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Abstract: Understanding changes to soil organic carbon storage (SOC) requires knowledge of detailed
land use history. Many satellite-based analyses of land use change have been conducted over short
periods (typically 5 to 10 years) to investigate causality to a demand increase in an agricultural
commodity. However, statistically significant changes in SOC are not readily observable during
this time and typically require decades for meaningful differences to accrue. This study aimed to
determine land use and soil organic carbon stocks on land parcels over 36 years (1985–2021) located
in areas where historical land use transitions between cropland and non-cropland are prevalent.
Aerial and satellite imagery were analyzed across 25,992 hectares in ten counties across the Corn Belt.
Grower interviews were conducted to solicit feedback on the drivers of land use change. Finally,
SOC analyses associated with land use changes were determined using two process-based models.
Analysis showed that 371 of the parcels had remained in cropland, 611 parcels transitioned into
non-cropland, and 18 parcels were identified as non-cropland. The grower surveys indicated that the
most common reasons for returning land to crop was the difficulty getting land re-enrolled in the
CRP and reduced cattle prices. Both the SALUS and GREET-CCLUB models were parameterized to
assess soil carbon changes for the respective land use history, and both models returned consistent
SOC increases at the county level over time.

Keywords: land cover change; agriculture; cropland change

1. Introduction

Evaluating the environmental and economic impacts of land use change (LUC) for
land that moves in and out of cropland over decadal time periods is hampered by a lack
of ‘real world’ data and the inherent uncertainty associated with determining SOC stock
and changes due to these interconversions. These transitional lands include fallow or idle
cropland, unused land, cropland–grassland, cropland–pastureland, and combinations of
these. Economic models relied upon by policy decision makers assess land area changes
associated with agricultural demand changes (e.g., Purdue’s GTAP model [1]). These
models rely on transitional land categories (among others) when predicting where LUC
occurs. However, determining the impact from these land type conversions on SOC
stock changes and subsequent greenhouse gas (GHG) emissions calculations via carbon
accounting models is subject to substantial debate [2,3]. For example, several models are
employed to account for SOC stock changes due to conversion of land to crop (the most
common are AEZ-EF [4], GREET-CCLUB [5], Globiom [6], and IPCC [7]), with results
differing widely, primarily due to the SOC release assigned to these transitional lands.

In particular, the conversion from grassland to cropland has received much attention
in the literature. Many of these studies focus on a short time period, typically using as a
starting year the enactment of the Renewable Fuels Standard in 2008 for increased demand
for biofuels and ending in 2012–2016. For instance, Lark et al. used the USDA Cropland
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Data Layer (CDL), an annual satellite-based land cover classification of the United States,
and identified 2.98 million acres of conversion of natural lands to agriculture [8] for the
time period of 2008 to 2012, although Lark et al. later wrote a paper cautioning against
the use of the CDL for land use change to crop [9]. Copenhaver et al. analyzed the CDL
and found the potential for error was much greater than acres identified as change, again
showing that the use of the CDL alone for short-term land use change is questionable [10].
Likewise, the research by Wright et al. [11] and the World Wildlife Fund [12] used annual
change in the CDL since 2008 and the CDL from 2006 to 2011, respectively. All of these
studies assumed land converted to crop was never in crop prior to the year of conversion.
Thus, in previous studies, a short time horizon of only 4–8 years for land use change
assessments was often deemed sufficient to inform land use responses to biofuel policies.
In contrast, the present study focuses on a much longer time horizon, 1985–2021 (36 years),
and investigates broader drivers for land use change. However, it is still challenging to
spatially identify and classify transitional land boundaries that allow matching of the land
area with associated SOC stock and changes due to land use transitions.

More recent research analyzing longer-term land use change has shown that there
has been a net decline in cropland since the 1980s. This would match the statistical data
released by the USDA National Agricultural Statistics Service [13]. One study looked at
satellite imagery to measure cropland variations from 1992 to 2015 [14]. This study found a
decline in cropland in North America, primarily to human settlements. Another study by
Auch et al. analyzed satellite imagery for the United States from 1985 to 2016 and found a
net decline of 109,233 square kilometers [15].

Studies which have directly discussed the transition of lands from grassland to crop
have cited problems delineating transitional areas with satellite imagery. Studies that
utilized the CDL for land change assessments cited the low accuracy and the difficulty in
separating grassy crops such as hay and alfalfa from grasses [16]. Another study which
focused on southeastern South Dakota found that the accuracy for grassland identification
could be as low as 38.9% [17].

Current voluntary carbon market initiatives that work with agricultural cropland use
different models and methodologies to determine SOC stocks and changes, and as such
are also likely to generate different values and payments for the same LUC operations.
Moreover, many regulatory low-carbon transportation policies including the California Low
Carbon Fuels Standard (LCFS), the Carbon Offset Reduction Scheme for International Aviation
(CORSIA), and the European Union’s Energy Directive assess induced land use change (iLUC)
for individual feedstocks that are converted into biofuels. SOC stock changes are also added
to the carbon cycle emissions of the production pathway of a biofuel which then influences its
attractiveness as a compliance fuel under a low-carbon fuel standard. The practical significance
of the present research is that understanding the associated carbon implications of transitional
lands will ultimately help better inform the carbon policies.

To better understand the lands transitioning to crop, this study investigated 1000 land
parcels across 10 counties in six Midwestern states, constituting 25,992 hectares (Figure 1).
Each parcel was located in areas that have been identified as conversion from grassland
to crop in previous studies for transitional land. The present study (a) provides a yearly
assessment of each parcel’s land use and any LUC based on a novel approach combining
three separate remote sensing methods, (b) conducts in-depth grower interviews to gain an
understanding of the drivers for the land conversions, and (c) determines corresponding
SOC stock and SOC stock changes for the observed land uses and changes using two
independent crop models. This study is innovative in that it combines satellite imagery
with aerial imagery to determine long-term land use for parcels identified as change from
natural lands to cropland in a previous study, which is used in many models to assess SOC
changes. It also calculates the new SOC change values for these parcels using two different
models to determine how long-term land use impacts these values.
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Figure 1. Locations of study counties.

2. Materials and Methods
2.1. Land Use Identification

This study assessed land use for the period from 1985 to 2021 using three separate
methods (Figure 2). Aerial imagery from the 1980s and 2000s was visually inspected for
land use. Normalized Difference Vegetation Indices (NDVIs) developed from monthly
composites of Landsat satellite imagery for the month of June were analyzed for land
use. These images display higher values in June where natural vegetation is growing as
crops have not emerged yet. Finally, NDVI values developed using the LandTrendr [18]
algorithm on Landsat composites for spring, summer, and autumn were analyzed for the
parcels. The LandTrendr algorithm was used to develop temporal curves which, when
displayed in Google Earth Engine, displayed an averaged NDVI value for each parcel in
spring, summer, and autumn for each year from 1985 to 2021. Parcels in crop will typically
show a distinctive three-point curve with low spring and autumn values and high summer
values. Crop-free fields typically have higher values in the spring and autumn from existing
perennial vegetation but lower summer values. After a parcel was assessed using all three
methods, a decision was made as to whether the parcel was in crop or in natural vegetation
for each year. Figure 2 demonstrates the much higher peaks of the annual, temporal curves
for crop and the more subdued curves for natural vegetation.
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Figure 2. Three methods for estimating land use from 1985 to 2020 for 100 points in each county.

In six states (responsible for 47% of corn planted in the United States in 2022 [13]:
Iowa, Illinois, Indiana, North Dakota, South Dakota, and Wisconsin), a total of ten counties
(one or two per state) were selected for analysis. Parcels that were previously identified by
Lark et al. in a recent paper as grassland-to-cropland changes between 2008 and 2016 were
considered [19]. The areas identified by Lark et al. overlap with areas previously identified
by another research group for land use change [11]. In the present work, the 100 largest
parcels in ten counties identified in the Lark paper for land use change were accessed and
analyzed for land use change between a longer time horizon (1985 to 2021) using three
different remote-sensing-based methods.

In the first method, USGS and USDA aerial imagery was reviewed for land use
(Figure 3). There are several features in aerial imagery that indicate cropland or natural
vegetation. Crops will grow uniformly throughout a parcel, while natural vegetation may
have different patterns in the parcel and grow in clumps based on the amount and type of
plants growing. Crops often have linear features indicative of rows. Natural vegetation may
have little circles indicating shrubs or trees. Crops will be green in visible light photography
and red in near-infrared photography, while natural vegetation may appear grey or brown
in visible light and pink or grey in near-infrared. Also, occasionally, hay fields will have
bales of hay somewhere in or near the field.

Imagery from two different government imagery programs was used: the USGS
National High-Altitude Photography (NHAP) [20] and the USDA National Agriculture
Imagery Program (NAIP) [21]. The NHAP program collected aerial photography from
1980 to 1989. Some of the imagery was black and white, while other imagery was color
infrared (a combination of near-infrared and visible bands). The imagery was digitized
and is available from the United States Geological Survey (USGS) EarthExplorer website
with spatial resolutions from 1 to 4 m. The imagery is not georeferenced. The project used
corner coordinates to create an approximate georeferencing to assist with finding parcels.
One-meter imagery was available from 1983 to 1985 (depending on state) for all parcels.

The NAIP program offers aerial imagery collected in agricultural states on an annual
or biennial basis (Figure 4). The spatial resolution of the imagery ranges from 1 to 2 m, and
is either visible bands (red, green, and blue bands) or visible and near-infrared (red, green,
blue, and near-infrared bands). For this study, a visual assessment of NAIP from 2003 to
2020 (depending on availability for each state) was used to identify potential land use.
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Figure 4. Years with NAIP imagery for each state from 2003 to 2020 (in grey).

A series of Landsat satellites, including Landsat 1 (1972), Landsat 2 (1975), Landsat
3 (1978), Landsat 4 (1982), Landsat 5 (1984), Landsat 6 (1993), Landsat 7 (1999), Landsat
8 (2013), and Landsat 9 (2021), have been launched into orbit. Beginning with Landsat 4
in 1982, the Thematic Mapper instrument was included [22]. The Thematic Mapper offers
continuous 30 m imagery in several bands in the visible and near-infrared range. The
satellites only scan the same location on the earth’s surface once every 17 days and are
impacted by cloud cover, sometimes limiting coverage. For the second method in this



Sustainability 2024, 16, 734 6 of 17

study, NDVI images were developed using Landsat 5, 7, and 8 using composite images for
June of each year from 1985 to 2021 in Google Earth Engine. The imagery was corrected
to surface reflectance removing atmospheric effects and a brown-to-green color scale was
applied. Parcels with orange or yellow NDVI values (lower values) in June were crop (bare
soil or residue) in June while parcels with green values (higher values) are likely natural
vegetation as the vegetation is in the field all year and will start to grow with the warm
weather in June (Figure 5).
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Figure 5. Examples of land in crop and land in vegetation in aerial images and June Landsat NDVI.

For the third step, spectro-temporal curves were analyzed for each year using the
LandTrendr algorithm. The LandTrendr algorithm is a time-series analysis technique for
remote sensing and land cover change studies. It was developed to automatically detect
and quantify changes in satellite imagery over time. By processing multiple temporal
images, LandTrendr identifies changes in land cover. The algorithm is based on pixel-level
spectral trajectories and can effectively distinguish between long-term land cover trends
and short-term disturbances. For this study, spectro-temporal curves were created using
LandTrendr in Google Earth Engine for each year from 1985 to 2021 for composite Landsat
images in the spring (April–May), summer (mid-July to mid-August), and autumn (mid-
October to mid-November). Graphs of these curves were plotted alongside the imagery of
each parcel to assist in the land use assessment. Parcels with the lowest values in spring
and autumn and highest numbers in summer in a particular year are crop with bare soil
in the spring, vibrant vegetation in the summer, and low values after harvest. Parcels
with the highest values in spring and fall and lowest values in summer are likely natural
vegetation as the parcel are not uniformly planted and do not receive fertilizer and other
elements that improve growth in the summer and are growing on the parcel in the spring
and autumn (Figure 6). The parcel in Figure 6 has low spring/autumn to high summer
LandTrendr values from 1985 to 2000, more subdued curves from 2001 to 2008, and more
low spring/autumn LandTrendr values with high summer values from 2009 to 2021. This,
combined with the aerial imagery and spring NDVI values for this parcel, led to the parcel
being identified as an active crop field from 1985 to 2000, fallow or CRP from 2001 to 2008,
followed by a return to crop in 2009.
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2.2. Drivers of Land Use Change

To better understand the drivers for land use change, a list of landowners for parcels
identified as change was sent to each respective state corn-grower association involved in
the study. The grower associations identified farmers who were members that would be
willing to provide an interview and were a good representation of farmers in the area and
provided contact information. Detailed interviews were conducted with these growers. In
total, nineteen farmers from four states (Stutsman and Dickey counties in North Dakota,
Brown County in South Dakota, Fayette County in Iowa, and Washington County, Indiana)
were interviewed regarding their land use decisions. Interviewing methods included
telephone conversations, video meetings, and a Google Forms questionnaire (Appendix A).
This is a small sample size, but it can be difficult to get farmers to discuss their on-farm
practices. The Google Forms questionnaire was developed with the cooperation of the state
grower associations. The grower associations provided many good questions which were
focused specifically on the growers in their state. They also identified privacy concerns
for the farmers and requested answers given or data provided by a single farmer not be
included in this paper to protect this privacy. Each farmer had one to two parcels identified
as conversion constituting close to 400 hectares associated with potential change to crop.
The study used telephone and video meetings to follow up and ask more detailed questions
after the Google Form was filled out by the farmer. These could last anywhere from 15 min
to over an hour depending on the extent of the parcels identified as change, the willingness
of the grower to speak, and other answers provided in the Google Forms questionnaire.

2.3. Carbon Change Assessment

The study analyzed SOC change from the parcels’ transitions between crop and non-
crop using the System Approach to Land Use Sustainability (SALUS) model developed
at Michigan State University. SALUS models crop, nutrient, soil, and water conditions at
a daily time step using different management techniques. SALUS was parameterized to
assess CRP type vegetation species for the non-crop years rotating with reduced-till corn
for the crop years [22–24]. Reduced-till corn for the crop year was based on a separate
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survey by the USDA which showed a trend that most crop acres have been in some form of
reduced tillage system, with 65% of all corn acres farmed under this practice [25,26].

The findings were then compared to the model results from the surrogate soil organic
carbon model (SSOC) database that is part of the Carbon Calculator for Land Use and
Land Management Change from Biofuel Production (CCLUB) developed by Argonne
National Laboratory, which is integrated with the Greenhouse Gas Regulated Emissions in
Technologies (GREET) model for greenhouse gas life cycle emissions modeling of biofuel
pathways [5]. The SSOC model is originally based on Century, and it models SOC changes
from land use change on a county-by-county basis for two different soil depths (30 cm and
100 cm) while averaging values for the two dominant soil textures in each county [27,28].
SSOC and SALUS are both process-based models that take weather, plant biomass, and
soil textures into consideration among other variables [29]. SSOC aggregates the resulting
carbon assessment by biomass feedstock and management practice to the county level,
taking the two dominant soil textures of each county into consideration. SALUS is also a
process-based model that measures outcomes down to the sub-field level [30].

3. Results
3.1. Land Use Identification

One thousand parcels of land were analyzed for this study, with results shown in
(Figure 7). It was found that between 1985 and 2021, 371 of the parcels (9583 hectares) were
in continuous cropland, 611 parcels (15,451 hectares) were transitioned into non-cropland
and back to cropland at some point in the 36-year period (1985 to 2021) (CRP, idle, fallow).
No parcels transitioned out of and back into crop more than once. Eighteen parcels (1.8%)
(888 hectares) in cropland in 2021 did not appear to be in cropland in 1985 and were labeled
as grassland-to-crop conversions for SALUS and CCLUB. This contrasts with Lark et al. [8],
who found grassland-to-cropland conversion for all 1000 parcels between 2008 to 2016.
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For the parcels with transitions into non-cropland, the average non-crop phase across
all parcels lasted 13.3 years. Using Brown County, SD as an example (Figure 8), 42 of the
100 parcels were in non-cropland for some period during 1985–2021. These periods were
short (average 7.1 years), with only one parcel in non-cropland longer than in cropland
during the full time period.
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3.2. Farmer Surveys: Drivers of Land Use Change

The study returned nineteen grower surveys from four states (Stutsman and Dickey
counties in North Dakota, Brown County in South Dakota, Fayette County in Iowa, and
Washington County in Indiana). The surveys and interviews showed that of parcels in
non-cropland, those in the Conservation Reserve Program (CRP) were the most likely to be
returned to cropland. The most common reason provided for returning this land to active
cropland was the difficulty in getting the land re-enrolled in the CRP (Figure 9). Other
reasons given for returning land to cropland included low cattle prices when converting
pasture and an improved return-on-investment analysis when looking at potential crop
yields based on soil quality and increased rainfall patterns in the northwestern Corn Belt.
South Dakota farmers cited a 2012 state tax law that taxes land above a given soil fertility
calculated value as agriculture whether it is in crop or not. Those interviewees pointed
towards a change in circumstances from their current practice rather than increased corn
demand for their change in land use. These findings of drivers behind land use change
are generally more consistent with Claasen et al. [31], who cite a broad range of often
location-specific reasons for land transitions [31]. Importantly, more fields transitioned
before 2008 (67%) than after 2008 (33%), indicating that 2008 was not likely a trigger point
for additional land use conversion.

However, once changing circumstances confront farmers to return land to agriculture,
they cited the use of the productivity index or soil fertility index in making decisions.
Some marginal lands have been returned to the CRP or used for buffer strips in the field.
The origins of land that was converted shows very little natural grassland. Many stated
that they knew some of their land had to be left in grass or trees to reduce erosion and
improve drainage. Farmers stated that if land is being returned to production, the parcels
considered and chosen will be land previously in crop, as it is easier to clean up (remove
rocks and stumps, etc.) than natural lands. Farmers also stated that the cost/return for
land previously in agriculture is better known than for native grasslands and is therefore
the choice for re-enrollment into agriculture.
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3.3. Carbon Change Implications

The land use was used to parameterize SALUS for carbon stock assessment. SALUS
shows mean positive delta soil organic carbon values across all counties and yearly model
observations indicating increasing SOC (Table 1) with the larger mean carbon deltas ob-
served for parcels which were “non-crop” for a period of years during the 36-year time
period (1985 to 2021) than for “continuously in crop” (Table 2). Soil carbon deltas are sorted
for all observed model values from largest losses to largest gains for crop and non-crop
parcels and shown in Figure 10. The SOC values for “crop” in SALUS show larger soil
carbon deltas, resulting both in larger SOC depletions and SOC gains than the “non-crop”
SOC yearly observations.

Table 1. Soil carbon results for different models.

State County SALUS
Average

Delta kgC/ha-Year−1 SALUS Linear
Trendline over Time x CCLUB

SALUS Min SALUS Max

North Dakota Stutsman 309 −1204 2899 0.1498x 298

North Dakota Dickey 374 −1069 3628 0.1815x 371

South Dakota McPherson 350 −1717 3707 0.1699x 511

South Dakota Brown 350 −1267 2229 0.1703x 227

Wisconsin Green 515 −2139 4324 0.2508x 364

Wisconsin StCroix 408 −1633 4191 0.1985x 259

Iowa Fayette 572 −1504 4146 0.2782x 321

Iowa Ringgold 513 −1141 4386 0.2492x 289

Illinois Randolph 610 −1357 3042 0.2966x 167

Indiana Washington 571 −659 2780 0.2777x 197
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Table 2. Soil carbon results by crop vs. non-crop land use.

Crop Non-Crop

Parcels 371 629 *

Number of Annual Model Observations 14,711 21,073

Max (kgC/ha-year−1) 4386 3026

Min (kgC/ha-year−1) −1809 −956

Average (kgC/ha-year−1) 377 515
* Note: includes 18 parcels that can be considered permanent conversions in non-crop.

Sustainability 2024, 16, x FOR PEER REVIEW 12 of 17 
 

 

Figure 10. SALUS model soil carbon delta for crop and non-crop parcels. 

However, the delta soil organic values are increasing year over year as shown in 

Figure 11 for Brown County ND as an example county. This finding is consistent across 

all assessed counties (as indicated by the trendline equation shown for each county in 

Figure 11. This means that, in the aggregate, the studied parcels, despite their 

transitionary land use, will not observe soil carbon losses under our modeled 

assumptions. 

 

Figure 11. Soil carbon deltas for Brown County. 

Figure 10. SALUS model soil carbon delta for crop and non-crop parcels.

However, the delta soil organic values are increasing year over year as shown in
Figure 11 for Brown County ND as an example county. This finding is consistent across
all assessed counties (as indicated by the trendline equation shown for each county in
Figure 11. This means that, in the aggregate, the studied parcels, despite their transitionary
land use, will not observe soil carbon losses under our modeled assumptions.

The 30 cm SALUS SOC values are compared to the cropland-pasture values transitioning
to reduced-till corn at 30 cm soil depth for the respective counties in CCLUB [5] (Figure 1).
Despite methodological differences and different forms of spatial aggregation, both models
produce similar results when simulating transitionary crop and non-crop areas. Specifically,
both models produce mean positive soil carbon deltas at the county-level resolution.
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4. Discussion
4.1. Land Use Identification

Across 1000 analyzed parcels and close to 36,000 yearly observations, the analysis
showed that 371 parcels remained continuously in cropland, while 611 parcels did go
into “non-crop” (CRP, idle, pasture, or fallow) for a few years from 1985 to 2021. This
would make the latter category a subset of a defined land category in computable general
equilibrium models termed the cropland–pasture category. This category is often accessed
in these models when land conversions in response to price signals are expected. Only 18
parcels (1.8%) appeared to come from land not in crop in 1985 and constitute grassland-to-
crop conversions.

All these parcels were delineated as change from natural grassland to crop in the Lark
et al. analysis. Lark primarily used the USDA Cropland Data Layer (CDL) to develop
the dataset used. Other studies such as Wright and Wimberly [11] and the World Wildlife
Fund’s Plowprint Report [12] also used the CDL as a primary data source. While part of
the issue with the satellite-based CDL is its accuracy for non-agricultural classes, this study
has shown that the choice of the time horizon is also significant. Each of the above studies
began their analysis in or close to the year when agricultural demand increased and did
not consider lands previously in crop that were available for crop production with reduced
SOC implications.

4.2. Drivers of Land Use Change

The underlying drivers for land use change were explored with 19 detailed farmer
interviews across the studied counties. The study found that the land to be returned to crop
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was agricultural land in the Conservation Reserve Program (CRP) followed by pastureland.
Reduced cattle prices and changing tax structures (taxing land above a soil quality value as
agriculture whether it is in crop or not) and difficulty getting the land re-enrolled in the
CRP were key drivers for converting pasture [31,32]. The interviewees pointed towards a
change in return from their current practice rather than increased corn demand for their
change in land use.

Based on the surveys, farmers take much more into consideration than current demand
when determining land use for a given year. Other land uses such as cattle production
or conservation, long-term return on investment, and weather play important roles. Also
important is that farmers are more likely to use land previously in agriculture when
increasing agricultural land. These parcels are typically more productive and easier to
convert to crops.

4.3. Carbon Change Assessment

The SOC changes were estimated using both the SALUS and the GREET-CCLUB
model. SALUS was specifically parameterized using the crop and non-crop time intervals
for each parcel. Both models returned consistent results when parameterized with cropland–
pasture type vegetation species rotating in and out of reduced-till corn-on-corn rotations,
with both carbon models returning, on average, positive soil carbon deltas. In SALUS, the
soil carbon deltas are larger for parcels alternating between “crop” and “non-crop” rotations
when compared to parcels that are consistently in “crop”. However, lands consistently in
“crop” also exhibit mean average positive soil carbon values.

Previous research on the same parcels that the present paper studied focused on a
narrow time window (e.g., 2008–2016) and labeled land use change within that time frame
as grassland-to-cropland conversions and postulated biofuel production to be the driver of
land conversion. The present work, however, finds that 98.2 percent of the same parcels
referenced in the literature were in agriculture in 1985 and toggled between crop and non-
crop uses based on a variety of drivers. Importantly, the study finds that lands transitioning
to agricultural lands from pastureland, idle, fallow, and unused state were agricultural
lands in the past and not native grasslands. This is corroborated with farmer interviews
who mentioned that land-clearing costs are much lower for previous agricultural lands
than for native grasslands.

5. Conclusions

The analysis presented in this paper aims to increase the understanding of transitional
land that changes between crop and non-crop uses with respect to the underlying patterns,
drivers, and carbon implications. Methodologically, the analysis is based on (a) identifying
the land use patterns of 1000 parcels from 1985 to 2021 with a combination of several
remote-sensing tools including USDA NAIP imagery analysis combined with satellite-
based geospatial evaluations, followed by (b) in-depth grower interviews to understand
the drivers for land use change, and (c) an assessment of the carbon implications resulting
from the identified land use patterns.

Across 1000 analyzed parcels and close to 36,000 yearly observations, the analysis showed
that 371 parcels remained continuously in cropland, while 611 parcels did go into “non-crop”
(CRP, idle, pasture, fallow) for a few years from 1985 to 2021. This would make the latter
category a subset of a defined land category in computable general equilibrium models termed
the cropland–pasture category. This category is often accessed in these models when land
conversions in response to price signals are expected. Only 18 parcels (1.8%) appeared to
come from land not in crop in 1985 and constitute grassland-to-crop conversions.

The underlying drivers for land use change were explored with 19 detailed grower
interviews across the studied counties. The study found that the most likely land to be
returned to crop was agricultural land in the Conservation Reserve Program (CRP) followed
by pastureland. Reduced cattle prices and changing tax structures (taxing land above a
soil quality value as agriculture whether it is in crop or not) and difficulty getting the
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land re-enrolled in the CRP were key drivers for converting pasture. Interestingly, the
interviewees pointed towards a change in return from their current practice rather than
increased corn demand for their change in land use.

The carbon implications were assessed using both the SALUS and the GREET-CCLUB
model. SALUS was specifically parameterized using the crop and non-crop time intervals for
each parcel. Both models returned consistent results when parameterized with cropland–pasture
type vegetation species rotating in and out of reduced-till corn-on-corn rotations, with both
carbon models returning, on average, positive soil carbon deltas. In SALUS, the soil carbon deltas
are larger for parcels alternating between “crop” and “non-crop” rotations when compared to
parcels that are consistently in “crop”. However, lands consistently in “crop” also exhibit mean
average positive soil carbon values.

Previous research on the same parcels that the present paper studied focused on
a narrow time window (e.g., 2008–2016) and labeled land use change within that time
frame as grassland-to-cropland conversions and postulated biofuel production to be the
driver of land conversion. The present work, however, finds that 98.2 percent of the
same parcels referenced in the literature were in agriculture in 1985 and toggled between
crop and non-crop uses based on a variety of drivers. Importantly, the study finds that
lands transitioning to agricultural lands from pastureland, idle, fallow, and unused state
were generally agricultural lands in the past and not native grasslands. This is directly
corroborated with grower interviews who mentioned that land-clearing costs are much
lower for previous agricultural lands than for native grasslands.

Furthermore, when two prominent process-based soil carbon models were parame-
terized with the parcels’ specific geography and a transition between corn (reduced till)
and CRP vegetation species, both models returned increasing soil carbon values across all
parcels. In conclusion, the present work points to the need to conduct any land use change
analysis over much longer periods of time than is often practiced to fully incorporate
a parcel’s land use history. Secondly, land that is returned out of the CRP, fallow, idle,
or temporary pasture state into a corn cropping pattern (reduced till) will still show, on
average, increasing soil carbon levels over time. A key practical significance of this research
is that the increase in soil carbon over a longer time horizon for transitional land can now
properly be reflected in carbon accounting models that access these transitional lands for
additional bioenergy and biofuel feedstock production. Finally, agricultural organizations
working with growers should ensure that conservation management practices are continu-
ously encouraged as these practices ensure that the carbon deltas after any land conversion
remain continuously positive.

The limitations of this study include the potential for error by the classifier when
conducting visual assessments of year-over-year land use and overlap between the spectral
response of crops, especially hay, and idle cropland. Future research in this area should
include carbon implications from a comprehensive suite of climate smart agricultural
practices (cover crops, no-till, and manure application) and include additional parcels in
the western Corn Belt where land use drivers may differ.
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