M.D.; Ruffo, S.; Lacambra, C.; Meliane, I.; Hale, L.Z.; Shepard, C.C.; Beck, M.W. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coas. Manag. 2014, 90, 50–57. [Google Scholar] [CrossRef]
- COP27 Presidency Launches Adaptation Agenda to Build Climate Resilience for 4 Billion by 2030. Available online: https://climatechampions.unfccc.int/cop27-presidency-announces-ambitous-climate-resilience-agenda/ (accessed on 28 August 2023).
- Schoonees, T.; Gijón Mancheño, A.; Scheres, B.; Bouma, T.J.; Silva, R.; Schlurmann, T.; Schüttrumpf, H. Hard structures for coastal protection, towards greener designs. Estuar. Coast. 2019, 42, 1709–1729. [Google Scholar] [CrossRef]
- Mamo, L.T.; Dwyer, P.G.; Coleman, M.A.; Dengate, C.; Kelaher, B.P. Beyond coastal protection: A robust approach to enhance environmental and social outcomes of coastal adaptation. J. Ocean. Coast. Manag. 2022, 217, 106007. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Waryszak, P.; Gavoille, A.; Whitt, A.A.; Kelvin, J.; Macreadie, P.I. Combining gray and green infrastructure to improve coastal resilience: Lessons learnt from hybrid flood defenses. Coast. Eng. 2021, 63, 335–350. [Google Scholar] [CrossRef]
- Yang, X.; Hu, X.; Li, Z. The conditional risk probability-based seawall height design method. Int. J. Nav. Archit. Ocean Eng. 2015, 7, 1007–1019. [Google Scholar] [CrossRef]
- Brown, S.; Barton, M.; Nicholls, R. Coastal retreat and/or advance adjacent to defences in England and Wales. J. Coast. Conserv. 2011, 15, 659–670. [Google Scholar] [CrossRef]
- Stancheva, M.; Rangel-Buitrago, N.; Anfuso, G.; Palazov, A.; Stanchev, H.; Correa, I. Expanding level of coastal armouring: Case studies from different countries. J. Coast. Res. 2011, 64, 1815–1819. [Google Scholar]
- Silver, J.M.; Arkema, K.K.; Griffin, R.M.; Lashley, B.; Lemay, M.; Maldonado, S.; Moultrie, S.H.; Ruckelshaus, M.; Schill, S.; Thomas, A.; et al. Advancing coastal risk reduction science and implementation by accounting for climate, ecosystems, and people. Front. Mar. Sci. 2019, 6, 556. [Google Scholar] [CrossRef]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; Van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.M.; Burks-Copes, K.A. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef]
- Strategic Plan for Biodiversity 2011–2020: Aichi Biodiversity Targets. Available online: https://www.cbd.int/sp/targets/ (accessed on 28 August 2023).
- Chang, C.W.; Mori, N. Green infrastructure for the reduction of coastal disasters: A review of the protective role of coastal forests against tsunami, storm surge, and wind waves. Coast. Eng. 2021, 63, 370–385. [Google Scholar] [CrossRef]
- Shepard, C.C.; Crain, C.M.; Beck, M.W. The protective role of coastal marshes: A systematic review and meta-analysis. PLoS ONE 2011, 6, e27374. [Google Scholar] [CrossRef] [PubMed]
- Gijsman, R.; Horstman, E.M.; van der Wal, D.; Friess, D.A.; Swales, A.; Wijnberg, K.M. Nature-based engineering: A review on reducing coastal flood risk with mangroves. Front. Mar. Sci. 2021, 8, 702412. [Google Scholar] [CrossRef]
- Gedan, K.B.; Kirwan, M.L.; Wolanski, E.; Barbier, E.B.; Silliman, B.R. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Clim. Change 2011, 106, 7–29. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, H.; Li, Y.; Xu, H.; Shen, J.; Rhome, J.; Smith, T.J., III. The role of mangroves in attenuating storm surges. Estuar. Coast. Shelf Sci. 2013, 102, 11–23. [Google Scholar] [CrossRef]
- McIvor, A.L.; Möller, I.; Spencer, T.; Spalding, M. Reduction of Wind and Swell Waves by Mangroves. Natural Coastal Protection Series: Report 1. Cambridge Coastal Research Unit Working Paper 40; The Nature Conservancy and Wetlands International: Arlington, VA, USA, 2012. [Google Scholar]
- Möller, I.; Spencer, T.; French, J.R.; Leggett, D.J.; Dixon, M. Wave transformation over salt marshes: A field and numerical modelling study from North Norfolk, England. Estuar. Coast. Shelf Sci. 1999, 49, 411–426. [Google Scholar] [CrossRef]
- Möller, I.; Kudella, M.; Rupprecht, F.; Spencer, T.; Paul, M.; Van Wesenbeeck, B.K.; Wolters, G.; Jensen, K.; Bouma, T.J.; Miranda-Lange, M.; et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci. 2014, 7, 727–731. [Google Scholar] [CrossRef]
- McIvor, A.L.; Spencer, T.; Möller, I.; Spalding, M. The Response of Mangrove Soil Surface Elevation to Sea Level Rise. Available online: https://conservationgateway.org/ConservationPractices/Marine/crr/library/Documents/mangrove-surface-elevation-and-sea-level-rise.pdf (accessed on 1 September 2023).
- Ashton, A.D.; Donnelly, J.P.; Evans, R.L. A discussion of the potential impacts of climate change on the shorelines of the Northeastern USA. Mitig. Adapt. Strateg. Glob. Chang. 2008, 13, 719–743. [Google Scholar] [CrossRef]
- Swales, A.; Lovelock, C.E. Comparison of sediment-plate methods to measure accretion rates in an estuarine mangrove forest (New Zealand). Estuar. Coast. Shelf Sci. 2020, 236, 106642. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef]
- Cheong, S.M.; Silliman, B.; Wong, P.P.; Van Wesenbeeck, B.; Kim, C.K.; Guannel, G. Coastal adaptation with ecological engineering. Nat. Clim. Chang. 2013, 3, 787–791. [Google Scholar] [CrossRef]
- Quataert, E.; Storlazzi, C.; Van Rooijen, A.; Cheriton, O.; Van Dongeren, A. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. Geophys. Res. Lett. 2015, 42, 6407–6415. [Google Scholar] [CrossRef]
- Costa, M.B.; Araújo, M.; Araújo, T.C.; Siegle, E. Influence of reef geometry on wave attenuation on a Brazilian coral reef. Geomorphology 2016, 253, 318–327. [Google Scholar] [CrossRef]
- Beck, M.W.; Losada, I.J.; Menéndez, P.; Reguero, B.G.; Díaz-Simal, P.; Fernández, F. The global flood protection savings provided by coral reefs. Nat. Commun. 2018, 9, 2186. [Google Scholar] [CrossRef]
- Reguero, B.G.; Storlazzi, C.D.; Gibbs, A.E.; Shope, J.B.; Cole, A.D.; Cumming, K.A.; Beck, M.W. The value of US coral reefs for flood risk reduction. Nat. Sustain. 2021, 4, 688–698. [Google Scholar] [CrossRef]
- Ferrario, F.; Beck, M.W.; Storlazzi, C.D.; Micheli, F.; Shepard, C.C.; Airoldi, L. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 2014, 5, 3794. [Google Scholar] [CrossRef]
- Wild, C.; Hoegh-Guldberg, O.; Naumann, M.S.; Colombo-Pallotta, M.F.; Ateweberhan, M.; Fitt, W.K.; Iglesias-Prieto, R.; Palmer, C.; Bythell, J.C.; Ortiz, J.C.; et al. Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar. Freshw. Res. 2011, 62, 205–215. [Google Scholar] [CrossRef]
- Bruno, J.F.; Selig, E.R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2007, 2, e7112007. [Google Scholar] [CrossRef]
- Pandolfi, J.M.; Connolly, S.R.; Marshall, D.J.; Cohen, A.L. Projecting coral reef futures under global warming and ocean acidification. Science 2011, 333, 418–422. [Google Scholar] [CrossRef]
- Elliff, C.I.; Silva, I.R. Coral reefs as the first line of defense: Shoreline protection in face of climate change. Mar. Environ. Res. 2017, 127, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, S.; Kershaw, F. Framing the Flow: Innovative Approaches to Understand, Protect and Value Ecosystem Services across Linked Habitats; UNEP: Cambridge, UK, 2010. [Google Scholar]
- Broekx, S.; Smets, S.; Liekens, I.; Bulckaen, D.; De Nocker, L. Designing a long-term flood risk management plan for the Scheldt estuary using a risk-based approach. Nat. Hazards 2011, 57, 245–266. [Google Scholar] [CrossRef]
- Turner, R.K.; Burgess, D.; Hadley, D.; Coombes, E.; Jackson, N. A cost–benefit appraisal of coastal managed realignment policy. Glob. Environ. Change 2007, 17, 397–407. [Google Scholar] [CrossRef]
- Day, J.W., Jr.; Boesch, D.F.; Clairain, E.J.; Kemp, G.P.; Laska, S.B.; Mitsch, W.J.; Orth, K.; Mashriqui, H.; Reed, D.J.; Shabman, L.; et al. Restoration of the Mississippi delta: Lessons from hurricanes Katrina and Rita. J. Sci. 2007, 315, 1679–1684. [Google Scholar] [CrossRef]
- Spalding, M.D.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: London, UK, 2010. [Google Scholar]
- Schmitt, K.; Albers, T.; Pham, T.T.; Dinh, S.C. Site-specific and integrated adaptation to climate change in the coastal mangrove zone of Soc Trang Province, Viet Nam. J. Coast. Conserv. 2013, 17, 545–558. [Google Scholar] [CrossRef]
- Shanghai Municipal Statistics Bureau. Shanghai Statistical Yearbook 2000–2023; China Statistics Press: Beijing, China, 2023.
- Estimated Population of the Urban Area of Shanghai, China from 1980 to 2035 (in Millions). Available online: https://www.statista.com/statistics/466938/china-population-of-shanghai/ (accessed on 2 August 2023).
- Xu, H.; Tian, Z.; Sun, L.; Ye, Q.; Ragno, E.; Bricker, J.; Mao, G.; Tan, J.; Wang, J.; Ke, Q.; et al. Compound flood impact of water level and rainfall during tropical cyclone periods in a coastal city: The case of Shanghai. Nat. Hazards Earth Syst. Sci. 2022, 22, 2347–2358. [Google Scholar] [CrossRef]
- Du, S.; Gu, H.; Wen, J.; Chen, K.; Rompaey, A.V. Detecting flood variations in Shanghai over 1949–2009 with Mann-Kendall tests and a newspaper-based database. Water 2015, 7, 1808–1824. [Google Scholar] [CrossRef]
- Wang, J.; Yi, S.; Li, M.; Wang, L.; Song, C. Effects of sea level rise, land subsidence, bathymetric change and typhoon tracks on storm flooding in the coastal areas of shanghai. Sci. Total Environ. 2018, 621, 228–234. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Z.; Zheng, S.; Zhang, M.; Shu, X.; Luo, J.; Qiu, L.; Gao, T. Risk assessment for typhoon-induced storm surges in Wenchang, Hainan Island of China. Geomat. Nat. Hazards Risk 2021, 12, 880–899. [Google Scholar] [CrossRef]
- Hammar-Klose, E.S.; Thieler, E.R. Coastal Vulnerability to Sea-Level Rise: A Preliminary Database for the U.S. Atlantic, Pacific, and Gulf of Mexico Coasts; U.S. Geological Survey Digital Data Series; U.S. Geological Survey: Reston, VA, USA, 2001; Volume 68. [Google Scholar]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010): U.S. Geological Survey Open-File Report 2011–1073; U.S. Geological Survey: Reston, VA, USA, 2011; 26p. [Google Scholar]
- Klein, E.; Hadré, E.; Krastel, S.; Urlaub, M. An evaluation of the General Bathymetric Chart of the Ocean in shoreline-crossing geomorphometric investigations of volcanic islands. Front. Mar. Sci. 2023, 10, 1259262. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. A global self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 2017, 10, 8741–8743. [Google Scholar] [CrossRef]
- Sengupta, D.; Chen, R.; Meadows, M.E.; Choi, Y.R.; Banerjee, A.; Zilong, X. Mapping Trajectories of Coastal Land Reclamation in Nine Deltaic Megacities using Google Earth Engine. Remote Sens. 2019, 11, 2621. [Google Scholar] [CrossRef]
- EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 15 June 2023).
- World Imagery. Available online: https://hub.arcgis.com/datasets/esri::world-imagery/about (accessed on 5 June 2023).
- Mcowen, C.; Weatherdon, L.V.; Bochove, J.; Sullivan, E.; Blyth, S.; Zockler, C.; Stanwell-Smith, D.; Kingston, N.; Martin, C.S.; Spalding, M.; et al. A global map of saltmarshes (v6.1). Biodivers. Data J. 2017, 5, e11764. [Google Scholar] [CrossRef]
- Fathi-Moghadam, M.; Davoudi, L.; Motamedi-Nezhad, A. Modeling of solitary breaking wave force absorption by coastal trees. Ocean Eng. 2018, 169, 87–98. [Google Scholar] [CrossRef]
- Brody, S.D.; Highfield, W.E.; Blessing, R.; Makino, T.; Shepard, C.C. Evaluating the effects of open space configurations in reducing flood damage along the Gulf of Mexico coast. Landsc. Urban Plan. 2017, 167, 225–231. [Google Scholar] [CrossRef]
- Cabral, P.; Augusto, G.; Akande, A.; Costa, A.; Amade, N.; Niquisse, S.; Atumane, A.; Cuna, A.; Kazemi, K.; Mlucasse, R.; et al. Assessing Mozambique’s exposure to coastal climate hazards and erosion. Int. J. Disaster Risk Reduct. 2017, 23, 45–52. [Google Scholar] [CrossRef]
- Raja, D.R.; Hredoy, M.S.N.; Islam, M.K.; Islam, K.A.; Adnan, M.S.G. Spatial distribution of heatwave vulnerability in a coastal city of Bangladesh. Environ. Chall. 2021, 4, 100122. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Panteras, G.; Cervone, G. Enhancing the temporal resolution of satellite-based flood extent generation using crowdsourced data for disaster monitoring. Int. J. Remote Sens. 2018, 39, 1459–1474. [Google Scholar] [CrossRef]
- Renard, F. Flood risk management centred on clusters of territorial vulnerability. Geomat. Nat. Hazards Risk 2017, 8, 525–543. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, J.; Xiao, X.; Zhang, M.; Tian, B.; Zhou, Y.; Li, B.; Ma, Z. Land claim and loss of tidal flats in the Yangtze Estuary. Sci. Rep. 2016, 6, 24018. [Google Scholar] [CrossRef]
- Tian, B.; Zhou, Y.X.; Thom, R.M.; Diefenderfer, H.L.; Yuan, Q. Detecting wetland changes in Shanghai, China using FORMOSAT and Landsat TM imagery. J. Hydrol. 2015, 529, 1–10. [Google Scholar] [CrossRef]
- Wang, J.; Xu, S.; Ye, M.; Huang, J. The MIKE model application to overtopping risk assessment of seawalls and levees in Shanghai. Int. J. Disaster Risk Sci. 2011, 2, 32–42. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Yin, Z.; Wang, J.; Xu, S. Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China. Clim. Change 2013, 119, 919–932. [Google Scholar] [CrossRef]
- Ke, Q.; Yin, J.; Bricker, J.D.; Savage, N.; Buonomo, E.; Ye, Q.; Visser, P.; Dong, G.; Wang, S.; Tian, Z.; et al. An integrated framework of coastal flood modelling under the failures of sea dikes: A case study in Shanghai. Nat. Hazards 2021, 109, 671–703. [Google Scholar] [CrossRef]
- He, X.C.; Yang, T.L.; Shen, S.L.; Xu, Y.S.; Arulrajah, A. Land subsidence control zone and policy for the environmental protection of Shanghai. Int. J. Environ. Res. Public Health 2019, 16, 2729. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Pan, J.; Devlin, A.; Xu, Q.; Tang, M.; Li, Z.; Zamparelli, V.; Falabella, F.; Mastro, P.; Pepe, A. Integrated analysis of the combined risk of ground subsidence, sea level rise, and natural hazards in coastal and Delta River regions. Remote Sens. 2021, 13, 3431. [Google Scholar] [CrossRef]
- Bao, J.; Gao, S. Wetland utilization and adaptation practice of a coastal megacity: A case study of Chongming Island, Shanghai, China. Front. Environ. Sci. 2021, 9, 627963. [Google Scholar] [CrossRef]
- Cui, L.; Ge, Z.; Yuan, L.; Zhang, L. Vulnerability assessment of the coastal wetlands in the Yangtze Estuary, China to sea-level rise. Estuar. Coast. Shelf Sci. 2015, 156, 42–51. [Google Scholar] [CrossRef]
- Lin, S.; Li, X.; Yang, B.; Ma, Y.; Jiang, C.; Xue, L.; Wang, J.; Yan, Z. Systematic assessments of tidal wetlands loss and degradation in Shanghai, China: From the perspectives of area, composition and quality. Glob. Ecol. Conserv. 2021, 25, e01450. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, W.; Tong, C.; Zeng, C.; Yu, X.; Mou, X. China’s coastal wetlands: Conservation history, implementation efforts, existing issues and strategies for future improvement. Environ. Int. 2015, 79, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; You, S.; Chon, J.; Lee, J. Sustainable land-use planning to improve the coastal resilience of the social-ecological landscape. Sustain. Sci. 2017, 9, 1086. [Google Scholar] [CrossRef]
- Bucharova, A.; Michalski, S.; Hermann, J.; Heveling, K.; Durka, W.; Hölzel, N.; Kollmann, J.; Bossdorf, O. Genetic differentiation and regional adaptation among seed origins used for grassland restoration: Lessons from a multi-species transplant experiment. J. Appl. Ecol. 2017, 54, 127–136. [Google Scholar] [CrossRef]
- Khazai, B.; Ingram, J.C.; Saah, D.S. The Protective Role of Natural and Engineered Defence Systems in Coastal Hazards. Available online: https://www.researchgate.net/publication/242734043_The_Protective_Role_of_Natural_and_Engineered_Defence_Systems_in_Coastal_Hazards (accessed on 1 September 2023).
- Hochard, J.P.; Hamilton, S.; Barbier, E.B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl. Acad. Sci. USA 2019, 116, 12232–12237. [Google Scholar] [CrossRef]
- Mi, J.; Zhang, M.; Zhu, Z.; Vuik, V.; Wen, J.; Gao, H.; Bouma, T.J. Morphological wave attenuation of the nature-based flood defense: A case study from Chongming Dongtan Shoal, China. Sci. Total Environ. 2022, 831, 154813. [Google Scholar] [CrossRef]
- Pontee, N.; Narayan, S.; Beck, M.W.; Hosking, A.H. Nature-based solutions: Lessons from around the world. Proc. Inst. Civ. Eng. -Marit. Eng. 2016, 169, 29–36. [Google Scholar] [CrossRef]
- Coombes, M.A.; Viles, H.A.; Naylor, L.A.; La Marca, E.C. Cool barnacles: Do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete? Sci. Total Environ. 2017, 580, 1034–1045. [Google Scholar] [CrossRef]
- Singhvi, A.; Luijendijk, A.P.; van Oudenhoven, A.P. The grey–green spectrum: A review of coastal protection interventions. J. Environ. Manag. 2022, 311, 114824. [Google Scholar] [CrossRef]
- Urban Coastal Resilience: Valuing Nature’s Role. Available online: https://www.nature.org/media/newyork/urban-coastal-resilience.pdf (accessed on 28 August 2023).
- Bama, V.P.S.; Rajakumari, S.; Ramesh, R. Coastal vulnerability assessment of Vedaranyam swamp coast based on land use and shoreline dynamics. Nat. Hazards 2020, 100, 829–842. [Google Scholar] [CrossRef]
- De Sherbinin, A.; Bukvic, A.; Rohat, G.; Gall, M.; McCusker, B.; Preston, B.; Apotsos, A.; Fish, C.; Kienberger, S.; Muhonda, P.; et al. Climate Vulnerability Mapping: A Systematic Review and Future Prospects. Wiley Interdiscip. Rev. Clim. Change 2019, 10, e600. [Google Scholar] [CrossRef]
- Kienberger, S.; Borderon, M.; Bollin, C.; Jell, B. Climate Change Vulnerability Assessment in Mauritania: Reflections on Data Quality, Spatial Scales, Aggregation and Visualizations. GI Forum 2016, 4, 167–175. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K.; Rak, J. Water, Resources, and Resilience: Insights from Diverse Environmental Studies. Water 2023, 15, 3965. [Google Scholar] [CrossRef]
- Langkulsen, U.; Rwodzi, D.T.; Cheewinsiriwat, P.; Nakhapakorn, K.; Moses, C. Socio-Economic Resilience to Floods in Coastal Areas of Thailand. Int. J. Environ. Res. Public Health 2022, 19, 7316. [Google Scholar] [CrossRef]
- Umamaheswari, T.; Sugumar, G.; Krishnan, P.; Ananthan, P.S.; Anand, A.; Jeevamani, J.J.J.; Mahendra, R.S.; Amali Infantina, J.; Srinivasa Rao, C. Vulnerability assessment of coastal fishing communities for building resilience and adaptation: Evidences from Tamil Nadu, India. Environ. Sci. Policy 2021, 123, 114–130. [Google Scholar] [CrossRef]
Input Data | Description | Source |
---|---|---|
DEM | Directly used the dataset of Global Multi-resolution Terrain Elevation Data 2010 (GMTED 2010); the resolution is 7.5 arc seconds | [107] |
Bathymetry | Directly used the dataset of General Bathymetric Chart of the Oceans 2023 (GEBCO 2023); the resolution is 15 arc seconds | [108] |
Continental Shelf Contour | Directly used the shapefile provided by the InVEST coastal vulnerability package | [54] |
Landmass | Downloaded the dataset of Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) version 2.3.7, and made modifications | [109] |
Geomorphology | Created a data layer in ArcGIS Pro through visual interpretation | |
Natural Habitat | Directly used the dataset of Global Distribution of Saltmarshes version 6.1 from UNEP-WCMC Ocean Data Viewer; Created two data layers in ArcGIS Pro through supervised classification | [110] |
Wind and Wave | Directly used the WaveWatchIII dataset included in the InVEST coastal vulnerability package | [54] |
Type | Protection Structure | Harbour and Wharf | Cobble Beach | Lagoon | Estuary | Mudflat |
Rank | 2 | 3 | 4 | 4 | 4 | 5 |
Type | Salt Marsh | Coastal Green Space | |
---|---|---|---|
Large | Small | ||
Rank | 2 | 3 | 4 |
Protection Distance (m) | 500 | 1000 | 250 |
Input | Current Situation | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | |
---|---|---|---|---|---|---|
Count | Low (1.00–1.99) | 466 | 212 | 423 | 331 | 466 |
Medium (2.00–2.99) | 3848 | 3276 | 3720 | 3587 | 3843 | |
High (3.00–3.99) | 1100 | 1873 | 1233 | 1481 | 1105 | |
Very High (4.00–5.00) | 194 | 247 | 232 | 209 | 194 | |
Percentage | Low (1.00–2.00) | 8.31% | 3.78% | 7.54% | 5.90% | 8.31% |
Medium (2.01–3.00) | 68.62% | 58.42% | 66.33% | 63.96% | 68.53% | |
High (3.01–4.00) | 19.61% | 33.40% | 21.99% | 26.41% | 19.70% | |
Very High (4.01–5.00) | 3.46% | 4.40% | 4.14% | 3.73% | 3.46% | |
Change in the number of shore points (compared with the current situation) | Low (1.00–2.00) | −54.51% | −9.23% | −28.97% | 0.00% | |
Medium (2.01–3.00) | −14.86% | −3.33% | −6.78% | −0.13% | ||
High (3.01–4.00) | 70.27% | 12.09% | 34.64% | 0.45% | ||
Very High (4.01–5.00) | 27.32% | 19.59% | 7.73% | 0.00% | ||
Mean Exposure Index | 2.686379933 | 2.878233021 | 2.750210796 | 2.766914664 | 2.689440308 |
High-High | High-Low | Low-High | Low-Low | Not Significant | |
---|---|---|---|---|---|
Count | 1598 | 26 | 6 | 2186 | 1792 |
Percentage | 28.50% | 0.46% | 0.11% | 38.98% | 31.85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Singh, M. Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China. Sustainability 2024, 16, 609. https://doi.org/10.3390/su16020609
Lin Z, Singh M. Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China. Sustainability. 2024; 16(2):609. https://doi.org/10.3390/su16020609
Chicago/Turabian StyleLin, Zhiyi, and Minerva Singh. 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China" Sustainability 16, no. 2: 609. https://doi.org/10.3390/su16020609
APA StyleLin, Z., & Singh, M. (2024). Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China. Sustainability, 16(2), 609. https://doi.org/10.3390/su16020609