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Abstract: The air pollution caused by greenhouse gas emissions, particularly carbon dioxide (CO2), is
a significant environmental concern that impacts air quality and contributes to global warming. The
transportation sector plays a pivotal role in this issue, being a major contributor to CO2 emissions. In
light of this situation, this article proposes a methodology that utilizes a supervised learning algorithm
to estimate CO2 emissions and compare vehicles fueled with ethanol and gasoline. Additionally,
the solution adopts an online, unsupervised machine learning algorithm to identify data outliers
and improve the confidence in the results. Furthermore, this work incorporates the concept of
digital twins, using virtual models of vehicles to carry out more extensive pollution simulations and
allowing the simulation of various types of vehicles and the modeling of realistic traffic scenarios. A
supervised machine learning approach was adopted to infer emission data in the model, allowing
more comprehensive and meaningful comparisons between real-world and simulated measurements.
The performed analyses of pollution emissions for different speeds and sections of routes demonstrate
that CO2 emissions from ethanol were significantly lower than those from gasoline, favoring more
sustainable fuels even in combustion engine vehicles. Adopting cleaner fuels is perceived as crucial
to mitigate the negative effects of climate change, with plant-based fuels like ethanol being crucial
during the transition from fossil fuels to a more sustainable vehicular landscape.

Keywords: machine learning; CO2 emissions; vehicular pollution; digital twins; climate change
mitigation; smart cities

1. Introduction

Air pollution in urban areas has been intensifying in recent years, with direct impli-
cations for human health and the global ecosystem [1]. Carbon dioxide (CO2) emissions
from vehicles are one of the main contributors to this scenario, becoming a recurring topic
in scientific, political, and social debates due to their impact on air quality [2]. For the
expected transformations in the urban landscapes when dealing with the ongoing urban-
ization challenges and the urgent need for sustainable energies and resources, the pursuit
of cleaner technologies and fuels will be one of the core concerns in this century [3–5].

In the context of greenhouse gases (GHGs), CO2 is particularly significant, comprising
76% of total GHG emissions globally [6]. This underscores the critical role of the trans-
portation sector, which is responsible for approximately 15% of global emissions [7]. Such
statistics highlight the urgency of addressing CO2 emissions within this sector, illustrating
the potential impact of targeted mitigation strategies in reducing such numbers.
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Given this challenging scenario, research on transportation carbon emissions has
been widely considered in different regions and countries worldwide, receiving increasing
attention [8]. Overall, it is essential to adopt technologies and policies that promote the
reduction of CO2 emissions and the use of renewable energies to combat climate change
and improve air quality [2,9]. Hence, the global transition to clean-energy vehicles has
gained prominence in reducing greenhouse gas emissions and decreasing the dependence
on fossil fuels [10]. In this scenario, electric, hybrid, and biofuel-powered vehicles represent
sustainable solutions to mitigate carbon emissions, standing out as crucial components in
the energy matrix [11–14]. Additionally, achieving low-carbon mobility goals requires the
implementation of strategies aimed at reducing vehicle emissions, including the promotion
of renewable energy use, the improvement of vehicles’ energy efficiency, and the installation
of adequate infrastructure for electric and hybrid vehicles [9,15].

In attempts to deal with this stringent energy transformation challenge, the Internet of
Things (IoT) has emerged as a potentially effective solution for monitoring and optimizing
vehicle performance. By enabling the connection and intercommunication between smart
objects, the IoT enables real-time data collection, providing valuable insights into vehicle
operation [16,17]. In the automotive field, IoT solutions can be designed around On-Board
Diagnostics (OBD-II), a tool that provides access to vehicle data, including information
about CO2 emissions. This resource facilitates continuous emission monitoring with the
potential identification of areas for optimization and reduction, driving the transition
towards sustainable mobility.

With the aim of fostering the development of improved policies for enhancing air
quality and reducing the reliance on fossil fuels, this article introduces a methodology de-
signed to generate valuable information. This information, in turn, supports the transition
towards a more sustainable energy matrix within the transportation sector. The proposed
methodology integrates the instrumentation between OBD-II and smartphones to capture
real data from vehicle sensors. The retrieved data are used to indirectly compute CO2
emissions through a developed estimation module, which also applies an unsupervised
machine learning technique to remove data outliers that may be common in this type of
monitoring [18,19]. Such an approach could even be adopted in the context of machine
learning on low-power devices (TinyML), potentially enabling the application of machine
learning models on resource-constrained devices, such as microcontrollers, for intelligent
decision-making on the edge, which is expected to be one of the next revolutions in the
automotive sector [20,21]. In this article, by adopting a smartphone-based approach with
processing on the cloud, the developed solution may become more reproducible while also
remaining highly adequate for embedding into vehicles, potentially contributing to the
ongoing sustainable transformation process in this domain.

As an important step to stimulate even further the adoption of more sustainable fuels,
potentially deepening our understanding and potential analyses of vehicle emissions, the
concept of digital twins was also incorporated into our approach, providing virtual models
that faithfully replicate real-world entities or processes [22,23]. In this article, the Simulation
of Urban Mobility (SUMO) traffic simulator was exploited to create the intended digital
twins and perform detailed pollution analyses [24]. These virtual models are accurate and
reflect real vehicle behavior, offering an enhanced view of emissions and extending the
achieved results for analysis.

By integrating SUMO, we expand our ability to assess environmental impacts by
facilitating the comparisons among different types of fuels. However, a practical challenge
emerges due to the type of data that is modeled by the tool, which is different from the data
retrieved via the OBD-II interface. In this case, a supervised machine learning model that
was trained with real data collected from vehicles was designed, allowing inferences about
missing data and meaningful comparisons between both approaches. Thus, the integration
of SUMO into our methodology allowed for a comprehensive understanding of emissions
patterns and specific areas for targeted interventions.
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Therefore, the contributions of this article are threefold:

• A practical approach to collecting data from vehicles through their OBD-II interfaces,
which are retrieved through a smartphone and processed on the cloud via an unsu-
pervised machine learning algorithm to remove outliers. The processed data are then
used to indirectly estimate CO2 emissions using a mathematical formulation;

• A digital twin approach based on the SUMO tool, allowing more extensive pollution
assessment in a simulated environment. A supervised machine learning regression
model was trained with previously collected data in order to allow the estimation of
pollution emissions on a more realistic basis;

• Extensive comparisons of pollution emissions for vehicles fueled with gasoline and
ethanol, for both real-world and simulation environments, enabling important discus-
sions about the role of biofuels for sustainable transportation.

Since the energy transition is indispensable to achieving the Sustainable Development
Goals established by the UN (United Nations), particularly Goal 13—Climate Action [25]—
it is expected that the proposed approach can be a valuable contribution when reinforcing
the need for a more urgent transition from fossil fuels to more sustainable alternatives [26].

The remainder of this paper is organized as follows. Section 2 presents related works
that influenced our defined methodology and implementation. Section 3 provides details of
the proposed method. Section 4 describes the conducted case study. Section 5 discusses the
main obtained results, and finally, Section 6 presents conclusions and promising directions
for future research.

2. Related Works

Several research works have investigated different approaches and methodologies to
understand and quantify the environmental impact of the transportation sector. Some of them
have also proposed effective strategies for emission reductions. These works have employed
various techniques to collect data, influencing our research in multiple ways.

The work in [27] implemented an exhaust gas sensor positioned near a vehicle’s
exhaust system to enable the real-time monitoring and visualization of carbon monoxide
(CO) and smoke emissions. Though promising, their approach had limitations, such as
potential accuracy issues due to external factors and other gases present in the environment
and the inability to differentiate emissions from different types of vehicles.

The authors of [28] proposed the use of OBD-II data transmitted to the cloud and
the application of a long short-term memory (LSTM) model for efficient monitoring of
CO2 emissions. Such an approach, though practical in some contexts, required supervised
training datasets, constraining its applicability.

The work in [29] utilized IoT dongles installed in vehicles for sensor readings, also
applying an LSTM network to predict CO2 emissions. Their system aimed to monitor
vehicle emissions but faced the limitations of requiring a stable internet connection and
limited data collection from only two vehicles in their experiments.

From a different perspective, ref. [30] used a TinyML model in an OBD-II automotive
scanner to estimate CO2 emissions. The proposed TinyML algorithm processed data
using unsupervised learning, enabling the more accurate detection of noisy and outlier
data. That approach enabled the low-cost monitoring of vehicle emissions through an
embedded system approach, facilitating continuous monitoring, although only gasoline
was considered as a fuel in that work.

Concerning simulations and virtual scenarios, several studies have strategically em-
ployed the SUMO tool, a versatile and widely adopted simulator renowned for its detailed
and comprehensive analysis of urban traffic and mobility scenarios [24]. Leveraging
SUMO’s adaptability and robust simulation capabilities, many works have delved into
intricate details, offering a nuanced understanding of the intersection between transporta-
tion, urban environments, and environmental sustainability [31]. This is due to the fact that
this tool serves as a pivotal asset in meticulously exploring and dissecting the complexities
associated with the challenging urban transportation scenario.
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The authors of [29] intended to estimate air quality in diverse city areas, aiming to raise
awareness and assist citizens in making informed decisions. Their proposal incorporated a
traffic modeling approach that utilized historical traffic data, the SUMO traffic simulator,
and a trajectory generation strategy to predict traffic volumes at different road segments
and hours. Additionally, a pollution modeling approach employed the Vehicular Emissions
INventories (VEIN) R package to estimate NOx emissions, considering vehicular fleet
composition in the studied area. The study established a service offering of predictive maps
of atmospheric pollutant dispersion, leveraging the Graz Lagrangian Model (GRAL) and
accounting for meteorological conditions and city morphology. The experimental results
demonstrated accurate modeling of traffic flows; however, the prediction of air pollutants
exhibited a general underestimation, attributed to input data limitations.

The work in [32] introduced a methodology for analyzing pollution emissions in a
medium-sized city, focusing on minimizing exhaust emissions through modern traffic
simulations. Microscopic traffic simulations were performed using the SUMO tool, en-
abling the accurate identification of traffic organization changes in pollution emissions
before implementation. That approach ensures a smooth vehicle flow and reduced exhaust
emissions. Experiments, coupled with visual modeling of traffic for pollution emissions,
were executed on a key city artery in Czestochowa, Poland. The obtained results were
instrumental in demonstrating the benefits of planned roadworks, indicating to the city
government the imperative need for communication network modernization. The pre-
sented approach differs from our proposal since it did not include a comparison with a
real route.

Finally, it is noticeable that previous studies have explored promising approaches and
methodologies to understand and quantify the environmental impact of the transportation
sector, as well as proposed effective measures for emission reduction. In general, some
works have utilized gas sensors near a vehicle’s exhaust system to collect emission data,
while others have relied on machine learning algorithms, such as neural networks, to
predict emissions based on real-time data from vehicle systems. These works have also
highlighted existing gaps in this field and the need for novel solutions. In this context, the
current article distinguishes itself by proposing a methodology to estimate CO2 emissions
using an artificial intelligence module focused on TinyML. Moreover, a real-world case
study was conducted to compare emissions between gasoline and ethanol. This approach
fills gaps in the literature and promotes the development of sustainable solutions for vehicle
emission monitoring.

3. Proposed Approach

In this section, the practical and integrated implementation of our innovative approach
to analyzing vehicle emissions in real-world and simulated environments is presented.

3.1. Real-World Monitoring

The proposed methodology in this article aims to estimate the amount of CO2 emitted
during a specific route through data collected from a target vehicle. A total of 153,255
were collected from the real scenario. This real-world element of the proposed approach
involved the instrumentation between On-Board Diagnostics (OBD-II) and a smartphone to
gather the necessary vehicle data, as well as centralized processing that can be performed
on dedicated servers or via cloud-based services. The process flow is detailed in Figure 1.

After data collection, two processing modules were defined to estimate the CO2 emissions.

• Module 1—Estimating CO2: This module is responsible for calculating continuous
CO2 emissions based on sensor variables, notably the manifold absolute pressure
(MAP) and the mass airflow (MAF). It is important to note that specific vehicle models
may have different available sensors: while some vehicles are equipped with only an
MAP sensor, some have only an MAF sensor, and some models have both. To handle
these variations, when a vehicle lacks an MAF sensor, the estimation of CO2 emissions
is carried out using an MAP sensor to estimate the MAF [19].
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• Module 2—Data Analysis and AI Application: After estimating the CO2 emissions in
Module 1, this cloud-based module utilizes data analysis and AI algorithms to examine
the emissions patterns in relation to the type of employed fuel in the analyzed vehicle.

2

Data collection 
from a vehicle

CO  Emissions

Estimating C02DATA COLLECTION

RESULTS

MODULE 1

ECU

Sensors

MAP or MAF

Graphs

MODULE 2
Data Analysis and AI Application

Bluetooth

Internet

Smartphone

Cloud

Figure 1. Overview of the proposed data processing approach for real-world monitoring.

3.1.1. Estimating CO2

In this article, the estimation of CO2 is performed through direct access to data using
the mass airflow (MAF) sensor as a reference. With this data, the amount of fuel mass
injected into the combustion chamber (Ccomb) is calculated using Equation (1):

Ccomb[g/s] =
maf[g/s]

AFR
(1)

where maf represents the MAF, and the air–fuel ratio (AFR) is determined using data
collected from the OBD system. Based on these variables, some conversions are performed,
as expressed in Table 1, according to previous analyses [30,33]. In addition to AFR, other
relevant fuel data include its density (ρcomb) and the amount of CO2 generated after burning
1 L of fuel (CO2PL).

Table 1. Conversion constants.

Fuel (ρcomb) CO2PL

Gasoline 737 g/L 2310 g/L
Ethanol 789 g/L 1510 g/L



Sustainability 2024, 16, 708 6 of 22

In the next step, the fuel volume (Vcomb) can be determined using Equation (2):

Vcomb[L/s] =
Ccomb[

g
s ]

ρcomb[
g
L ]

(2)

Once we have the fuel flow rate, we can finally estimate the CO2 emissions per second
using Equation (3) by multiplying Vcomb by the CO2PL coefficient.

CO2[g/s] = Vcomb[L/s]× CO2PL[g/L] (3)

3.1.2. AI-Based Data Analysis

From the obtained estimation, a comparative evaluation of the CO2 emissions gener-
ated through the use of gasoline and ethanol could be performed. Initially, the evaluation
was carried out by applying the TEDA (Typicality and Eccentricity Data Analysis) algo-
rithm, which is used to detect outliers in data sets [34]. This algorithm is based on the
notions of typicality and eccentricity in order to increase the relevance of the obtained
results.

Considering an input xk ∈ R at a discrete time instant k, eccentricity (ξk(xk)) measures
the difference of a sample with respect to the rest of the set, while typicality (τk(xk))
measures the similarity of a sample with the rest of the set. Both eccentricity and typicality
can be rewritten, allowing the calculations to be performed recursively.

As these measures express opposite ideas, one can be written as the complement of
the other, as expressed in the following equations.

ξk(xk) =
1
k
+

(µk − xk)
T(µk − xk)

kσ2
k

, k > 2 (4)

τk(xk) = 1 − ξk(xk) (5)

µk(xk) =
k − 1

k
µk−1 +

1
k

xk, µ1 = xk (6)

σ2
k (xk) =

k − 1
k

σ2
k−1 +

1
k − 1

|xk − µk|2, σ2
1 = 0 (7)

where µk(x) represents the mean, and σ2
k represents the variance for instant k. Then, both

eccentricity and typicality can be normalized, as shown in Equations (8) and (9).

ζk(xk) =
ξk(xk)

2
,

k

∑
i=1

ζi(xk) = 1, k ≥ 2 (8)

tk(xk) =
τk(xk)

k − 2
,

k

∑
i=1

ti(xk) = 1, k ≥ 2 (9)

Finally, an approach to identifying an outlier for any data distribution is Chebyshev’s
inequality, described in Equation (10).

ζk(xk) ≥
m2 + 1

2k
(10)

In this expression, m is the number of standard deviations from the mean µk, and it
can be understood as the detection sensitivity threshold. If the aforementioned condition is
true, the sample is considered an outlier, and thus, it can be ignored when computing CO2
estimations, making the results as a whole more accurate.

At this point, vehicular pollution estimations based on the actual processing of data re-
trieved from vehicles could be performed, allowing comparisons of different employed fuels.
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3.2. Simulated Scenarios

Although a practical mechanism for real-world monitoring is proposed, extensive
experimentation can be costly, especially when long-distance journeys are considered.
Therefore, we wanted to enable the simulation of realistic scenarios without the need to in-
vest time and resources in real experiments, complementing the achievable results. Actually,
it is an efficient strategy for modeling and understanding complex variables in a controlled
and virtual environment. To implement this, the use of a simulator is essential, and we
chose SUMO for its capability to generate detailed simulations. Moreover, its compatibility
with the Python 3.10 programming language can be highlighted, particularly through the
traci library. Finally, SUMO’s user-friendly interface and flexibility for integrations with
advanced programming tools are also among its favorable factors.

In order to allow computations of CO2 gas emissions in the simulations, it was nec-
essary to use the two vehicular sensors, MAF and AFR (Equation (1)), but they are not
available in SUMO. Therefore, the training of machine learning models using variables
available in both environments—the real and the simulated one—was defined. It is note-
worthy that the training data for the models came from the case study highlighted in
Section 4. Thus, an intersection of the variables existing in both scenarios was applied,
creating a hybrid dataset that can be used to train AI models, as can be seen in Figure 2.

REAL SUMO

LatitudeLongitude Speed Acceleration

Figure 2. Intersection of existing variables in both forms of scenarios.

As a result of this process, four distinct AI models were obtained. Two of these models
were designed to predict MAF and AFR values in the scenario using gasoline, while the
other two models focus on predicting the same parameters but in the scenario where
ethanol is the employed fuel. This approach allows for a more precise analysis tailored to
the specificities of each type of fuel, providing insights into the environmental impact and
efficiency of different automotive fuels.
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Let us continue with the modeling process. The adopted strategy involved training
four distinct models. These models were fed with a set of carefully selected variables: lati-
tude, longitude, speed, and acceleration. These variables were chosen for their commonality
in both real-world and simulated scenarios.

The training process of these models was significantly enhanced through the use of
the Lazy Predictor library, an advanced tool in the field of data science [35]. This library
facilitates the automation of the training process, allowing for the efficient and systematic
generation and evaluation of multiple regression models. The Regressor class, a key feature
of this library, was employed to build and test a variety of predictive models.

During the training phase, the mentioned library automated the training process,
generating a broad range of models for each of the four key variables. After the training
had been completed, the model with the best performance for each set of variables was
selected. Figure 3 represents the test results for the best-performing models.

(a) Gasoline—Sensor AFR. (b) Ethanol—Sensor AFR.

(c) Gasoline—Sensor MAF. (d) Ethanol—Sensor MAF.

Figure 3. Test results for the best-performing models.

Finally, the two selected models for predicting MAF were of the XGBRegressor type ,
and those chosen for predicting AFR were of the LGBMRegressor type. This selection was
based on performance metrics related to the models’ errors. Figure 4 shows how processing
occurs for the data that pass through each of the models, followed by the utilization of the
emission calculation discussed earlier.

AFR

MODEL

Compute

CO

2

MAF

MODEL

LatitudeLongitude

Speed Acceleration

Figure 4. Data flow through XGBRegressor and LGBMRegressor models for emission calculations
in simulations.
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4. Case Study

In this section, the practical application of the proposed approach is explored through
a case study in both real-world and simulated environments.

4.1. Experimental Scenario

A case study was considered to evaluate the proposed methodology in order to
investigate the feasibility of analyzing the estimated CO2 emissions along a route with a
compressed machine learning model on different dates, using ethanol and gasoline in a flex-
fuel (hybrid) vehicle. As previously mentioned, the results of this analysis can contribute to
indicators for smart cities in terms of sustainability and the energy transition, specifically
regarding the importance of biofuels. Since this is a real-world experiment, potentially
closer to actual reality, this was the first scenario to be defined.

The following subsections describe the data collection, evaluation metrics, and execu-
tion process for this scenario.

4.1.1. Data Collection

The data collection process was conducted in a real-world scenario, with a volunteer
acting as the driver of a Nissan Kicks 2022 car model with automatic transmission. The
instrumentation setup was then defined, which involved configuring the environment to
collect data from this vehicle. The following components were utilized:

• OBD-II scanner: A device was used to collect data from vehicle sensors, which were,
in our case, the speed, MAP, and AFR values. The popular ELM-327 OBD-II scanner
was used with a sampling rate of 1 s between each request;

• Smartphone: A device used for communication between OBD-II and the associated
modules, as well as for storing GPS positions. The volunteer used an Android smart-
phone with sufficient processing, memory, and communication capabilities for the
experiments;

• Torque Pro App: A mobile application used to facilitate the communication of the
data collected via OBD-II and cloud-based applications.

Before the volunteer began the defined route, an OBD-II reader was connected to
the vehicle and paired with the driver’s mobile device via Bluetooth communication.
Additionally, the Torque Pro App was configured to collect speed and MAF data, which
were available for the vehicle in use. During the trip, the Torque Pro App 1.12.101 recorded
data into a CSV file, which was transmitted to a cloud server at the end of the route for
further analysis.

For the data collection procedure, a route of approximately 13 km was selected in the
city of Natal, Brazil. The route encompassed urban areas with paved and asphalted sections
and was conducted from 6:00 to 7:00 in the morning. The route was executed under two
scenarios: one with the vehicle running on gasoline and another with ethanol. Each type of
fuel was tested on five different days of the week (from Monday to Friday), resulting in a
total of ten trips (five for each fuel type). Finally, after completion, all the stored data could
be transmitted and processed to generate graphs using geolocation metadata.

4.1.2. Data Analysis

After applying the proposed approach to calculating CO2 emissions, the TEDA algo-
rithm was used to analyze the instantaneous values related to the amount of gas produced
by the vehicle. In this context, the presence of outliers in each fuel type was investigated. It
is important to highlight the influence of the parameter m in Chebyshev’s inequality for
anomaly detection. Therefore, understanding the relationship between the parameter m
and anomaly detection is crucial for interpreting the results.

The parameter m acts as a sensitivity threshold, setting the allowable range for values
that are considered outliers. Its influence is visualized graphically in Figure 5.
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Figure 5. CO2(g) outliers detected based on the value of parameter m.

Figure 5 graphically illustrates this influence, demonstrating that an increase in m
leads to less sensitivity to extreme values, while a decrease in m increases the sensitivity to
the presence of outliers. This principle then guides the selection of outliers for exclusion,
making the results potentially more meaningful.

4.2. Simulated Scenario

The simulated scenario aimed to replicate the real-world data collection procedure
using SUMO as the traffic simulator, enhancing the achieved results for better analysis. In
the virtual environment, a scenario that mimics the urban layout and traffic conditions of
the chosen route in Natal, Brazil, was configured, adopting the following configurations:

• SUMO configuration: The simulation was configured to replicate the urban route
with details such as the road layout, intersections, and traffic density. The vehicle type
was specified as a flex-fuel hybrid model;

• OBD-II equivalents: Virtual OBD-II equivalents were created in SUMO to mimic the
data collection from the vehicle sensors. The speed, MAP, and AFR parameters were
simulated with patterns resembling those expected in a real-world scenario;

• Geolocation data: A graph representing the geographic behavior of the city of Natal,
Brazil, was created. Such a graph is essential to ensure that the simulator accurately
reflects the real conditions of the city’s urban roads. The creation of this graph began
with the use of the Python library OpenStreetMap nx (OSMnx), a tool for manipulating
and analyzing geographic data. With OSMnx, it was possible to extract a detailed map
of the streets, avenues, and other relevant geographic features of Natal.

Therefore, it is worth highlighting that, for the route simulation, the result was a com-
prehensive graph that captured the complexity and specificity of the city’s road network,
as illustrated in Figure 6.

However, to guarantee the compatibility of the graph with SUMO, an additional
conversion step was necessary. To do this, the netconvert tool was included in the SUMO
installation package. This tool was designed to transform graphs of different formats into a
layout that is compatible with SUMO, facilitating the integration between the simulation
environment and the real geographic data.



Sustainability 2024, 16, 708 11 of 22

Figure 6. Map capturing the specificity of the city’s road network during the simulation.

4.3. Evaluation Metrics

The evaluation of the proposed approach required the use of specific metrics to assess
the expected outcomes. The employed metrics for this evaluation were the mean absolute
error (MAE) and the root mean squared error (RMSE), which both provide insights into
the precision of the predictive models in capturing the variations in CO2 emissions along a
simulated route.

The adopted evaluation metrics are expressed as follows:

MAE =
1
n

N

∑
i=1

|xi − x̂i| (11)

RMSE =

√√√√ 1
n

N

∑
i=1

[(xi − x̂i)]2 (12)

The simulated scenario was executed for both gasoline and ethanol fuels, with multiple
runs to capture variations. The goal was to ensure that the simulated data reflected the
diversity observed in the real-world scenario, allowing valuable comparisons. In this way,
a total of 112,964 records relating to gasoline consumption and 40,291 records relating to
ethanol consumption were collected from the real scenario. The predominance of gasoline
use data indicates a greater representation of this fuel in the sample. To build a model,
the collected data were separated, with 80% intended for training and 20% for testing,
providing an adequate division to evaluate the effectiveness of the model in both situations.

The data generated from the simulation were then saved in a format similar to the
one applied to the real-world scenario (CSV), allowing for a comparative analysis of
CO2 emissions and other relevant parameters. This process provided a comprehensive
evaluation of the proposed methodology under controlled and repeatable conditions.
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The proposed methodology was made readily accessible for research and practical
purposes. The detailed implementation of our method is publicly available on our GitHub
repository. This open-access approach is intended to facilitate collaboration, replication,
and further research endeavors within the academic and professional communities. To
access the full implementation, please visit our GitHub repository at https://github.com/
conect2ai/MDPI2023-pollution (accessed on 12 January 2024).

5. Results

This section aims to provide a detailed description of the results obtained in both the
real-world and simulated scenarios, offering a comprehensive overview of the outcomes of
the defined case.

5.1. Practical Experimentation

First, in order to conduct a more accurate comparative analysis, the initially collected
2000 data samples from each of the 10 created datasets (5 for ethanol and 5 for gasoline,
assuming that each day of the experiment was processed separately) were selected to
ensure equivalence in the amount of processed data.

Through this methodologically established approach, the goal was to gain a deep
understanding of the effects resulting from the choice between ethanol and gasoline, taking
into consideration their direct influence on CO2 emissions.

Initially, to examine the behavior of outliers in each type of fuel, the TEDA algorithm
was applied with the value of m = 1.5. The achieved results can be observed in Figure 7.

According to Figure 7, it can be observed that there was a higher number of outliers in
the gasoline data. This finding can be interpreted as an indication that the use of gasoline
may result in a more heterogeneous CO2 emission pattern, exhibiting a greater dispersion
around the mean values.

For a more in-depth investigation and to corroborate this statement, it is pertinent to
use a distribution plot to examine the distribution of CO2 emission values for each type of
fuel. The visualizations presented in Figure 8 depict the kernel density estimation (KDE)
curve, a statistical technique that estimates the density of a variable through smoothing,
generating a continuous estimate.

Upon analyzing the results in these figures, the heterogeneity of emission values
related to gasoline becomes evident, as indicated by the flatter curve. As previously
mentioned, this suggests that the CO2 emission values associated with gasoline exhibit a
greater dispersion around the mean. In the case of ethanol, which has fewer outliers, the
KDE curve tended to concentrate more around the mean, indicating lower variability in
CO2 emission values.

Figure 7. Sample outlier detection via TEDA.

https://github.com/conect2ai/MDPI2023-pollution
https://github.com/conect2ai/MDPI2023-pollution
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(a) CO2(g) emissions for gasoline.

(b) CO2(g) emissions for ethanol.

Figure 8. KDE distribution of CO2(g) emissions for gasoline and ethanol.

An additional piece of information highlighted in Figure 8 is that gasoline, on aver-
age, exhibited higher CO2 emissions. This observation becomes clearer when examining
Figure 9.

In Figure 9, a graphical representation of the average CO2 emissions for each type of
fuel separated by weekdays is displayed. It can be observed that the average for gasoline
was at a higher level compared to the average for ethanol. This indicates that, in general,
the use of gasoline resulted in higher average CO2 emissions than the use of ethanol.

While the mean was heavily influenced by the presence of outliers, Figure 10 provides
evidence that there will indeed be a significantly higher CO2 emission from gasoline
throughout the performed trip.

Figure 10 was generated from the average of the first 2000 data samples for each day,
corresponding to each type of fuel. This graphical representation highlights how, over time,
the cumulative emission of gasoline was substantially higher than that of ethanol.

When observing Figure 10, it can be noticed that the curve corresponding to the
cumulative emission of gasoline had a more pronounced upward trend compared to the
ethanol curve. This indicates that, on average, the CO2 emission associated with the
use of gasoline accumulated in larger quantities over the analyzed period compared to
ethanol, which reinforced the urgency of reducing its use as a fuel in combustion-engine
vehicles [26].

5.2. Simulated Experiments

The results obtained from the simulations demonstrated remarkable conformity with
the data collected from real scenarios, highlighting the effectiveness of the simulated
environment in replicating authentic driving conditions, as can be seen in Figure 11.
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Figure 9. Average CO2(g) emissions by weekday.

Figure 10. Average cumulative sum of CO2(g) emissions.

In this way, Figure 11 indicates the achieved results for different driving scenarios.
For the simulation, some points where the vehicle simulated in SUMO should cross were
manually selected, which were also points crossed by the real vehicle. SUMO uses graph
optimization techniques to search for the shortest distance between each of the two selected
points. In other words, these points were selected in such a way that they replicated the
actually selected route with the difference that the one selected for this stage was shorter
(but with no practical impact on the performed analysis).

Furthermore, a comparison of the emissions generated through the simulated en-
vironment using the developed modules was carried out, as can be seen in Figure 12,
which presents a comparative analysis of the accumulated sum of gasoline and ethanol
emissions. Consistent with the initial graphical representation, the cumulative emissions
from gasoline use were higher than those from ethanol. This difference in cumulative
emissions is represented visually in the graph, which delineates the disparity between the
two fuel types.
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Figure 11. Comparison of emissions for gasoline and ethanol, showcasing the remarkable conformity
between the considered evaluation scenarios.

Figure 12. Comparison of emissions for gasoline and ethanol, showcasing the remarkable conformity
between simulation results.

Even though Figures 10 and 12 do not depict the same route, a resemblance can be
observed in the generated graphs, indicating a similarity in the behavior replicated by the
simulated environment. An effective way to compare the impact of fuels is through map
visualization, as exemplified in Figure 13. In these visualizations, the complete emission
data for a single day (Monday) were considered for both real-world and simulated scenarios.
In this case, the employed simulator played an integral role in representing real-world
conditions. SUMO, in particular, stood out for its ability to incorporate a comprehensive
range of geographic and structural road characteristics. These elements, when combined
with AI models, allowed the creation of an extremely realistic simulated environment. The
simulations were able to capture the complexity of the interactions between the vehicle, the
driver, and the environment, thus providing a tool for analyzing CO2 emissions.

In Figure 13, it is noticeable that both graphs show reddish shades in similar regions,
which is an indication of higher emitted CO2 in those areas. This observation can be
attributed to the fact that the car dynamics tended to behave similarly in both cases. This
reinforces the idea that a simulated environment can be a viable approach to generating
additional data that resemble similar characteristics. However, it is still evident that the
shades for gasoline tended to be much closer to the colors indicating higher CO2 emissions.



Sustainability 2024, 16, 708 16 of 22

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Real Simulation

Gasoline

(a) Map view of emissions for gasoline.

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Real Simulation

Ethanol

(b) Map view of emissions for ethanol.

Figure 13. Comparison of emission maps for real-world and simulated scenarios.
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Further analysis concerned a comparison using the calculation previously presented
but also incorporating data from the AFR and MAF sensors. Figure 14 provides a visual
analysis of the AFR and MAF metrics, highlighting how they responded to the adopted
calculation method. This close alignment between the simulated data and the real data
reinforces the feasibility of using simulators and AI for advanced studies in the field of
automotive and environmental engineering.

(a) CO2 predicted for gasoline. (b) CO2 predicted for ethanol.

Figure 14. Comparison of CO2 predictions in the real world.

Finally, for the conducted simulation study comparing the emissions of two different
fuel types, important results are presented in Table 2.

Table 2. MAE and RMSE for gasoline and ethanol.

Fuel Type MAE RMSE

Gasoline 0.4151 0.6222
Ethanol 0.2334 0.3624

First, considering the defined evaluation metrics, the simulated (predictive) model for
ethanol exhibited a substantially lower MAE (0.2334) compared to that for gasoline (0.4151).
This indicates that, on average, the predictions for ethanol emissions were closer to the
actual values, signifying a higher level of accuracy in replicating real-world conditions in
the simulation. Further emphasizing the model’s performance, the RMSE values reinforce
the superiority of the simulated ethanol model. With RMSEs of 0.3624 for ethanol and
0.6222 for gasoline, the smaller RMSE for ethanol signifies a more precise representation of
CO2 emission variations in the simulated scenario. Therefore, it emphasizes the potential
of the proposed methodology to assess the environmental impacts of different fuel types in
a simulated urban environment with the use of digital twins performing satisfactorily well
in the defined scenario.

5.3. Discussions and Analyses

The results of both the real-world and simulated experiments provide a nuanced
understanding of the implications associated with the choice between ethanol and gasoline
in terms of CO2 emissions.

The outlier analysis revealed a higher number of outliers in gasoline emissions, sug-
gesting a more heterogeneous emission pattern. This variability could have significant
implications for environmental planning and policy-making, as it indicates that gasoline-
powered vehicles may contribute to a less consistent level of CO2 emissions compared
to ethanol.

The consistently higher average and cumulative emissions for gasoline underscore its
greater impact on the environment. This aligns with existing knowledge about the carbon
footprint of gasoline and emphasizes the urgency of transitioning to more sustainable
fuel alternatives.
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The accuracy of the simulation environment and the superior performance of the
predictive model for ethanol suggest that ethanol might be a more environmentally friendly
alternative, at least in terms of CO2 emissions. This conformity between simulated and
real-world data is crucial for predicting and understanding the environmental impact of
different fuels.

Considering these patterns, there are important implications for environmental policies
and initiatives. Policymakers might need to prioritize promoting the use of ethanol or other
alternative fuels to reduce the overall carbon footprint. Additionally, this study’s findings
might encourage behavioral changes, such as a shift towards cleaner energy sources or
more sustainable transportation practices.

Thus, this study highlights the need for careful consideration when choosing between
ethanol and gasoline. The environmental consequences, as evidenced by higher emissions
from gasoline, should play an important role in decision-making processes. By informing
policy-makers, encouraging behavioral changes, and guiding future research directions,
this study contributes to a more comprehensive understanding of the environmental
implications of fuel choices.

5.4. Research Limitations and Challenges

In this section, we discuss some of the limitations identified in our research.

(a) Sample Size and Study Duration:

– Sample Size: The initial sample of 2000 data points per day may be deemed
limited in capturing the full diversity of driving conditions;

– Study Duration: While the analysis period was sufficient for the study’s objec-
tives, it may not have encompassed seasonal variations or long-term effects that
could influence emissions.

(b) Simulation Limitations:

– Model Complexity: The complexity of the simulation model may not fully re-
flect the intricacies of real driver and traffic behavior, potentially impacting
simulated emissions;

(c) Geographical Representation and Fuel Variations:

– Geographical Representation: Despite the simulation incorporating geographical
features, the complete representation of topography and road infrastructure may
not be entirely accurate;

– Fuel Composition Variations: Variations in ethanol and gasoline composition
may not have been fully addressed, and different fuel blends may have resulted
in distinct emissions.

(d) Unconsidered External Factors and Implicit Bias:

– Unconsidered External Factors: The study may not have fully considered external
factors, such as weather conditions, that can influence emissions and were not
controlled for;

– Implicit Bias in Modeling: The modeling may reflect certain driving behaviors or
decisions influenced by implicit biases present in the original dataset.

6. Conclusions

This article has presented an IoT-based approach that employed a smartphone, a math-
ematical model, and an AI algorithm to estimate CO2 emissions during vehicle operation,
conducting intelligent analysis of the results. In addition, we employed SUMO to create a
simulation scenario powered by a linear regression AI model trained with data collected via
the IoT approach, which faithfully reflected the real operating conditions of the vehicles and
enhanced the set of achieved experimental results. Thus, it was possible to evaluate the ef-
fectiveness of two different types of fuels, making it easier to understand the environmental
implications arising from the choice of different fuels in the automotive sector.
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A case study compared the emissions of ethanol and gasoline fuels, highlighting that
ethanol exhibits significantly lower CO2 emissions, emphasizing the importance of more
sustainable fuels in reducing environmental impacts and mitigating climate change. In the
simulated environment, SUMO’s detailed configuration, including flex-fuel modeling and
the creation of OBD-II virtual equivalents, enabled controlled and repeatable analysis. The
efficient conversion of real geographic data to the SUMO-compatible format was essential to
ensure simulation fidelity. The final outcome was a comprehensive analysis of air pollution
due to combustion engine vehicles, which may be highly significant when fostering the
transition to more sustainable transportation.

As an additional result, the inclusion of evaluation metrics such as the mean absolute
error (MAE) and root mean squared error (RMSE) significantly enriched our analysis,
offering quantitative insights into the accuracy of predictive models and enabling a direct
comparison between the gasoline and ethanol scenarios. The attainment of low MAE and
RMSE values indicates that, on average, our models yielded predictions in close proximity
to the actual CO2 emission values, underscoring a high degree of accuracy in replicating
emission variations. This numerical precision is particularly crucial when discerning
between the two fuel types, with the ethanol scenario exhibiting notably lower errors
compared to gasoline. These metrics not only enhance the robustness of our findings but
also provide a concise and quantitative measure of the reliability of our predictive models,
contributing valuable information for informed decision-making and policy formulation in
the context of mitigating CO2 emissions. These metrics are important in understanding how
predictions align with actual variations in CO2 emissions along a route. Additionally, It is
crucial to address a specific limitation related to the MAF sensor, which served as a reference
for CO2 emissions estimation in our approach. As highlighted, since our methodology
relies on sensor data, we acknowledge the potential impact of sensor failures on estimation
accuracy. Therefore, maintaining the proper functioning of sensors is paramount to ensure
the reliability of our methodology.

Future works will incorporate this proposed approach into OBD-II Edge devices as a
TinyML solution, which would operate autonomously and eliminate the need for smart-
phones, enabling more practical implementation. This could even allow more widespread
dissemination of air pollution monitoring mechanisms within a smart city ecosystem, with
adaptive urban services responding to increased pollution levels by diverting traffic or
imposing temporary limitations for combustion-engine vehicles. Additionally, it is essen-
tial to expand the possible set of analyses to different types of vehicles, considering their
specificities in terms of CO2 emissions, and increase the sample size in the number of both
vehicles and routes to achieve a more representative understanding of vehicle emissions in
diverse contexts. In this sense, the development of more generic models that can be applied
to a variety of urban contexts is also intended, considering different traffic profiles and
road infrastructure.

Furthermore, concerning promising future works, since the simulated model assumes
a simplified representation of a vehicle, some automotive characteristics that can influ-
ence CO2 calculations may be identified more accurately using other simulators, such as
agent-based modeling (ABM). In addition, an important focus that should be applied is the
analysis of potential limitations and challenges associated with the widespread adoption of
ethanol as a fuel source. Issues such as refueling infrastructure, production sustainability,
public acceptance, and socioeconomic impacts deserve detailed attention. By exploring
these aspects, future research can contribute to a more comprehensive understanding, con-
sidering not only environmental implications but also the practical and ethical challenges
related to the transition to ethanol as a more sustainable fuel alternative.
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GRAL Graz Lagrangian Model
IAT Intake absolute temperature
IoT Internet of Things
KDE Kernel density estimation
LSTM Long short-term memory
MAE Mean absolute error
MAF Mass airflow
MAP Manifold absolute pressure
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TinyML Tiny machine learning
UN United Nations
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