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Abstract: Since accidents of hazardous chemicals transportation will cause serious loss to the sur-
rounding environment and lives and properties, this paper studies the transportation route optimiza-
tion problem of hazardous chemicals under dynamic time-varying conditions. Combined with the
goal of green sustainable development, a multiobjective nonlinear optimization model is constructed
to minimize the transportation risk, transportation cost, and carbon emissions generated in the
transportation. The model is solved by the improved Fast Non-Dominated Sorting Genetic Algorithm
with Elite Strategy (NSGA-II) algorithm. The effectiveness of the model and the algorithm are tested
on the Sioux Falls network. The experimental results show that under time-varying conditions, a
vehicle’s departure at different times will generate different transportation costs and risks. Therefore,
enterprises need to rationally arrange the departure time of vehicles according to the time windows
of customer nodes and road conditions. In additio, from the relationship between the optimization
objectives, in order to achieve green, sustainable and low-risk transportation, enterprises should first
reduce their transportation costs.

Keywords: time-varying conditions; hazardous chemicals transportation; vehicle routing problem;
multiobjective optimization

1. Introduction

Hazardous chemicals refer to highly toxic chemicals and other chemicals with the
properties of poison, corrosion, explosion, combustion, and other hazards to human beings,
facilities, and the environment. China is the world’s largest producer of hazardous chemi-
cals. As of the end of December 2021, there were as many as 26,947 chemical enterprises in
China, with an annual total profit of CNY 1.16 trillion [1]. The chemicals industry is char-
acterized by “high transportation demand, wide distribution of production capacity, and
rapid growth in production”. From the perspective of China’s economic development and
the demand of the petrochemicals industry, most of the chemicals processing enterprises
are concentrated in the eastern coastal areas, while the production areas of chemical raw
materials are relatively concentrated in the western areas. This phenomenon of uneven
distribution of production and marketing increases the demand for the transportation of
hazardous chemicals, with road transportation accounting for 70%.

Compared with developed countries which have established complete hazardous
chemicals facilities and regulatory systems, China’s hazardous chemicals transportation
industry is in a stage of rapid development. The supporting facilities and infrastructure of
the hazardous chemicals transportation industry are relatively weak, the professional skills
of the practitioners need to be improved, and the relevant laws and regulations also need to
be improved. These reasons are intertwined and result in accidents of hazardous chemicals
road transportation. According to relevant statistics, a total of 344 safety accidents in the
transportation of hazardous chemicals occurred from January to October in 2021 [2,3]. Once
an accident occurs during the transportation of hazardous chemicals, it will cause serious
damage to the surrounding population, environment, and economic property [4]. On 13
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June 2020, an explosion of a liquefied petroleum gas tanker occurred on the G15 Shenhai
Expressway near Liangshan Village, Daxi Town, Wenling City, Zhejiang Province. The
explosion caused the extensive collapse of surrounding residential and factory buildings,
resulting in a total of 20 deaths and 175 injuries, with a direct economic loss of CNY 94.77815
million [5].

The vehicle routing problem (VRP) was first proposed by Dantzig and Ramser in
1959 [6]. Afterwards, the vehicle routing problem with time windows (VRPTW), multide-
pot vehicle routing problem (MDVRP), vehicle scheduling problem with full load (VRPFL),
and other derivatives of VRP have been proposed one after another. Desrochers et al. [7]
solved the VRPTW with an unconstrained number of vehicles by utilizing the branch-
and-bound and dynamic programming methods. Thangiah et al. [8] were the first to use
genetic algorithms for solving the VRPTW. Wren and Holliday [9] proposed a scan-based
algorithm and applied it to the multivehicle route problem. Golden et al. [10] proposed
two heuristic algorithms for solving the MDVRP. The hazardous chemicals transportation
route optimization problem belongs to a special branch of the VRP. The transportation of
hazardous chemicals involves multiple subjects, including hazardous chemicals produc-
tions and transportation enterprises, governments, and the public. The objectives pursued
by each subject in the process of hazardous chemicals transportation are different. Among
them, the hazardous chemicals production and transportation enterprises usually prioritize
minimizing the transportation costs from the perspective of economic interests; however,
governments want to minimize the risk of hazardous chemicals transportation. So, the
hazardous materials transportation route optimization problem is usually a multiobjective
vehicle route optimization problem (MOVRP).

Transportation route optimization is an effective way to reduce the occurrence of acci-
dents. Therefore, in order to reduce risk in the road transportation of hazardous chemicals
and realize sustainable development, this paper optimizes the road transportation routes
of hazardous chemicals by constructing a mathematical optimization model under time-
varying conditions, solved by using the improved NSGA-II algorithm, which can expand
the research scope of the optimization theory of hazardous chemicals road transportation.
In addition, while minimizing transportation costs and transportation risks, the reduction
of carbon emissions is incorporated into the optimization objective, which is important for
the reduction of carbon emissions and the decision-making and operational management
of hazardous chemicals transportation enterprises. The structure of this paper is arranged
as follows: Section 2 gives a brief introduction to the MOVRP of hazardous materials
transportation, and the optimization problem of hazardous chemicals transportation under
time-varying conditions. Section 3 describes the multiobjective time-varying route opti-
mization model for hazardous chemicals transportation. Section 4 proposes an improved
NSGA-II algorithm and introduces the implementation process of the algorithm. Section 5
validates the effectiveness of the algorithm on the Sioux Falls network and analyzes the
experimental results. Finally, Section 6 makes a conclusion and discusses the prospects for
future research directions.

2. Literature Review
2.1. MOVRP for Hazardous Chemicals

Due to the high risk from hazardous chemicals during road transportation, the haz-
ardous chemicals transportation route optimization problem usually needs to minimize
the transportation risks and transportation costs. Konstantinos and Androutsopoulos [11]
proposed a biobjective hazardous chemicals road transportation optimization model with
a time window to minimize the transportation risk and time, and the biobjective optimiza-
tion problem was transformed into a single-objective optimization problem, solved using
the weighted summation method. Zou and Zhang [12] proposed five major hazardous
chemicals transportation route selection indexes from the perspective of the transporta-
tion subject, and constructed a multiobjective hazardous chemicals transportation route
optimization model with a hybrid time window, which was solved by using an improved
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genetic algorithm. Yuan et al. [13] established a biobjective optimization model considering
both transportation cost and transportation risk, introduced a population hybridization
strategy to improve the particle swarm algorithm, and tested it on a benchmark algorithm.
Bula et al. [14] proposed a biobjective optimization model to minimize the transportation
cost and the transportation risk from the point of view of different interested parties and
solved it by using a neighborhood search algorithm. Jiang et al. [15] investigated the
heterogeneous vehicle problem of hazardous materials transportation with time windows
to minimize the transportation cost, transportation risk, and the average number of vehicle
redundancies, and used a hybrid multiobjective algorithm to solve the problem. Chai [16]
proposed a new driving risk during hazardous chemicals transportation taking into ac-
count the risk evaluation model, and constructed a biobjective optimization model for
minimizing the transportation risk and transportation cost, which was solved by using a
modified nondominated sequential genetic algorithm. Esmaeilidoukia et al. [17] proposed
a fuzzy planning model for minimizing the time and risk, which was transformed into a
deterministic model and then solved using an invasive weed algorithm.

The growth of carbon emissions and global climate change has become an important
factor affecting the survival and development of mankind, and taking the path of green,
low-carbon and sustainable development has become a global consensus. Along with
the development of a global low-carbon economy, the green vehicle route transportation
optimization problem (GVRP) has also attracted a lot of attention. Rahbari et al. [18] in-
vestigated the negative impacts of greenhouse gas emissions on the environment caused
by hazardous materials and waste materials from transportation. They expressed the
greenhouse gas emissions as a function related to the transportation distance, and estab-
lished a location–inventory–routing problem, which minimizes the transportation cost, risk,
and carbon emissions, and was solved using a multiobjective black widow optimization
algorithm. Zhao and Cao [19] expressed carbon emissions as a function related to fuel con-
sumption during transportation in the VRP problem, incorporated it into the transportation
cost as the minimization objective, and constructed a biobjective optimization model to
minimize the cost and risk. Wang et al. [20,21] investigated the effect of traffic flow uncer-
tainty on transportation in the vicinity of an intra-city transportation route, expressed the
carbon emissions as a function of vehicle travel speed, distance, and vehicle loading, and
constructed a multiobjective optimization model minimizing the transportation risk, trans-
portation cost, and carbon emissions, which was solved by using the improved NSGA-II
algorithm. Lyu and He in [22] studied a multijourney heterogeneous vehicle route problem
for hazardous chemicals, constructed a single-objective optimization model for minimizing
the cost in two stages by adding the cost of carbon emissions to the transportation cost,
and expressed it as a function of fuel consumption and vehicle loading. The model was
solved using a two-stage mixing and summing metaheuristic algorithm. Sun et al. [23]
investigated the multimodal transportation problem of hazardous materials by rail and
public transport, considering the uncertainty of population exposure, constructed an un-
certain optimization model to minimize the transportation risk and transportation cost,
and used the carbon emissions related to the transportation distance and loading as the
constraints of the optimization model to limit the maximum carbon emissions generated
during transportation.

2.2. The Application of Spatiotemporal Data and Information Technology in Transportation

Vehicles will be affected by the combination of various factors such as time, weather
and crowd flow in transportation. In the era of big data, with the development of informa-
tion technology and the easier acquisition of dynamic time-varying data, many scholars use
modern information technology to study dynamic spatiotemporal data in transportation.
Meng et al. [24] studied the use of web-based real-time traffic data to estimate vehicle car-
bon emissions from the perspective of reducing urban carbon emissions. Experiments were
performed in Chengdu, China, and results showed roadway-based emissions matched well
spatio-temporally with traffic conditions. Xiao et al. [25] analyzed the relevant literature on
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spatiotemporal crowd flow prediction in Web of Science, from the perspectives of traffic con-
trol and public safety, using scientometric methods, social network analysis, and stochastic
actor-oriented models (SAOMs), and proposed a knowledge evolution path construction
process based on SAO structures. Zhang et al. [26] studied the application of dynamic data
analysis in pedestrian movement risk and constructed a complete pedestrian movement
risk identification process using video recognition technology and a support vector model
(SVM). Li et al. [27] proposed a data-driven traffic shock wave detection technique, which
combines machine learning techniques with traffic features, and conducted experiments
on collecting vehicle trajectory data for highways in the United States, demonstrating the
efficiency and accuracy of the proposed four-step method. Pourmoradnasseri et al. [28]
studied the application of real-time traffic data flow on improving transportation systems to
address the problems caused by traffic congestion in cities, and used road Internet of Things
(IoT) data as the data source for a two-layer optimization model. The time dependence of
traffic status was ensured by splitting the calculation process into a short-term framework
during solving, and the efficiency of this method in processing real-time data flow was veri-
fied in a road network experiment in Tartu city. Chen et al. [29] proposed a framework that
integrates a feature-enhanced scale aware descriptor, Kalman filter, Hungarian algorithm,
and perspective projection theory to extract vehicle speeds from port surveillance videos
for analyzing automated guided vehicle trajectories.

2.3. Hazardous Chemicals Dynamic and Time-Varying Route Optimization Problem

The road transportation of hazardous chemicals is a complex process related to time,
and changes in the environment under different time conditions will have different effects
on the transportation risk. Liu and Zhu [30] considered the effects of uncertain population
density and terminal demand, expressed the accident rate during transportation as a time-
dependent function, constructed a stochastic optimization model, and solved it using a
hybrid heuristic algorithm combining particle swarm algorithms and genetic algorithms.
Ke [31] explored the impacts caused by system disruptions in the hazardous material
emergency logistics system, and proposed a risk metric model under discrete time-varying
conditions. Ouertani et al. [32] investigated the dynamic route optimization problem of
hazardous materials transportation with time windows, and considered that the customer’s
demand changes dynamically over time, so constructed a biobjective optimization model
that minimizes both cost and risk, and solved it using a hybrid meta-heuristic algorithm.
Xu et al. [33,34] studied the real-time route planning problem for hazardous chemicals
transportation under the condition of changing road traffic service level. They first used
the Dijkstra algorithm for initial route global planning, and then updated the local route
in case of changes in traffic service level. He et al. [35] studied the hazardous chemicals
transportation route optimization problem under discrete time-varying conditions and
established an optimization model to minimize the conditional value-at-risk, and the results
showed that the optimal route for transportation under different departure times would
be different.

In summary, most of the current research on road transportation of hazardous chem-
icals focuses on the minimization of transportation risk and transportation cost under
static conditions, and the carbon emissions during transportation are usually expressed
as a function of transportation distance or transportation fuel consumption. During the
road transportation of hazardous chemicals, spatiotemporal data has not been effectively
utilized. The time factors of road transportation of hazardous chemicals are less frequently
studied and are usually expressed as the time windows of the customers. However, the
transportation cost, the incidence of transportation accidents, and the consequences of
transportation accidents during the transportation of hazardous chemicals are all related to
time. Therefore, this paper proposes a multiobjective optimization model for the transporta-
tion of hazardous chemicals under discrete time-varying conditions. The model considers
the different accident rates and consequences of hazardous chemicals transportation under
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different time conditions. In addition to minimizing transportation risk and cost, the model
also incorporates minimizing carbon emissions as an optimization objective.

3. Problem Formulation

In the multiobjective route optimization model under time-varying conditions for
hazardous chemicals transportation, G = (N, A) is an undirected road network, in which
N represents the collection of nodes in the network, including the starting node O where
the transportation enterprise is located, the collection of demand nodes NC and the col-
lection of the general nodes NO. A represents the collection of road segments. Now, the
transportation enterprise at O needs to deliver a certain kind of hazardous chemical to
each customer node through the transportation network. The enterprise should be in the
control of transportation cost, while minimizing the transportation risk. In addition, in
order to achieve the goal of sustainable development, it is required to realize the minimiza-
tion of carbon emissions. Under discrete time-varying conditions, the maximum speed,
population density and accident rate of each road segment in the road network change
dynamically over time, and the optimal transportation route of hazardous chemicals is
planned according to the minimization objective.

3.1. Assumptions

(1) In the transportation network, there is only one type of hazardous chemicals trans-
portation vehicle. The maximum loading of each vehicle is the same, and the interac-
tion between vehicles is not considered.

(2) The vehicle leaves from the starting node and must return to it after providing services
to different customer nodes.

(3) Each customer node is limited by a soft time window, and when a vehicle arrives
outside the time window specified for that customer node it can be unloaded normally,
but there will be a penalty cost.

(4) The demand of each customer node is indivisible and does not exceed the maximum
loading of vehicle.

(5) In order to reduce the amount of traffic in the network, the vehicle serves each
customer node in order from smallest to largest demand, and the actual loading of
the vehicle is the sum of the customer demand it needs to serve.

(6) Each customer node has a fixed service time and can be converted to an ordinary
node in the road network when the demand of customer is satisfied.

(7) The maximum speed limit for transportation vehicles is different at each time period.
Considering the transportation cost of the enterprise, transport vehicles travel at a
constant speed, at the maximum speed limit, during each time period.

(8) The population density around the road segment is divided into the population
density on the road and the population density around the road, where the population
density on the road changes dynamically over time.

(9) The accident rate in transportation of hazardous chemicals changes dynamically
over time.

(10) The carbon emissions during transportation are related to the distance traveled and
vehicle loading.

3.2. Symbols Definition

G: road network, G = (N, A)
N: node set, N = {0, 1, 2, · · · , n}, node 0 is the starting node.
NC: customer node set, NC ⊂ N.
NO: general node set, NO ⊂ N.
A: road segment set among nodes, A = {(i, j) : i, j ∈ N }.
K: vehicle set, K = {0, 1, 2, · · · , k}.
T: time period set, T = {[t1, t2], [t2, t3], [t3, t4], · · · , [tn−1, tn]}.
V: speed set, V =

{
v(t1, t2)

, v(t2, t3)
, v(t3, t4)

, · · · , v(tn−1, tn)

}
.
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dij: the length of road segment (i, j), (i, j) ∈ A.
d(tn−1, tn): the distance that can be traveled in the time period [tn−1, tn].
fc: fixed cost per transport vehicle.
tc: cost per unit of distance traveled.
Q: maximum loading of the vehicle.
e: carbon emission factor per unit of distance during transportation.
qc: demand at customer node c, c ∈ NC.
ηc1: penalty factor when the vehicle at customer node c arrives earlier than the time

window, c ∈ NC.
ηc2: penalty factor when the vehicle at customer node c arrives later than the time

window, c ∈ NC.
btik: departure time of vehicle k (k ∈ K) from node j (j ∈ N).
atjk: time for vehicle k (k ∈ K) to arrive at node i (i ∈ N).
[etc, ltc]: time window at customer node c (c ∈ NC).
stc: service time at customer node c (c ∈ NC).
lk
ij: the loading of vehicle k (k ∈ K) when traveling through the road segment (i, j),

(i, j) ∈ A.
vk

ij(tn−1, tn)
: the speed of vehicle k (k ∈ K) on the segment (i, j) in the time period

[tn−1, tn], (i, j) ∈ A, [tn−1, tn] ∈ T.
ρl

ij(tn−1, tn)
: population density on the road segment (i, j) in the time period [tn−1, tn],

(i, j) ∈ A, [tn−1, tn] ∈ T.
ρo

ij: population density around the road segment (i, j), (i, j) ∈ A.

pk
ij: accident rate of hazardous chemicals transportation when vehicle k (k ∈ K) is

traveling through the road segment (i, j), (i, j) ∈ A.
ARij: the rate of traffic accidents on the road segment (i, j), (i, j) ∈ A.
Prij: conditional release probability of hazardous materials after a traffic accident on

the road segment (i, j), (i, j) ∈ A.
α: fixed parameters related to transport vehicle.
β: fixed parameters related to transport vehicle.
εm: fuel consumption per unit of distance when the transport vehicle is fully loaded.
ε0: fuel consumption per unit of distance when the transport vehicle is empty.
rk

ij: radius of impact after an accident when the vehicle k (k ∈ K) is traveling through
the road segment (i, j), (i, j) ∈ A.

Ck
c : penalty cost of vehicle k (k ∈ K) at customer node c (c ∈ NC)

Pk
ijc: consequence of an accident after the vehicle k (k ∈ K) passes through the road

segment (i, j) at risk while traveling to the customer node c (c ∈ NC), (i, j) ∈ A.
Ck

ijc: transportation cost of vehicle k (k ∈ K) passing through the road segment (i, j)
on its way to customer node c (c ∈ NC), (i, j) ∈ A.

Rk
ijc: transportation risk of vehicle k (k ∈ K) passing through the road segment (i, j)

on its way to customer node c (c ∈ NC), (i, j) ∈ A.
Ek

ijc: carbon emissions of vehicle k (k ∈ K) passing through the road segment (i, j) on
its way to customer node c (c ∈ NC), (i, j) ∈ A.

xk
ijc: decision variable, xk

ijc= 1 when vehicle k (k ∈ K) passes through the road segment

(i, j) on its journey to customer c (c ∈ NC); else xk
ijc= 0, (i, j) ∈ A.

yk
c : decision variable, yk

c= 1 when customer node c (c ∈ NC) is served by vehicle
k (k ∈ K); else yk

c= 0.

3.3. Mathematical Optimization Model
3.3.1. Transportation Cost

The cost involved in the transportation of hazardous chemicals is the combination of
the fixed cost per vehicle dispatched, the cost of the vehicle during transportation, and the
penalty cost that may be incurred at each customer node. In a time-varying road network,
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the time taken by a vehicle to arrive at node j is related to the departure time from the
previous node i as well as the vehicle speed. When transport vehicle k departs from node i
at btik through the road segment (i, j) to arrive at node j, the arrival time atjk is shown as
below, where (tn − btik)vk

ij(tn−1, tn)
represents the distance the vehicle traveled from btik to

tn, and ∑i−1
x=1 d(tn+ x , tn+x+1)

represents the accumulation of the distance traveled by vehicles
during the time period [tn, tn+i], and so the numerator of the formula represents the total
distance traveled by vehicles during the time period [tn+i, tn+i +1]:

atjk = tn+i +

{
dij − (tn − btik)vk

ij(tn−1, tn)
− ∑i−1

x=0 d(tn+ x , tn+x+1)

}
vk

ij(tn+i , tn+i+1)

, btik ∈ [tn−1, tn], atjk ∈ [tn+i, tn+i +1] (1)

then the time for vehicle k to arrive at any demand node c from node m at btmk through the
road segment (m, c) is

atck = tn+i +

{
dmc − (tn − btmk)vk

mc(tn−1,tn)
− ∑i−1

x=0 d(tn+x ,tn+x+1)

}
vk

mc(tn+i ,tn+i+1)

, btmk ∈ [tn−1, tn], atck ∈ [tn+i, tn+i+1] (2)

Each customer node c has a soft time window, and the vehicle can arrive at the
customer node at any time and complete normal unloading. When the time of arrival at
the customer node is not within the time window of the customer node, the penalty cost is
incurred for arriving earlier or later than the time window. The penalty cost incurred by
vehicle k at customer node c is

Ck
c = ηc1max{etc − atck, 0} + ηc2max{atck − ltc, 0} (3)

and the total cost of vehicle k on the segment (i, j) can be composed of the fixed dispatch
cost of the vehicle, the driving cost of the vehicle, and the penalty cost incurred at the
customer nodes:

Ck
ijc = yk

c f c+ yk
c xk

ijcdijtc + ηc1max{etc − atck, 0}+ ηc2max{atck − ltc, 0} (4)

3.3.2. Transportation Risk

The risk of hazardous chemicals transportation is usually expressed as the product of
the probability of the accident and the consequences of the accident [36]. The probability of
hazardous chemicals road transportation accidents varies dynamically with the loading of the
transport vehicle as well as with different road segments and times [15,37,38]. In Equation (5),
α and β are constant values that depend on the type of hazardous chemicals [39]:

pk
ij = ARijPrijdijα

(
lk
ij

)β
(5)

The population exposure model is used to measure the consequences caused by the
occurrence of transportation accidents [40]; the population density is divided into the
population density on the road where the accident occurs and the population density
around the road. Figure 1 shows the population exposure area after a traffic accident
occurs. The circular area in the middle represents the road area directly affected by the
accident, and the remaining area is the surrounding area. The population density of the
road segment where the accident occurred varies dynamically with different time periods,
and the consequences of road transportation accidents involving hazardous chemicals can
be expressed as the number of people in the exposed area:

Pk
ijc = ρo

ij

(
πrk

ij
2
+2πrk

ijdij

)
+ ρl

ij(tn−1,tn)
πrk

ij
2

(6)
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The transportation risk incurred by vehicle k (k ∈ K) on road segment (i, j) can be
expressed as the product of pk

ij and Pk
ijc :

Rk
ijc = yk

c xk
ijc pk

ijP
k
ijc = yk

c xk
ijc ARijPrijdijα

(
lk
ij

)β[
ρo

ij

(
πrk

ij
2
+2πrk

ijdij

)
+ ρl

ij(tn−1,tn)
πrk

ij
2]

. (7)

3.3.3. Carbon Emissions

The carbon emissions of vehicle k (k ∈ K) on road segment (i, j) are related to the
transportation distance dij and the vehicle loading lk

ij. According to [22,41], the calculation
formula of carbon emissions is

Ek
ijc = xk

ijcdije
(

εm − ε0

Q
lk
ij + ε0

)
(8)

3.3.4. Mathematical Model

In summary, the multiobjective road transportation route optimization model for
hazardous chemicals under time-varying conditions is formulated as follows:

min f 1 = ∑
k∈ K

∑
c ∈Nc

∑
(i, j)∈ A

{
yk

c f c+ yk
c xk

ijcdijtc + ηc1max{etc − atck, 0}+ ηc2max{atck − ltc, 0}
}

(9)

min f 2 = ∑
k ∈ K

∑
c ∈ Nc

∑
(i, j)∈ A

yk
c xk

ijc ARijPrijdijα
(

lk
ij

)β[
ρo

ij

(
πrk

ij
2
+2πrk

ijdij

)
+ ρl

ij(tn−1,tn)
πrk

ij
2]

(10)

min f3 = ∑
k ∈ K

∑
c ∈ Nc

∑
(i, j)∈ A

xk
ijcdije

(
εm − ε0

Q
lk
ij + ε0

)
(11)

s.t.

∑
k∈K

∑
c∈ Nc

∑
i∈N

xk
ijc= 1, ∀j ∈ NO (12)

∑
k ∈ K

∑
c ∈ Nc

∑
j ∈ N

xk
ijc = 1, ∀i ∈ NO (13)

∑
j ∈ N

xk
0jc = ∑

i ∈ N

xk
i0c= 1, ∀ k ∈ K, c ∈ NC (14)

∑
i ∈ N

∑
j ∈N

xk
ijc = ∑

i ∈ N
∑

j ∈ N

xk
jic, ∀k ∈ K, c ∈ NC (15)

∑
j ∈N

lk
jc − ∑

j∈N

lk
cj = qc, ∀ k ∈ K, c ∈ NC (16)
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∑
i ∈ N

xk
ijc ∑

c ∈Nc

qc ≤lk
ic, ∀ k ∈ K, c ∈ NC (17)

∑
c ∈Nc

yk
cqc ≤ Q, ∀ k ∈ K (18)

xk
ijc ∈ [0, 1], ∀ k ∈ K, c ∈ NC, (i, j) ∈ A (19)

yk
c ∈ [0, 1], ∀ k ∈ K, c ∈ NC (20)

yk
c =


0, ∑

i ∈ N
∑

j ∈ N
xk

ijc = 0

1, ∑
i ∈ N

∑
j ∈ N

xk
ijc = 1

, ∀k ∈ K,c ∈ NC (21)

In this multiobjective nonlinear integer optimization model, Equations (9)–(11) are objec-
tive functions that represent the minimization of transportation costs of hazardous chemicals,
the minimization of transportation risk, and the minimization of carbon emissions, respec-
tively. Equations (12)–(20) are constraints of the model. Equations (12) and (13) indicate
that each customer node must and can be served only once. Equation (14) indicates that
each transport vehicle must depart from the starting node and return to the starting node
after serving each customer node. Equation (15) provides the vehicle flow balance constraint
for each node in the transportation network. Equation (17) indicates that the loading of the
vehicle must meet the demand of the customer node to be served. Equation (18) indicates that
the loading of each vehicle must not exceed the maximum loading of the transport vehicle.
Equations (19) and (20) indicate that the decision variables are 0–1 variables. Equation (21)
indicates the interrelation between the decision variables.

4. Solution Methodology
4.1. NSGA-II Algorithm

The multiobjective hazardous chemicals road transportation route optimization model
under time-varying conditions belongs to the NP-Hard problem, which is not applicable
to large-scale arithmetic cases using the exact algorithm. There may be conflicts between
the optimization objectives, which make it impossible to find a deterministic optimal
solution. The NSGA-II, as a heuristic algorithm, has been shown to have better results in
solving multiobjective optimization problems [42,43], which utilizes the computation of
nondominated ordering and congestion distance for population optimization and uses an
elite strategy to select the optimal solution generated during the iteration process. In this
paper, NSGA-II is improved to solve the multiobjective nonlinear optimization model.

4.2. Encoding

In the optimization model proposed in this paper, firstly the number of transport
vehicles needs to be determined according to the demand of each customer node, and then
the transportation route planning is carried out according to the customer nodes to be
served by each transport vehicle. A chromosome needs to form multiple transportation
routes based on the number of required transport vehicles, so the chromosome adopts
priority integer coding. Each integer gene represents the priority of the corresponding
node, and the length of the chromosome is determined by the number of nodes in the
road network. The sequence of integers starting from 0 is randomly generated. Take the
transportation road network shown in Figure 2 as an example; there are eight nodes in this
road network, which contains the starting node A. Then the chromosome is an integer list
from 0 to 7.
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4.3. Decoding

Decoding is the process of mapping the generated integer chromosomes into multiple
hazardous chemicals road transportation routes. In this paper, the decoding process is
divided into two parts. The first part is the allocation of transport vehicles, which arranges
transport vehicles for each customer node according to its demand and defines key nodes
for each vehicle. The key nodes are some nodes that this transport vehicle must pass
through during traveling, including the customer nodes it serves and the starting node to
which it will eventually return. The second part is the generation of a transportation route,
which consists of decoding the chromosome to generate a transportation route based on
the key nodes. The specific decoding method is as follows:

Part 1—Transport vehicle allocation
Step 1.1: Obtain the demand of each customer node in the road network.
Step 1.2: Accumulate the demand of each customer node sequentially from the first

customer node until it meets the demand of customer node that does not exceed the
maximum loading of the transport vehicle. Allocate the same transport vehicle to these
customer nodes and generate a list of key nodes for this vehicle.

Step 1.3: Repeat the above process until all the demand points can be served.
Part 2—Transportation route generation
Step 2.1: Mark the key nodes of the transport vehicle in the road network.
Step 2.2: Extract the adjacency node matrix of the node where the transport vehicle

is currently located. Determine whether the next key node is in the adjacency matrix of
the current node; if so, select the next key node to join the transportation route, update the
node where it is currently located, and go to Step 2.4; otherwise, go to the Step 2.3.

Step 2.3: Find out the priority of each node in the adjacency node matrix of the current
node according to the chromosome encoding and select the node with the highest priority.
Determine whether it already exists in the current transportation route, and the node with
the highest priority that is not in the current transportation route joins the transportation
route; then update the node where it is currently located and go to the Step 2.4. If there is
no node that meets the conditions, then determine that this route is an unfeasible route and
the current chromosome is invalid.

Step 2.4: Judge whether the current node is the last key node. If so, end this route
planning process and turn to Step 2.5; otherwise turn to Step 2.3.

Step 2.5: Judge whether all transportation vehicles have completed the route plan-
ning. If so, end the chromosome decoding process and output all transportation routes
corresponding to this chromosome; otherwise turn to Step 2.1.

Using the road network in Figure 2 as an example, a chromosome is randomly gener-
ated: 8–3–4–7–6–1–2–5. If node G is a customer node, the list of key nodes during vehicle
transportation is [A, G, A]. The adjacency node matrix of node A is [B, C], where node C
has higher priority, so the next route node is chosen to be point C. The adjacency node
matrix of node C is [A, B, D, E], because nodes A and B are already in the departure route,
so the next route node selects point E. The adjacency node matrix of node E is [C, F, H],
where node H has higher priority and is not in the current route, so node H is selected
as the next node. The adjacency node matrix of node H is [F, E, G], which contains the
customer node, so it goes directly to node G. After serving the customer node at node G, it
needs to return to the starting node, and the adjacency node matrix of node G is [D, H], of
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which node D is of higher priority, so the next node of the route is D. Among the adjacent
nodes of node D, node C has a higher priority, and the starting node A is in the adjacent
nodes of node C. Therefore, the complete transportation route is A → C → E → H → G →
D → C → A.

4.4. Crossover Operator

In this paper, the sequential crossover operator is used. As shown in Figure 3, taking
the generation of subindividual C1 as an example. On two randomly selected individuals,
two crossover points are randomly selected to form the gene fragments, and the gene
fragments in P1 are copied to the corresponding positions in the subindividual C1. Scanning
each gene fragment of the individual P2 from left to right, the gene fragments that are
not in the subindividual C1 are filled into the empty positions in the individual C1 in
order to generate the subindividual C1. The same steps are used to generate another
subindividual C2.
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4.5. Mutation Operator

The two kinds of mutation operators used in this paper are two-point mutation and
sequential mutation. As shown in Figure 4, two crossover points are randomly selected on
individual P, and the gene fragments at the corresponding positions are exchanged to form
a new individual P’.
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As shown in Figure 5, a gene fragment on individual P is intercepted, and then the gene
fragment is arranged in reverse order to form a new gene fragment, which is then placed in
the corresponding position on the original chromosome to form a new individual P”.
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4.6. Repair Operator

During the process of decoding, unfeasible routes are generated, resulting in invalid
chromosomes. In order to reduce the number of invalid chromosomes, this paper introduces
the repair operator. When a chromosome is judged as an invalid chromosome, firstly, a
repair probability is randomly generated for each gene fragment on the chromosome and
a repair threshold is set. Compare the repair probability of each gene fragment with the
repair threshold from left to right, and if the repair probability is greater than the repair
threshold, extract the node of the road network corresponding to the gene fragment as well
as the adjacency matrix. Then, generate a new node priority by arranging the priorities
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of nodes in the node’s adjacency matrix in inverse order. Replace the gene fragments
in the existing chromosome with the new priorities, until all the gene fragments in the
chromosome are traversed. A repair threshold of 0.5 is selected as shown in Figure 6.
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4.7. Termination Condition

In this paper, the iteration of the algorithm is terminated by setting the maximum
number of iterations. When the number of iterations of the algorithm reaches the preset
iteration threshold, the algorithm is aborted and the Pareto optimal solution is outputted;
otherwise, the algorithm is continued.

4.8. The Improved NSGA-II Algorithm Flow

The specific flow of the improved NSGA-II algorithm is as follows, and the flowchart
is shown in Figure 7.

Step 1: Initialize the population and set the maximum number of iterations.
Step 2: Determine if it is an invalid chromosome. If it is, perform chromosome repair;

otherwise, proceed to the next step.
Step 3: Determine whether the first subpopulation has been generated, and if so,

proceed to the next step; otherwise, perform fast nondominated sorting on the initial popu-
lation and generate offspring population through elite selection, crossover, and mutation
operations.

Step 4: Update the number of iterations.
Step 5: Combine the parent population and the offspring population.
Step 6: Determine if a new parent population has been generated, and if so, proceed to

the next step; otherwise, calculate the fitness function value of individuals in the population,
perform fast nondominated sorting, calculate crowding distance, and obtain a new parent
population through elite selection, crossover, and mutation operations.

Step 7: Determine if it is an invalid chromosome. If it is, perform chromosome repair;
otherwise, proceed to the next step.

Step 8: Determine whether the preset number of termination iterations is reached, and
end the algorithm operation; otherwise, return to Step 4.
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5. Case Analysis
5.1. Road Network

In this section, Sioux Falls network [44] is used to verify the feasibility and effectiveness
of the time-varying model and the improved NSGA-II algorithm. Sioux Falls network
was derived from Sioux Falls, the largest city in South Dakota, USA, and this network has
been widely used in route optimization problems. As shown in Figure 8, the network has
24 nodes and 38 road segments. Based on the optimization model of the hazardous
chemicals transportation network under time-varying conditions proposed, the length of
each road segment, the population density, hazardous chemicals leakage rate, and accident
rate at different time periods are randomly generated, as shown in Table 1. Node 1 is the
starting node of the hazardous chemicals transport vehicle, and the customer nodes, as well
as the demands, time windows, and penalty cost, are randomly generated, as shown in
Table 2. The day is divided into seven time periods based on light visibility as well as road
traffic density, as shown in Table 3 [45]. The other parameters involved in this calculation
example are set as shown in Table 4.
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Figure 8. Sioux Falls network.

Table 1. Transportation road segment.

No. Road Segment Length/km Conditional Release
Probability

Accident
Rate

Population Density/Person·km−2

ρo
ij ρl

ij1 ρl
ij2 ρl

ij3 ρl
ij4 ρl

ij5 ρl
ij6 ρl

ij7

1 [1, 2] 18.51 0.0057 0.0014 228 180 141 316 106 132 133 141
2 [1, 3] 15.19 0.0066 0.0046 129 311 289 51 445 254 438 387
3 [2, 6] 23.51 0.0037 0.0087 67 181 415 496 435 353 448 385
4 [3, 4] 23.91 0.0062 0.0045 396 203 90 198 342 107 278 474
5 [4, 5] 18.90 0.0076 0.0066 381 316 473 325 282 122 264 456
6 [5, 6] 14.02 0.0057 0.0041 361 172 387 303 122 242 276 61
7 [3, 12] 27.95 0.0046 0.0010 179 178 237 166 272 379 90 389
8 [4, 11] 13.29 0.0075 0.0039 484 436 310 67 206 161 131 113
9 [5, 9] 26.55 0.0069 0.0022 359 440 136 271 141 489 149 161

10 [6, 8] 27.19 0.0066 0.0066 270 113 449 84 248 271 121 192
11 [9, 8] 16.92 0.0074 0.0026 379 361 149 472 272 165 271 351
12 [8, 7] 26.42 0.0068 0.0022 169 111 469 130 497 329 197 442
13 [9, 10] 14.94 0.0038 0.0096 227 266 166 437 442 210 445 358
14 [8, 16] 16.25 0.0062 0.0035 442 79 232 371 483 411 158 412
15 [7, 18] 18.65 0.0051 0.0046 404 336 415 320 410 441 65 412
16 [12, 11] 12.57 0.0047 0.0090 296 219 192 496 227 166 293 56
17 [11, 10] 17.62 0.0050 0.0052 196 430 204 125 274 137 271 315
18 [10, 16] 17.26 0.0050 0.0025 75 260 75 297 493 370 339 177
19 [16, 18] 18.58 0.0060 0.0097 245 105 85 110 468 437 364 465
20 [12, 13] 16.31 0.0042 0.0065 209 378 107 446 383 439 253 302
21 [11, 14] 16.16 0.0044 0.0054 432 139 104 68 56 121 101 127
22 [10, 15] 25.68 0.0064 0.0082 357 294 434 252 469 403 469 61
23 [10, 17] 20.27 0.0049 0.0034 482 198 421 139 468 245 269 490
24 [16, 17] 15.81 0.0063 0.0073 60 388 163 357 262 141 50 106
25 [17, 19] 10.11 0.0074 0.0028 456 75 232 198 210 359 244 93
26 [18, 20] 28.35 0.0051 0.0089 194 495 296 138 329 347 241 98
27 [14, 15] 17.53 0.0055 0.0047 163 106 300 393 437 211 187 407
28 [15, 19] 29.07 0.0058 0.0013 315 450 314 156 495 156 394 442
29 [14, 23] 27.11 0.0043 0.0013 242 397 140 240 443 97 123 495
30 [15, 22] 16.37 0.0066 0.0056 218 350 179 295 176 251 236 472
31 [19, 20] 18.92 0.0062 0.0046 408 239 53 494 61 271 426 161
32 [23, 22] 22.06 0.0075 0.0082 246 163 56 140 86 375 425 386
33 [23, 24] 22.54 0.0066 0.0061 230 118 298 183 89 321 170 431
34 [22, 21] 15.67 0.0079 0.0023 386 343 313 226 299 372 462 155
35 [22, 20] 21.53 0.0042 0.0027 434 247 263 162 127 244 435 447
36 [13, 24] 12.87 0.0040 0.0045 387 235 335 442 104 330 469 264
37 [24, 21] 11.52 0.0075 0.0063 203 145 85 347 125 167 122 425
38 [21, 20] 14.63 0.0060 0.0092 403 417 125 477 245 477 371 345

In ρl
ijn, n represents the time periods.
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Table 2. Customer nodes.

Customer
Node Demand/t Time

Window
Service
Time/h ηc1/CNY·h−1 ηc2/CNY·h−1

14 2 [8:30, 10:00] 0.6 9 11
17 5 [9:00, 10:00] 0.8 6 10
18 9 [13:00, 16:00] 0.9 5 14

Table 3. Time periods.

No. Start End Speed/km·h−1

1 0:00 6:00 60
2 6:00 7:00 70
3 8:00 11:00 80
4 11:00 13:00 70
5 13:00 18:00 80
6 18:00 20:00 70
7 20:00 0:00 60

Table 4. Other parameters.

Parameter Value

Fix cost 180 CNY
Transportation cost 5 CNY/km

α 0.1
β 0.2
r 0.5 km
E 2.61 kg/L
εm 0.255 L/km
ε0 0.165 L/km

Maximum loading 10 t

The experimental running environment consists of an Intel i5 processor, 3.20 GHz
main frequency, 16 GB RAM, and the Windows 11 operating system, and the improved
NSGA-II algorithm was tested using the Python 3.10.0 program on the VS Code platform.
The parameter settings for the algorithm operation, according to the problem size and the
analysis, are as follows: population of 200, maximum number of iterations of 100, crossover
probability of 0.6 and variance probability of 0.8. For each experiment, run ten times and
use the optimal results.

5.2. Experiment 1: Transportation Route Optimisation under Different Departure Times

In the time-varying model of this paper, the traveling speed of the vehicle and the
population density around the road segment are affected by time and each customer
node in the road network has a soft time window, so we firstly explore the time-varying
characteristics of hazardous chemicals road transportation. On the basis of dividing a day
into different discrete time periods, different vehicle departure times can change the time
period of the entire transportation process. The experimental design randomly generates
seven vehicle departure times in seven time periods and performs optimal route planning
at each departure time. The Pareto solutions under each department time are shown in
Figure 9, and the optimal routes responding to the Pareto solutions, as well as the objective
function values, are shown in Table 5.
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As can be seen from Figure 9, running the improved NSGA-II algorithm proposed
in this paper at different departure times can obtain the corresponding multiple Pareto
solutions. And there may be overlap between multiple different Pareto optimal solutions,
which suggests that the proposed algorithm can obtain the Pareto optimal solutions in many
iterations, and the verification demonstrates the feasibility and validity of the improved
NSGA-II algorithm in this paper.

Solving the multiobjective optimization model under each departure time obtains
multiple sets of Pareto optimal solutions and randomly intercepts three optimal solutions
in each group, as shown in Table 5. Three different customer nodes (14, 17, and 18) are set in
the experiment and the sum of the overall demand of customer node 14 and customer node
17 does not exceed the maximum loading of the transport vehicle, so customer node 14 and
customer node 17 are transported by one transport vehicle. Each Pareto optimal solution
obtained by the optimization experiment when the customer node is the same at different
departure times contains the optimization route of two different transport vehicles.

As can be seen from the experimental results in Table 5, vehicles also have different
objective function values when transporting hazardous chemicals along the same trans-
portation routes at different departure times. Taking the routes r1

1 and r2
2 as examples, at the

different departure times of 4:20 and 7:20, the transportation routes are both [1, 3, 4, 11, 14,
15, 10, 17, 10, 11, 4, 3, 1] and [1, 3, 4, 11, 10, 16, 18, 16, 8, 6, 2, 1], but in terms of transportation
cost, the transportation cost of r1

1 is CNY 2646.93 higher than r2
2 and the transportation cost

of r2
2 is CNY 2592.35. In terms of transportation risk, the transportation risk of r1

1 is 20.47,
which is higher than the transportation risk of r2

2. The carbon emissions when departing at
7:20 are 226.63 kg, while the carbon emissions when departing at 7:20 were slightly lower
at 240.55 kg. When the departure time of the vehicle at node 1 is 4:20, the time interval
from the time window of each customer node is longer than that of the departure time of
7:20, resulting in an increase in the penalty cost at the earlier departure time and thus an
increase in the total transportation cost. When the driving speed during transportation
is low, the overall transportation time of the vehicle increases, resulting in an increase in
carbon emissions. In addition, at different departure times, speed limits on different road
segments and the surrounding population density will affect the transportation risk. When
the speed is low, the travel time increases and the time it takes for the transporter to reach
the customer node will vary, resulting in different penalty costs at each customer node.
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Table 5. The results of Experiment 1.

Departure
Time Road No. Vehicle No. Route Cost/CNY Risk Carbon

Emission/kg

4:20

r1
1

1 1, 3, 4, 11, 14, 15, 10, 17, 10, 11, 4, 3, 1
2646.93 20.47 240.552 1, 3, 4, 11, 10, 16, 18, 16, 8, 6, 2, 1

r1
2

1 1, 3, 12, 11, 14, 15, 19, 17, 16, 8, 6, 2, 1
2700.91 10.15 242.342 1, 3, 12, 11, 10, 16, 18, 16, 8, 6, 2, 1

r1
3

1 1, 3, 4, 11, 14, 15, 10, 17, 10, 11, 14, 15, 22, 21, 20,
18, 7, 8, 6, 2, 1 2668.69 13.69 239.26

2 1, 3, 4, 11, 10, 15, 22, 21, 20, 18, 7, 8, 6, 2, 1

7:20

r2
1

1 1, 3, 4, 11, 14, 15, 19, 17, 16, 8, 6, 2, 1
2614.05 8.72 235.872 1, 3, 4, 11, 10, 16, 18, 16, 8, 6, 2, 1

r2
2

1 1, 3, 4, 11, 14, 15, 10, 17, 10, 11, 4, 3, 1
2592.35 12.37 226.632 1, 3, 4, 11, 10, 16, 18, 16, 8, 6, 2, 1

9:20

r3
1

1 1, 3, 4, 11, 14, 15, 10, 17, 10, 11, 4, 3, 1
2564.23 17.56 228.832 1, 3, 4, 11, 10, 16, 18, 16, 10, 11, 4, 3, 1

r3
2

1 1, 3, 12, 11, 14, 23, 22, 20, 19, 17, 10, 11, 12, 3, 1
2808.38 9.45 248.792 1, 3, 12, 11, 10, 16, 18, 16, 10, 11, 12, 3, 1

r3
3

1 1, 3, 4, 11, 14, 23, 22, 20, 19, 17, 10, 11, 4, 3, 1
2742.28 9.18 253.702 1, 3, 4, 11, 10, 16, 18, 16, 10, 11, 4, 3, 1

12:20

r4
1

1 1, 3, 12, 11, 14, 15, 19, 17, 19, 20, 21, 24, 13, 12, 3, 1
3048.23 12.51 273.312 1, 3, 12, 11, 10, 9, 8, 7, 18, 20, 21, 24, 13, 12, 3, 1

r4
2

1 1, 3, 4, 11, 14, 15, 10, 17, 10, 11, 4, 3, 1
2545.81 23.12 218.832 1, 3, 4, 11, 10, 16, 18, 16, 8, 6, 2, 1

r4
3

1 1, 3, 12, 11, 14, 15, 19, 17, 16, 8, 6, 2, 1
2600.55 12.72 222.322 1, 3, 12, 11, 10, 16, 18, 16, 8, 6, 2, 1

15:20

r5
1

1 1, 3, 4, 11, 14, 15, 10, 17, 10, 11, 4, 3, 1
2601.41 17.87 219.712 1, 3, 4, 11, 10, 16, 18, 16, 10, 11, 4, 3, 1

r5
2

1 1, 3, 12, 11, 14, 15, 19, 17, 19, 20, 21, 24, 13, 12, 3, 1
3214.37 11.48 291.882 1, 3, 12, 11, 10, 9, 8, 7, 18, 7, 8, 9, 10, 11, 12, 3, 1

r5
3

1 1, 3, 4, 11, 14, 15, 19, 17, 16, 8, 6, 2, 1
2612.75 11.77 223.602 1, 3, 4, 11, 10, 16, 18, 16, 8, 6, 2, 1

19:20

r6
1

1 1, 3, 4, 11, 14, 15, 19, 17, 19, 20, 21, 24, 13, 12, 3, 1
3163.55 11.57 270.432 1, 3, 4, 11, 10, 9, 8, 7, 18, 7, 8, 9, 10, 11, 4, 3, 1

r6
2

1 1, 3, 4, 11, 14, 15, 10, 17, 10, 11, 4, 3, 1
2748.17 18.94 218.832 1, 3, 4, 11, 10, 16, 18, 16, 8, 6, 2, 1

r6
3

1 1, 3, 12, 11, 14, 15, 19, 17, 16, 8, 6, 2, 1
2802.22 10.33 222.322 1, 3, 12, 11, 10, 16, 18, 16, 8, 6, 2, 1

21:20

r7
1

1 1, 3, 4, 11, 14, 15, 10, 17, 10, 11, 4, 3, 1
2756.28 20.73 227.782 1, 3, 4, 11, 10, 16, 18, 16, 8, 6, 2, 1

r7
2

1 1, 3, 12, 11, 14, 15, 19, 17, 19, 20, 22, 15, 10, 11, 12,
3, 1 3354.55 13.27 274.43

2 1, 3, 12, 11, 10, 17, 19, 20, 18, 16, 8, 6, 2, 1

r7
3

1 1, 3, 12, 11, 14, 15, 10, 17, 10, 11, 12, 3, 1
2807.29 14.34 221.912 1, 3, 12, 11, 10, 16, 18, 16, 8, 6, 2, 1

In Table 5, when the departure time is 7:20, there are two optimal transportation solu-
tions r2

1 and r2
2. In these two transportation route plans, transport vehicle 2 has the same

driving path, while transport vehicle 1 has different driving paths in the road network,
resulting in differences in transportation cost, transportation risk, and carbon emissions
between the two route schemes. Specifically, the vehicles in transportation path r2

2 have
a shorter travel distance, and the difference in travel distance between the two route
schemes is mainly reflected in the transportation distance when returning to the starting
node after serving the customer node. Therefore, the longer travel distance results in
higher transportation cost and carbon emissions for route r2

1. In terms of transportation
risk, by comparing the probability of conditional leakage, accident occurrence rate, and
population density of each road segment, it can be seen that the various indicators of trans-
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portation path r2
2 are relatively high, so the transportation risk of transportation path r2

2 is
relatively high.

In conclusion, in the road transportation of hazardous chemicals, time factors affect
the optimization of transportation route by affecting the driving speed and accident rate
of transport vehicles. If transportation enterprises want to minimize cost during trans-
portation, they need to choose a departure time closer to the customer’s time window to
minimize the penalty cost incurred at the customer node. If transportation enterprises want
to minimize transportation risk, they should choose roads with lower accident rates among
multiple transportation route schemes.

5.3. Experiment 2: Transportation Route Optimization with Customer Nodes Changing

In order to verify the scalability of the time-varying model constructed and explore
the impact of changes in customer nodes on the optimization of hazardous chemical
road transportation routes, on the basis of the existing customer nodes (14, 17, and 18),
the customer node 10 and customer node 22 shown in the Table 6 were added, and the
departure time was fixed at 10:30 to carry out the route optimization experiment.

Table 6. New customer nodes.

Customer
Node Demand/t Time

Window
Service
Time/h ηc1/CNY·h−1 ηc2/CNY·h−1

10 4 [10:00, 13:00] 0.6 4 9
22 8 [11:00, 14:00] 1 3 12

Figure 10 shows the Pareto optimal solution obtained by optimization experiments
under the condition that the number of customer nodes in the road network increases
at the same departure time, and Figure 10a–c are the Pareto optimal solutions at three
customer nodes, four customer nodes and five customer nodes, respectively. As can be seen
from the results in Figure 10, the number of Pareto optimal solutions gradually increases
as the number of customer nodes increases. This indicates that the improved algorithm
proposed in this paper has good scalability, which can obtain good solutions under the
condition of changing numbers of customer nodes, and meet the requirements of the
optimization experiment.
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Table 7 shows each optimized route and the corresponding cost, risk and carbon
emissions obtained by performing the optimization experiments at different customer
nodes at the same departure time. As can be seen from the results in Table 7, transportation
cost, transportation risk and carbon emissions rise as the number of customer nodes in
the road network gradually increases. When the customer node is (14, 17, or 18) the
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transportation cost, transportation risk, and carbon emissions are between [2000, 3000],
[10, 20] and [200, 300], respectively. When the customer node is (14, 10, 17, or 18), the
transportation cost, transportation risk and carbon emissions are between [3000, 4000],
and [300, 500], respectively. After adding node 22 into the network as the customer node, the
objective function is increased to between [5000, 6000], [20, 35] and [400, 600], respectively.
This is because the increase in customer nodes will first lead to an increase in the overall
carrying capacity of transporters and an increase in the number of transport vehicles, which
in turn leads to an increase in the transportation cost. Since the risk during transportation
is directly related to the vehicle loading, when the number of customer nodes increases
and the distance traveled by the vehicle increases, so the transportation risk also increases.

Table 7. The results of Experiment 2.

Customer
Node Road No. Vehicle No. Route Cost

/CNY Risk Carbon
Emission/kg

14, 17, 18

r8
1

1 1, 3, 4, 11, 14, 15, 10, 17, 10, 11, 4, 3, 1
2642.98 23.67 230.232 1, 3, 4, 11, 10, 17, 16, 18, 16, 10, 11, 4, 3, 1

r8
2

1 1, 3, 4, 11, 14, 15, 19, 17, 16, 8, 6, 2, 1
2655.75 16.70 228.292 1, 3, 4, 11, 10, 17, 16, 18, 16, 8, 6, 2, 1

r8
3

1 1, 3, 12, 11, 14, 15, 19, 17, 16, 8, 6, 2, 1
2595.87 13.26 247.442 1, 3, 12, 11, 10, 16, 18, 16, 8, 6, 2, 1

r8
4

1 1, 3, 4, 11, 14, 15, 10, 17, 10, 11, 4, 3, 1
2550.33 21.46 232.742 1, 3, 4, 11, 10, 16, 18, 16, 10, 11, 4, 3, 1

r8
5

1 1, 3, 4, 11, 14, 15, 19, 17, 16, 8, 6, 2, 1
2563.09 14.49 230.812 1, 3, 4, 11, 10, 16, 18, 16, 8, 6, 2, 1

14, 17, 10, 18

r9
1

1 1, 3, 4, 11, 14, 15, 10, 11, 4, 3, 1
3521.06 26.28 314.082 1, 3, 4, 11, 10, 17, 10, 11, 4, 3, 1

3 1, 3, 4, 11, 10, 17, 16, 18, 16, 8, 6, 2, 1

r9
2

1 1, 3, 12, 11, 14, 23, 22, 20, 19, 17, 10, 11, 12, 3, 1
3939.27 18.89 399.892 1, 3, 12, 11, 10, 17, 16, 8, 6, 2, 1

3 1, 3, 12, 11, 10, 16, 18, 16, 8, 6, 2, 1

r9
3

1 1, 3, 12, 11, 14, 23, 22, 20, 19, 17, 10, 11, 12, 3, 1
3926.57 18.89 403.102 1, 3, 12, 11, 10, 17, 10, 11, 12, 3, 1

3 1, 3, 12, 11, 10, 16, 18, 16, 10, 11, 12, 3, 1

r9
4

1 1, 3, 4, 11, 14, 15, 10, 11, 4, 3, 1
3428.40 24.07 316.602 1, 3, 4, 11, 10, 17, 10, 11, 4, 3, 1

3 1, 3, 4, 11, 10, 16, 18, 16, 8, 6, 2, 1

r9
5

1 1, 3, 4, 11, 14, 23, 22, 20, 19, 17, 10, 11, 4, 3, 1
3826.82 20.75 371.162 1, 3, 4, 11, 10, 17, 10, 11, 4, 3, 1

3 1, 3, 4, 11, 10, 16, 18, 16, 10, 11, 4, 3, 1

r9
6

1 1, 3, 12, 11, 14, 15, 10, 11, 12, 3, 1
3511.13 22.29 346.582 1, 3, 12, 11, 10, 17, 10, 11, 12, 3, 1

3 1, 3, 12, 11, 10, 16, 18, 16, 8, 6, 2, 1

14, 17, 10, 18, 22

r10
1

1 1, 3, 12, 13, 24, 21, 22, 20, 19, 17, 10, 11, 14, 15, 10, 11,
12, 3, 1

5956.87 23.58 574.912 1, 3, 12, 13, 24, 21, 22, 20, 19, 17, 10, 11, 12, 3, 1
3 1, 3, 12, 13, 24, 21, 22, 21, 24, 13, 12, 3, 1
4 1, 3, 12, 13, 24, 21, 22, 20, 18, 20, 21, 24, 13, 12, 3, 1

r10
2

1 1, 3, 4, 11, 14, 15, 10, 11, 4, 3, 1

4882.80 30.69 446.20
2 1, 3, 4, 11, 10, 17, 10, 11, 4, 3, 1
3 1, 3, 4, 11, 10, 16, 17, 19, 20, 22, 21, 24, 13, 12, 3, 1
4 1, 3, 4, 11, 10, 16, 18, 16, 10, 11, 4, 3, 1
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Table 7. Cont.

Customer
Node Road No. Vehicle No. Route Cost

/CNY Risk Carbon
Emission/kg

14, 17, 10, 18, 22

r10
3

1 1, 3, 12, 11, 14, 15, 10, 11, 12, 3, 1

4998.83 28.29 486.45
2 1, 3, 12, 11, 10, 17, 10, 11, 12, 3, 1
3 1, 3, 12, 11, 10, 16, 17, 19, 20, 22, 21, 24, 13, 12, 3, 1
4 1, 3, 12, 11, 10, 16, 18, 16, 10, 11, 12, 3, 1

r10
4

1 1, 3, 12, 13, 24, 21, 20, 19, 15, 14, 11, 10, 11, 12, 3, 1

5481.99 26.28 523.81
2 1, 3, 12, 13, 24, 21, 20, 19, 17, 10, 11, 12, 3, 1
3 1, 3, 12, 13, 24, 21, 22, 21, 24, 13, 12, 3, 1
4 1, 3, 12, 13, 24, 21, 20, 18, 20, 21, 24, 13, 12, 3, 1

r10
5

1 1, 3, 4, 11, 14, 23, 22, 20, 19, 17, 10, 11, 4, 3, 1

5363.27 27.37 508.45
2 1, 3, 4, 11, 10, 17, 10, 11, 4, 3, 1
3 1, 3, 4, 11, 10, 16, 17, 19, 20, 22, 23, 14, 11, 4, 3, 1
4 1, 3, 4, 11, 10, 16, 18, 16, 10, 11, 4, 3, 1

r10
6

1 1, 3, 12, 11, 14, 23, 22, 20, 19, 17, 10, 11, 12, 3, 1

5475.62 24.90 548.23
2 1, 3, 12, 11, 10, 17, 10, 11, 12, 3, 1
3 1, 3, 12, 11, 10, 16, 17, 19, 20, 22, 23, 24, 13, 12, 3, 1
4 1, 3, 12, 11, 10, 16, 18, 16, 10, 11, 12, 3, 1

r10
7

1 1, 3, 12, 13, 24, 21, 20, 19, 17, 10, 11, 14, 15, 10, 11, 12,
3, 1

5618.47 24.89 542.242 1, 3, 12, 13, 24, 21, 20, 19, 17, 10, 11, 12, 3, 1
3 1, 3, 12, 13, 24, 21, 22, 21, 24, 13, 12, 3, 1
4 1, 3, 12, 13, 24, 21, 20, 18, 20, 21, 24, 13, 12, 3, 1

r10
8

1 1, 3, 12, 13, 24, 21, 22, 20, 19, 15, 14, 11, 10, 11, 12,
3, 1

5823.06 24.81 565.132 1, 3, 12, 13, 24, 21, 22, 20, 19, 17, 10, 11, 12, 3, 1
3 1, 3, 12, 13, 24, 21, 22, 21, 24, 13, 12, 3, 1
4 1, 3, 12, 13, 24, 21, 22, 20, 18, 20, 21, 24, 13, 12, 3, 1

5.4. Green Transportation

When the customer node in the network is (14, 10, 17, 18, or 22), excluding carbon
emissions, the transportation cost of transportation route r10

2 is the lowest at CNY 4882.80,
the transportation cost of transportation route r10

8 is CNY 5823.06, while the transportation
risk of transportation route r10

1 is 23.58, and the transportation risk of transportation route
r10

2 is 30.69. Figure 11 shows the relationship between transportation cost and carbon
emissions. It can be seen that in the road transportation route optimization problem of
hazardous chemicals, there is often a contradictory relationship between transportation cost
and transportation risk, and the reduction of transportation cost often means the increase
of transportation risk. Therefore, the hazardous chemical transportation enterprises need
to weigh the relationship between the two in the actual path planning. In the case that the
transportation cost and transportation risk cannot be optimal at the same time, the optimal
road transportation route should be selected combined with enterprises’ risk tolerance and
economic benefits.

Figure 12 shows that carbon emissions will increase when transportation cost gradu-
ally increases, and there is a positive correlation between transportation cost and carbon
emissions, indicating that when the transportation cost of vehicles gradually increase, it is
often accompanied by an increase in carbon emissions. For example, the transportation cost
of route r8

2 in Table 7 is higher than r8
4, but the carbon emissions are lower, indicating that

the enterprise can indirectly reduce carbon dioxide emissions by reducing vehicle travel
distance, setting reasonable departure times, and other means to reduce transportation cost,
and promote the green development of hazardous chemicals transportation.



Sustainability 2024, 16, 779 21 of 24

Sustainability 2024, 16, x FOR PEER REVIEW 21 of 25 
 

often means the increase of transportation risk. Therefore, the hazardous chemical trans-
portation enterprises need to weigh the relationship between the two in the actual path 
planning. In the case that the transportation cost and transportation risk cannot be optimal 
at the same time, the optimal road transportation route should be selected combined with 
enterprises’ risk tolerance and economic benefits. 

10

15

20

25

30

35

2000 3000 4000 5000 6000 7000

Tr
an

sp
or

ta
tio

n 
R

is
k

Transportation Cost  
Figure 11. The relationship between transportation cost and transportation risk. The green circles 
represent the experimental results when the customer nodes are 14, 17, and 10, while the blue tri-
angles represent the experimental results when the customer nodes are 14, 17, 10, and 18, and the 
yellow square represents the experimental results when the customer nodes are 14, 17, 10, 18, and 
22. 

Figure 12 shows that carbon emissions will increase when transportation cost grad-
ually increases, and there is a positive correlation between transportation cost and carbon 
emissions, indicating that when the transportation cost of vehicles gradually increase, it 
is often accompanied by an increase in carbon emissions. For example, the transportation 
cost of route 𝑟ଶ଼  in Table 7 is higher than 𝑟ସ଼ , but the carbon emissions are lower, indicat-
ing that the enterprise can indirectly reduce carbon dioxide emissions by reducing vehicle 
travel distance, setting reasonable departure times, and other means to reduce transpor-
tation cost, and promote the green development of hazardous chemicals transportation. 

200

250

300

350

400

450

500

550

600

2000 3000 4000 5000 6000 7000

C
ar

bo
n 

Em
is

si
on

Transportation Cost  
Figure 12. The relationship between transportation cost and carbon emissions. The green circles 
represent the experimental results when the customer nodes are 14, 17, and 10, while the blue tri-
angles represent the experimental results when the customer nodes are 14, 17, 10, and 18, and the 
yellow square represents the experimental results when the customer nodes are 14, 17, 10, 18, and 
22. 

  

Figure 11. The relationship between transportation cost and transportation risk. The green circles
represent the experimental results when the customer nodes are 14, 17, and 10, while the blue triangles
represent the experimental results when the customer nodes are 14, 17, 10, and 18, and the yellow
square represents the experimental results when the customer nodes are 14, 17, 10, 18, and 22.

Sustainability 2024, 16, x FOR PEER REVIEW 21 of 25 
 

often means the increase of transportation risk. Therefore, the hazardous chemical trans-
portation enterprises need to weigh the relationship between the two in the actual path 
planning. In the case that the transportation cost and transportation risk cannot be optimal 
at the same time, the optimal road transportation route should be selected combined with 
enterprises’ risk tolerance and economic benefits. 

10

15

20

25

30

35

2000 3000 4000 5000 6000 7000

Tr
an

sp
or

ta
tio

n 
R

is
k

Transportation Cost  
Figure 11. The relationship between transportation cost and transportation risk. The green circles 
represent the experimental results when the customer nodes are 14, 17, and 10, while the blue tri-
angles represent the experimental results when the customer nodes are 14, 17, 10, and 18, and the 
yellow square represents the experimental results when the customer nodes are 14, 17, 10, 18, and 
22. 

Figure 12 shows that carbon emissions will increase when transportation cost grad-
ually increases, and there is a positive correlation between transportation cost and carbon 
emissions, indicating that when the transportation cost of vehicles gradually increase, it 
is often accompanied by an increase in carbon emissions. For example, the transportation 
cost of route 𝑟ଶ଼  in Table 7 is higher than 𝑟ସ଼ , but the carbon emissions are lower, indicat-
ing that the enterprise can indirectly reduce carbon dioxide emissions by reducing vehicle 
travel distance, setting reasonable departure times, and other means to reduce transpor-
tation cost, and promote the green development of hazardous chemicals transportation. 

200

250

300

350

400

450

500

550

600

2000 3000 4000 5000 6000 7000

C
ar

bo
n 

Em
is

si
on

Transportation Cost  
Figure 12. The relationship between transportation cost and carbon emissions. The green circles 
represent the experimental results when the customer nodes are 14, 17, and 10, while the blue tri-
angles represent the experimental results when the customer nodes are 14, 17, 10, and 18, and the 
yellow square represents the experimental results when the customer nodes are 14, 17, 10, 18, and 
22. 

  

Figure 12. The relationship between transportation cost and carbon emissions. The green circles
represent the experimental results when the customer nodes are 14, 17, and 10, while the blue triangles
represent the experimental results when the customer nodes are 14, 17, 10, and 18, and the yellow
square represents the experimental results when the customer nodes are 14, 17, 10, 18, and 22.

6. Conclusions and Future Work

Road transportation of hazardous chemicals is characterized by high risk, so the risk
should be minimized during the transportation process. This paper innovatively proposes
that from the perspective of transportation route schemes, enterprises should optimize
transportation routes based on the time windows of customer nodes and dynamic road
conditions by studying the time-varying factors in hazardous chemical road transportation.
At the same time, by studying the interrelationships between optimization objectives, it
is believed that the reduction of transportation cost should be the primary consideration
during transportation. The specific research content of this paper is as follows:

(1) A multiobjective route optimization model is constructed to minimize transportation
cost, transportation risk, and carbon emissions based on the risk of hazardous chemi-
cals road transportation, the economy of transportation enterprises, and the “double
carbon” goal. At the same time, the time factor is added into the model, and a soft
time window is set for each customer node. The day is divided into different time
periods. The speed limit of the road as well as the population density and accident
rate are different during each time period.
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(2) The NSGA-II algorithm is used for solving the problem, and the NSGA-II algorithm
is improved to reduce the occurrence of a large number of invalid solutions during
the optimization problem solving process. Based on the model proposed in this
paper, road network optimization experiments in classical Sioux Falls networks are
performed to verify the feasibility and effectiveness of the algorithm.

(3) The experimental results of route optimization show that the transportation routes
obtained at different departure times are very different. When transport vehicles
depart at different times, the same transportation route will generate different trans-
portation costs, transportation risks, and carbon emissions. In addition, as the number
of customer nodes increases, transportation cost, transportation risk, and carbon
emissions during transportation will correspondingly increase.

(4) When optimizing the transportation route, enterprises need to reasonably plan the
department time and transportation route according to the time-varying factors If
enterprises want to minimize transportation cost, it needs to choose a departure time
that is closer to the customer’s time window and a transportation route that is shorter.
If enterprises pay more attention to safety, they need to choose transportation routes
with lower accident rates and population density based on road conditions.

(5) In the process of optimizing the road transportation route of hazardous chemicals,
from the perspective of transportation enterprises, transportation cost is the primary
factor to consider. Based on the negative correlation between cost and risk, as well
as the positive correlation between cost and carbon emissions, multiple measures
should be taken to reduce transportation cost, and then machine learning, artificial
intelligence, and other technologies should be applied to construct a more reasonable
and effective optimization model for minimizing transportation risk. Firstly, it is
necessary to improve the construction of information infrastructure for road trans-
portation of hazardous chemicals, construct a big data system for hazardous chemical
transportation, achieve the circulation of transportation big data, and reduce the cost
of data acquisition for transportation enterprises. Secondly, through the application
of in-vehicle sensors, the IoT, and video recognition detection technology, intelligent
supervision of transportation can be achieved, reducing the cost of supervision during
transportation. Finally, the government can allocate financial subsidies to small and
medium-sized transportation enterprises to reduce their cost burden.

Road transportation of hazardous chemicals is a process that is affected by time,
weather, road conditions, and other factors, and the goals pursued by each participant in
the transportation process are also in conflict. Firstly, this paper conducts route optimiza-
tion experiments based on discrete time-varying conditions, and preliminarily concludes
that the departure time of vehicles and the time window of customer nodes will have an
impact on the cost and risk of the transportation. However, there are still shortcomings in
specific time path planning, and more comprehensive experiments are needed to explore
the impact mechanism of changes in time factors on transportation. Secondly, the time
factor is included in the transportation route optimization model of hazardous chemicals,
but the road information is known with certainty. In the future, the uncertain road trans-
portation optimization problem based on time-varying factors can be considered to study
the influence of uncertain external environmental conditions on the transportation route.
Thirdly, the interaction between vehicles and the overall riskiness of the road network
when multiple transport vehicles are traveling in the road network at the same time are
not considered, and further research is needed on the interaction between vehicles and
the overall risk and fairness of the transportation network. Meanwhile, the model and
algorithm in the paper also require a larger network for testing.
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