Evaluating the Utility of Selected Machine Learning Models for Predicting Stormwater Levels in Small Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrometeorological Data
2.3. Python Software
2.4. MultiLayer Perceptron (MLP) Neural Networks
2.5. eXtreme Gradient Boosting 2.0.3. (XGBoost)
2.6. SHapley Additive exPlanations (SHAP)
2.7. Research Plan
- Variant I—56 input parameters and 1 output parameter, i.e., the maximum forecast stormwater level (hsw_fc), were assumed;
- Variant II—32 input parameters and 1 output parameter (hsw_fc) were assumed;
- Variant III—24 input parameters and 1 output parameter (hsw_fc) were assumed;
- Variant IV—16 input parameters and 1 output parameter (hsw_fc) were assumed.
3. Results
3.1. ANN i XGBoost Models
3.2. The SHapley Additive exPlanations (SHAP) Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Amanowicz, Ł.; Ratajczak, K.; Dudkiewicz, E. Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review. Energies 2023, 16, 1853. [Google Scholar] [CrossRef]
- Piotrowska, B.; Słyś, D. Comprehensive Analysis of the State of Technology in the Field of Waste Heat Recovery from Grey Water. Energies 2023, 16, 137. [Google Scholar] [CrossRef]
- Trošelj, J.; Nayak, S.; Hobohm, L.; Takemi, T. Real-time flash flood forecasting approach for development of early warning systems: Integrated hydrological and meteorological application. Geomat. Nat. Hazards Risk. 2023, 14, 2269295. [Google Scholar] [CrossRef]
- Szeląg, B.; Łagód, G.; Musz-Pomorska, A.; Widomski, M.K.; Stránský, D.; Sokáč, M.; Pokrývková, J.; Babko, R. Development of Rainfall-Runoff Models for Sustainable Stormwater Management in Urbanized Catchments. Water 2022, 14, 1997. [Google Scholar] [CrossRef]
- Šarapatka, B.; Bednář, M. Rainfall Erosivity Impact on Sustainable Management of Agricultural Land in Changing Climate Conditions. Land 2022, 11, 467. [Google Scholar] [CrossRef]
- Stec, A.; Słyś, D. New Bioretention Drainage Channel as One of the Low-Impact Development Solutions: A Case Study from Poland. Resources 2023, 12, 82. [Google Scholar] [CrossRef]
- Starzec, M.; Dziopak, J. A Case Study of the Retention Efficiency of a Traditional and Innovative Drainage System. Resources 2020, 9, 108. [Google Scholar] [CrossRef]
- Starzec, M.; Mullendore, G.L.; Kucera, P.A. Using radar reflectivity to evaluate the vertical structure of forecasted convection. J. Appl. Meteorol. Climatol. 2018, 57, 2835–2849. [Google Scholar] [CrossRef]
- Papadopoulos-Zachos, A.; Anagnostopoulou, C. The Link of Extreme Precipitation with the Clausius–Clapeyron Relation: The Case Study of Thessaloniki, Greece. Environ. Sci. Proc. 2023, 26, 7. [Google Scholar] [CrossRef]
- Hörnschemeyer, B.; Henrichs, M.; Dittmer, U.; Uhl, M. Parameterization for Modeling Blue–Green Infrastructures in Urban Settings Using SWMM-UrbanEVA. Water 2023, 15, 2840. [Google Scholar] [CrossRef]
- Pan, C.; Wang, X.; Liu, L.; Wang, D.; Huang, H. Characteristics of Heavy Storms and the Scaling Relation with Air Temperature by Event Process-Based Analysis in South China. Water 2019, 11, 185. [Google Scholar] [CrossRef]
- Kordana-Obuch, S.; Starzec, M. Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates. Resources 2020, 9, 110. [Google Scholar] [CrossRef]
- Zdeb, M.; Zamorska, J.; Papciak, D.; Skwarczyńska-Wojsa, A. Investigation of Microbiological Quality Changes of Roof-Harvested Rainwater Stored in the Tanks. Resources 2021, 10, 103. [Google Scholar] [CrossRef]
- Soh, Y.S.; O’Dwyer, E.; Acha, S.; Shah, N. Robust optimisation of combined rainwater harvesting and flood mitigation systems. Water Res. 2023, 245, 120532. [Google Scholar] [CrossRef]
- Susetyo, C.; Yusuf, L.; Setiawan, R.P. Spatial planning concept for flood prevention in the Kedurus River watershed. Open Geosci. 2022, 14, 1238–1249. [Google Scholar] [CrossRef]
- Dąbrowski, W.; Nowak, M. Potential of storm water storage tank outflow construction in the prevention of sewerage overload. Appl. Water Sci. 2022, 12, 205. [Google Scholar] [CrossRef]
- De Paula Drumond, P.; Macedo Moura, P.; Pinto Coelho, M.M.L. Improving the understanding of on-site stormwater detention performances. Urban Water J. 2022, 20, 1271–1289. [Google Scholar] [CrossRef]
- Kordana-Obuch, S.; Starzec, M. A New Method for Selecting the Geometry of Systems for Surface Infiltration of Stormwater with Retention. Water 2023, 15, 2597. [Google Scholar] [CrossRef]
- Zhuk, V.; Matlai, I.; Zavoiko, B.; Popadiuk, I.; Pavlyshyn, V.; Mysak, I.; Mysak, P. Experimental hydraulic parameters of drainage grate inlets with a horizontal outflow in the broad-crested weir mode. Water Sci. Technol. 2023, 88, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Starzec, M.; Kordana-Obuch, S.; Słyś, D. Assessment of the Feasibility of Implementing a Flash Flood Early Warning System in a Small Catchment Area. Sustainability 2023, 15, 8316. [Google Scholar] [CrossRef]
- Dudkiewicz, E.; Laska, M. Inequality of water consumption for hygienic and sanitary purposes in production halls. E3S Web Conf. 2019, 100, 00014. [Google Scholar] [CrossRef]
- de Abreu, V.H.S.; Monteiro, T.G.M.; de Oliveira Vasconcelos, A.; Santos, A.S. Climate Change Adaptation Strategies for Road Transportation Infrastructure: A Systematic Review on Flooding Events. In Transportation Systems Technology and Integrated Management. Energy, Environment, and Sustainability, 1st ed.; Upadhyay, R.K., Sharma, S.K., Kumar, V., Valera, H., Eds.; Springer: Singapore, 2023; pp. 5–30. [Google Scholar] [CrossRef]
- Maiolo, M.; Palermo, S.A.; Brusco, A.C.; Pirouz, B.; Turco, M.; Vinci, A.; Spezzano, G.; Piro, P. On the Use of a Real-Time Control Approach for Urban Stormwater Management. Water 2020, 12, 2842. [Google Scholar] [CrossRef]
- Liu, B.; Yang, J.; Sha, J.; Luo, Y.; Zhao, X.; Liu, R. Analysis of Runoff According to Land-Use Change in the Upper Hutuo River Basin. Water 2023, 15, 1138. [Google Scholar] [CrossRef]
- Obi, R.; Nwachukwu, M.U.; Okeke, D.C.; Jiburum, U. Indigenous flood control and management knowledge and flood disaster risk reduction in Nigeria’s coastal communities: An empirical analysis. Int. J. Disaster Risk Reduct. 2021, 55, 102079. [Google Scholar] [CrossRef]
- Wang, G.; Hu, Z.; Liu, Y.; Zhang, G.; Liu, J.; Lyu, Y.; Gu, Y.; Huang, X.; Zhang, Q.; Tong, Z.; et al. Impact of Expansion Pattern of Built-Up Land in Floodplains on Flood Vulnerability: A Case Study in the North China Plain Area. Remote Sens. 2020, 12, 3172. [Google Scholar] [CrossRef]
- Birkinshaw, S.J.; O’Donnell, G.; Glenis, V.; Kilsby, C. Improved hydrological modelling of urban catchments using runoff coefficients. J. Hydrol. 2021, 594, 125884. [Google Scholar] [CrossRef]
- Kumar, N. Fluvial Flood Risk in Contemporary Settlements: A Case of Vadodara City in the Vishwamitri Watershed. Eng. Proc. 2023, 56, 70. [Google Scholar] [CrossRef]
- Piasecki, A.; Pilarska, A. Rainwater management in urban areas in Poland: Literature review. Bull. Geogr. Phys. Geogr. Ser. 2023, 25, 5–21. [Google Scholar] [CrossRef]
- Zhai, X.; Guo, L.; Zhang, Y. Flash flood type identification and simulation based on flash flood behavior indices in China. China Sci. Earth Sci. 2021, 51, 1092–1106. [Google Scholar] [CrossRef]
- Piro, P.; Saleh, M.M.; Pirouz, B.; Turco, M.; Palermo, S.A. Smart and Innovative Systems for Urban Flooding Risk Management. In Proceedings of the 2023 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Cosenza, Italy, 13–15 September 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Mrozik, K.D. Problems of Local Flooding in Functional Urban Areas in Poland. Water 2022, 14, 2453. [Google Scholar] [CrossRef]
- Zhao, X.; Li, H.; Cai, Q.; Pan, Y.; Qi, Y. Managing Extreme Rainfall and Flooding Events: A Case Study of the 20 July 2021 Zhengzhou Flood in China. Climate 2023, 11, 228. [Google Scholar] [CrossRef]
- Chen, S.-L.; Chou, H.-S.; Huang, C.-H.; Chen, C.-Y.; Li, L.-Y.; Huang, C.-H.; Chen, Y.-Y.; Tang, J.-H.; Chang, W.-H.; Huang, J.-S. An Intelligent Water Monitoring IoT System for Ecological Environment and Smart Cities. Sensors 2023, 23, 8540. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Garrido, F.; Painenao, D.; Sotil, A. Evaluation of the Use of Permeable Interlocking Concrete Pavement in Chile: Urban Infrastructure Solution for Adaptation and Mitigation against Climate Change. Water 2023, 15, 4219. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Döring, A.O.; Möck, M.; Sedrez, M.; Mumm, O.; Schneider, A.-K.; Weber, S.; Schröder, B. The “Hidden Urbanization”: Trends of Impervious Surface in Low-Density Housing Developments and Resulting Impacts on the Water Balance. Front. Environ. Sci. 2019, 7, 29. [Google Scholar] [CrossRef]
- Manandhar, B.; Cui, S.; Wang, L.; Shrestha, S. Urban Flood Hazard Assessment and Management Practices in South Asia: A Review. Land 2023, 12, 627. [Google Scholar] [CrossRef]
- Sakib, M.S.; Alam, S.; Shampa; Murshed, S.B.; Kirtunia, R.; Mondal, M.S.; Chowdhury, A.I.A. Impact of Urbanization on Pluvial Flooding: Insights from a Fast Growing Megacity, Dhaka. Water 2023, 15, 3834. [Google Scholar] [CrossRef]
- Xu, C.; Rahman, M.; Haase, D.; Wu, Y.; Su, M.; Pauleit, S. Surface runoff in urban areas: The role of residential cover and urban growth form. J. Clean. Prod. 2020, 262, 121421. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, Z.; Ikram, R.M.A.; Sun, C.; Zhang, M.; Li, J. Global Paradigm Shifts in Urban Stormwater Management Optimization: A Bibliometric Analysis. Water 2023, 15, 4122. [Google Scholar] [CrossRef]
- Tu, Y.; Zhao, Y.; Dong, R.; Wang, H.; Ma, Q.; He, B.; Liu, C. Study on Risk Assessment of Flash Floods in Hubei Province. Water 2023, 15, 617. [Google Scholar] [CrossRef]
- Ma, M.; Zhao, G.; He, B.; Li, Q.; Dong, H.; Wang, S.; Wang, Z. XGBoost-based method for flash flood risk assessment. J. Hydrol. 2021, 598, 126382. [Google Scholar] [CrossRef]
- Santos, L.B.L.; Freitas, C.P.; Bacelar, L.; Soares, J.A.J.P.; Diniz, M.M.; Lima, G.R.T.; Stephany, S. A Neural Network-Based Hydrological Model for Very High-Resolution Forecasting Using Weather Radar Data. Eng 2023, 4, 1787–1796. [Google Scholar] [CrossRef]
- Bafitlhile, T.M.; Li, Z. Applicability of ε-Support Vector Machine and Artificial Neural Network for Flood Forecasting in Humid, Semi-Humid and Semi-Arid Basins in China. Water 2019, 11, 85. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S.; Dikshit, A.; Kim, H. Spatial flood susceptibility mapping using an explainable artificial intelligence (XAI) model. Geosci. Front. 2023, 14, 101625. [Google Scholar] [CrossRef]
- Kaspi, M.; Kuleshov, Y. Flood Hazard Assessment in Australian Tropical Cyclone-Prone Regions. Climate 2023, 11, 229. [Google Scholar] [CrossRef]
- He, S.; Niu, G.; Sang, X.; Sun, X.; Yin, J.; Chen, H. Machine Learning Framework with Feature Importance Interpretation for Discharge Estimation: A Case Study in Huitanggou Sluice Hydrological Station, China. Water 2023, 15, 1923. [Google Scholar] [CrossRef]
- Oliveira Santos, V.; Costa Rocha, P.A.; Scott, J.; Thé, J.V.G.; Gharabaghi, B. A New Graph-Based Deep Learning Model to Predict Flooding with Validation on a Case Study on the Humber River. Water 2023, 15, 1827. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Terekhov, A.; Sagatdinova, G.; Amirgaliyev, Y.; Gopejenko, V.; Abayev, N.; Kuchin, Y.; Popova, Y.; Symagulov, A. Estimation of the Water Level in the Ili River from Sentinel-2 Optical Data Using Ensemble Machine Learning. Remote Sens. 2023, 15, 5544. [Google Scholar] [CrossRef]
- Wang, S.; Peng, H.; Hu, Q.; Jiang, M. Analysis of Runoff Generation Driving Factors Based on Hydrological Model and Interpretable Machine Learning Method. J. Hydrol. Reg. Stud. 2022, 42, 101139. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Fu, X.; Wang, D.; Luan, Q. Urban Flood Modeling and Risk Assessment with Limited Observation Data: The Beijing Future Science City of China. Int. J. Environ. Res. Public Health 2023, 20, 4640. [Google Scholar] [CrossRef]
- Bralewski, A.; Bralewska, K. Publicly Available Data-Based Flood Risk Assessment Methodology: A Case Study for a Floodplain in Poland. Water 2022, 14, 61. [Google Scholar] [CrossRef]
- Varlas, G.; Papaioannou, G.; Papadopoulos, A.; Markogianni, V.; Vardakas, L.; Dimitriou, E. Flash Flood Forecasting Using Integrated Meteorological–Hydrological–Hydraulic Modeling: Application in a Mediterranean River. Environ. Sci. Proc. 2023, 26, 35. [Google Scholar] [CrossRef]
- Hurtado-Pidal, J.; Acero Triana, J.S.; Espitia-Sarmiento, E.; Jarrín-Pérez, F. Flood Hazard Assessment in Data-Scarce Watersheds Using Model Coupling, Event Sampling, and Survey Data. Water 2020, 12, 2768. [Google Scholar] [CrossRef]
- Le, X.H.; Van, L.N.; Nguyen, G.V.; Nguyen, D.H.; Jung, S.; Lee, G. Towards an efficient streamflow forecasting method for event-scales in Ca River basin, Vietnam. J. Hydrol. Reg. Stud. 2023, 46, 101328. [Google Scholar] [CrossRef]
- Geoportal Infrastruktury Informacji Przestrzennej. Usługi Przegladania WMS i WMTS. Available online: www.geoportal.gov.pl/uslugi/usluga-przegladania-wms (accessed on 10 September 2023).
- Baran-Zgłobicka, B.; Godziszewska, D.; Zgłobicki, W. The Flash Floods Risk in the Local Spatial Planning (Case Study: Lublin Upland, E Poland). Resources 2021, 10, 14. [Google Scholar] [CrossRef]
- Hosseiny, H.; Nazari, F.; Smith, V.; Nataraj, C. A framework for modeling flood depth using a hybrid of hydraulics and machine Learning. Sci. Rep. 2020, 10, 8222. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, A.A.J.; Shaf, A.; Ali, T.; Zafar, M.; Al-Areeq, A.M.; Alyami, S.H.; Irfan, M.; Rahman, S. An Improved Flood Susceptibility Assessment in Jeddah, Saudi Arabia, Using Advanced Machine Learning Techniques. Water 2023, 15, 2511. [Google Scholar] [CrossRef]
- Nazarko, P.; Ziemiański, L. Application of Elastic Waves and Neural Networks for the Prediction of Forces in Bolts of Flange Connections Subjected to Static Tension Tests. Materials 2020, 13, 3607. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of Image Classification Algorithms Based on Convolutional Neural Networks. Remote Sens. 2021, 13, 4712. [Google Scholar] [CrossRef]
- Al Omari, R.; Alkhawaldeh, R.S.; Jaber, J.J. Artificial Neural Network for Classifying Financial Performance in Jordanian Insurance Sector. Economies 2023, 11, 106. [Google Scholar] [CrossRef]
- Widiasari, I.R.; Nugroho, L.E.; Widyawan. Deep learning multilayer perceptron (MLP) for flood prediction model using wireless sensor network based hydrology time series data mining. In Proceedings of the 2017 International Conference on Innovative and Creative Information Technology (ICITech), Salatiga, Indonesia, 2–4 November 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Hasan, M.M.; Mondol Nilay, M.S.; Jibon, N.H.; Rahman, R.M. LULC changes to riverine flooding: A case study on the Jamuna River, Bangladesh using the multilayer perceptron model. Results Eng. 2023, 18, 101079. [Google Scholar] [CrossRef]
- Vojtek, M.; Janizadeh, S.; Vojteková, J. Riverine flood potential assessment using metaheuristic hybrid machine learning algorithms. J. Flood Risk Manag. 2023, 16, e12905. [Google Scholar] [CrossRef]
- Sanders, W.; Li, D.; Li, W.; Fang, Z.N. Data-Driven Flood Alert System (FAS) Using Extreme Gradient Boosting (XGBoost) to Forecast Flood Stages. Water 2022, 14, 747. [Google Scholar] [CrossRef]
- Wang, D.; Thunéll, S.; Lindberg, U.; Jiang, L.; Trygg, J.; Tysklind, M. Towards better process management in wastewater treatment plants: Process analytics based on SHAP values for tree-based machine learning methods. J. Environ. Manag. 2022, 301, 113941. [Google Scholar] [CrossRef]
- Park, J.; Ahn, J.; Kim, J.; Yoon, Y.; Park, J. Prediction and Interpretation of Water Quality Recovery after a Disturbance in a Water Treatment System Using Artificial Intelligence. Water 2022, 14, 2423. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Yuan, H.; Zhou, S.; Wang, Y.; Adnan Ikram, R.M.; Li, J. An XGBoost-SHAP approach to quantifying morphological impact on urban flooding susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Aydin, H.E.; Iban, M.C. Predicting and analyzing flood susceptibility using boosting-based ensemble machine learning algorithms with SHapley Additive ExPlanations. Nat. Hazards 2023, 116, 2957–2991. [Google Scholar] [CrossRef]
- Golzar, K.; Modarress, H.; Amjad-Iranagh, S. Evaluation of density, viscosity, surface tension and CO2 solubility for single, binary and ternary aqueous solutions of MDEA, PZ and 12 common ILs by using artificial neural network (ANN) technique. Int. J. Greenh. Gas Control 2016, 53, 187–197. [Google Scholar] [CrossRef]
- Nourani, V.; Fard, M.S. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv. Eng. Softw. 2012, 47, 127–146. [Google Scholar] [CrossRef]
- Gentilucci, M.; Djouohou, S.I.; Barbieri, M.; Hamed, Y.; Pambianchi, G. Trend Analysis of Streamflows in Relation to Precipitation: A Case Study in Central Italy. Water 2023, 15, 1586. [Google Scholar] [CrossRef]
- Bucała-Hrabia, A.; Kijowska-Strugała, M.; Bryndal, T.; Cebulski, J.; Kiszka, K.; Kroczak, R. An integrated approach for investigating geomorphic changes due to flash flooding in two small stream channels (Western Polish Carpathians). J. Hydrol. Reg. Stud. 2020, 31, 100731. [Google Scholar] [CrossRef]
- Mengistu, D.; Bewket, W.; Dosio, A.; Panitz, H.J. Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. J. Hydrol. 2021, 592, 125614. [Google Scholar] [CrossRef]
- Maihemuti, B.; Simayi, Z.; Alifujiang, Y.; Aishan, T.; Abliz, A.; Aierken, G. Development and Evaluation of the Soil Water Balance Model in an Inland Arid Delta Oasis: Implications for Sustainable Groundwater Resource Management. Glob. Ecol. Conserv. 2021, 25, e01408. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Liu, T.; Li, J.; Xing, W.; Akmalov, S.; Peng, J.; Pan, X.; Guo, C.; Duan, Y. Water Balance Analysis Based on a Quantitative Evapotranspiration Inversion in the Nukus Irrigation Area, Lower Amu River Basin. Remote Sens. 2020, 12, 2317. [Google Scholar] [CrossRef]
- Castangia, M.; Grajales, L.M.M.; Aliberti, A.; Rossi, C.; Macii, A.; Macii, E.; Patti, E. Transformer neural networks for interpretable flood forecasting. Environ. Model. Softw. 2023, 160, 105581. [Google Scholar] [CrossRef]
- Jabbari, A.; Bae, D.-H. Application of Artificial Neural Networks for Accuracy Enhancements of Real-Time Flood Forecasting in the Imjin Basin. Water 2018, 10, 1626. [Google Scholar] [CrossRef]
- Zalnezhad, A.; Rahman, A.; Nasiri, N.; Haddad, K.; Rahman, M.M.; Vafakhah, M.; Samali, B.; Ahamed, F. Artificial Intelligence-Based Regional Flood Frequency Analysis Methods: A Scoping Review. Water 2022, 14, 2677. [Google Scholar] [CrossRef]
- Aleksieva-Petrova, A.; Mladenova, I.; Dimitrova, K.; Iliev, K.; Georgiev, A.; Dyankova, A. Earth-Observation-Based Services for National Reporting of the Sustainable Development Goal Indicators—Three Showcases in Bulgaria. Remote Sens. 2022, 14, 2597. [Google Scholar] [CrossRef]
Input Parameters | Variant I | Variant II | Variant III | Variant IV | |
---|---|---|---|---|---|
A group of parameters representing the stormwater level | Average stormwater level for the last day (hsw_av_1d) | ✔️ | ✔️ | ✔️ | ❌ |
Average stormwater level for the last two days (hsw_av_2d) | ✔️ | ✔️ | ✔️ | ❌ | |
Average stormwater level for the last three days (hsw_av_3d) | ✔️ | ✔️ | ✔️ | ❌ | |
Average stormwater level for the last seven days (hsw_av_7d) | ✔️ | ✔️ | ✔️ | ❌ | |
Maximum stormwater level for the last day (hsw_max_1d) | ✔️ | ✔️ | ✔️ | ❌ | |
Maximum stormwater level for the last two days (hsw_max _2d) | ✔️ | ✔️ | ✔️ | ❌ | |
Maximum stormwater level for the last three days (hsw_max _3d) | ✔️ | ✔️ | ✔️ | ❌ | |
Maximum stormwater level for the last seven days (hsw_max _7d) | ✔️ | ✔️ | ✔️ | ❌ | |
A group of parameters representing the air temperature | Maximum air temperature for the last day (ta_max_1d) | ✔️ | ✔️ | ❌ | ❌ |
Maximum air temperature for the last two days (ta_max _2d) | ✔️ | ✔️ | ❌ | ❌ | |
Maximum air temperature for the last three days (ta_max _3d) | ✔️ | ✔️ | ❌ | ❌ | |
Maximum air temperature for the last seven days (ta_max _7d) | ✔️ | ✔️ | ❌ | ❌ | |
Average air temperature for the last day (ta_av _1d) | ✔️ | ✔️ | ❌ | ❌ | |
Average air temperature for the last two days (ta_av _2d) | ✔️ | ✔️ | ❌ | ❌ | |
Average air temperature for the last three days (ta_av _3d) | ✔️ | ✔️ | ❌ | ❌ | |
Average air temperature for the last seven days (ta_av _7d) | ✔️ | ✔️ | ❌ | ❌ | |
A group of parameters representing the dew point temperature | Maximum dew point temperature for the last day (tdw_max_1d) | ✔️ | ❌ | ❌ | ❌ |
Maximum dew point temperature for the last two days (tdw_max_2d) | ✔️ | ❌ | ❌ | ❌ | |
Maximum dew point temperature for the last three days (tdw_max_3d) | ✔️ | ❌ | ❌ | ❌ | |
Maximum dew point temperature for the last seven days (tdw_max_7d) | ✔️ | ❌ | ❌ | ❌ | |
Average dew point temperature for the last day (tdw_av_1d) | ✔️ | ❌ | ❌ | ❌ | |
Average dew point temperature for the last two days (tdw_av_2d) | ✔️ | ❌ | ❌ | ❌ | |
Average dew point temperature for the last three days (tdw_av_3d) | ✔️ | ❌ | ❌ | ❌ | |
Average dew point temperature for the last seven days (tdw_av_7d) | ✔️ | ❌ | ❌ | ❌ | |
A group of parameters representing air humidity | Maximum air humidity for the last day (ha_max _1d) | ✔️ | ❌ | ❌ | ❌ |
Maximum air humidity for the last two days (ha_max _2d) | ✔️ | ❌ | ❌ | ❌ | |
Maximum air humidity for the last three days (ha_max _3d) | ✔️ | ❌ | ❌ | ❌ | |
Maximum air humidity for the last seven days (ha_max _7d) | ✔️ | ❌ | ❌ | ❌ | |
Average air humidity for the last day (ha_av _1d) | ✔️ | ❌ | ❌ | ❌ | |
Average air humidity for the last three days (ha_av _2d) | ✔️ | ❌ | ❌ | ❌ | |
Average air humidity for the last three days (ha_av _3d) | ✔️ | ❌ | ❌ | ❌ | |
Average air humidity for the last seven days (ha_av _7d) | ✔️ | ❌ | ❌ | ❌ | |
A group of parameters representing wind speed | Maximum wind speed for the last day (va_max_1d) | ✔️ | ❌ | ❌ | ❌ |
Maximum wind speed for the last two days (va_max_2d) | ✔️ | ❌ | ❌ | ❌ | |
Maximum wind speed for the three days (va_max_3d) | ✔️ | ❌ | ❌ | ❌ | |
Maximum wind speed for the seven days (va_max_7d) | ✔️ | ❌ | ❌ | ❌ | |
Average wind speed for the last day (va_av_1d) | ✔️ | ❌ | ❌ | ❌ | |
Average wind speed for the last two days (va_av_2d) | ✔️ | ❌ | ❌ | ❌ | |
Average wind speed for the three days (va_av_3d) | ✔️ | ❌ | ❌ | ❌ | |
Average wind speed for the seven days (va_av_7d) | ✔️ | ❌ | ❌ | ❌ | |
A group of parameters representing rainfall depth | Maximum rainfall depth for the last six hours (hr_6h) | ✔️ | ✔️ | ✔️ | ✔️ |
Maximum rainfall depth for the last twelve hours (hr_12h) | ✔️ | ✔️ | ✔️ | ✔️ | |
Maximum rainfall depth for the last day (hr_1d) | ✔️ | ✔️ | ✔️ | ✔️ | |
Maximum rainfall depth for the last two days (hr_2d) | ✔️ | ✔️ | ✔️ | ✔️ | |
Maximum rainfall depth for the last three days (hr_3d) | ✔️ | ✔️ | ✔️ | ✔️ | |
Maximum rainfall depth for the last seven days (hr_7d) | ✔️ | ✔️ | ✔️ | ✔️ | |
A group of parameters representing the depth of the current rainfall | Total rainfall depth (hr_t) | ✔️ | ✔️ | ✔️ | ✔️ |
Maximum rainfall depth of 5 min (hr_5min) | ✔️ | ✔️ | ✔️ | ✔️ | |
Maximum rainfall depth of 10 min (hr_10min) | ✔️ | ✔️ | ✔️ | ✔️ | |
Maximum rainfall depth of 15 min (hr_15min) | ✔️ | ✔️ | ✔️ | ✔️ | |
Maximum rainfall depth of 20 min (hr_20min) | ✔️ | ✔️ | ✔️ | ✔️ | |
Maximum rainfall depth of 30 min (hr_30min) | ✔️ | ✔️ | ✔️ | ✔️ | |
Maximum rainfall depth of 60 min (hr_60min) | ✔️ | ✔️ | ✔️ | ✔️ | |
Maximum rainfall depth of 180 min (hr_180min) | ✔️ | ✔️ | ✔️ | ✔️ | |
Maximum rainfall depth of 360 min (hr_360min) | ✔️ | ✔️ | ✔️ | ✔️ | |
Maximum rainfall depth of 720 min (hr_720min) | ✔️ | ✔️ | ✔️ | ✔️ | |
Output parameter | Variant I | Variant II | Variant III | Variant IV | |
Maximum forecast stormwater level (hsw_c) | ✔️ | ✔️ | ✔️ | ✔️ |
Variant | Metrics | Dataset | ||
---|---|---|---|---|
Training | Validation | Testing | ||
ANN | ||||
Variant I | RMSE | 1.672 | 1.547 | 2.446 |
R2 | 0.970 | 0.980 | 0.960 | |
Variant II | RMSE | 2.532 | 2.203 | 3.180 |
R2 | 0.935 | 0.961 | 0.935 | |
Variant III | RMSE | 2.921 | 2.903 | 3.721 |
R2 | 0.906 | 0.924 | 0.902 | |
Variant IV | RMSE | 4.311 | 3.190 | 4.596 |
R2 | 0.803 | 0.881 | 0.845 | |
XGBoost | ||||
Variant I | RMSE | 2.368 | 2.304 | 3.483 |
R2 | 0.928 | 0.951 | 0.897 | |
Variant II | RMSE | 2.735 | 3.156 | 3.936 |
R2 | 0.907 | 0.912 | 0.886 | |
Variant III | RMSE | 2.991 | 3.135 | 4.103 |
R2 | 0.882 | 0.905 | 0.878 | |
Variant IV | RMSE | 3.875 | 4.757 | 4.872 |
R2 | 0.800 | 0.796 | 0.832 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starzec, M.; Kordana-Obuch, S. Evaluating the Utility of Selected Machine Learning Models for Predicting Stormwater Levels in Small Streams. Sustainability 2024, 16, 783. https://doi.org/10.3390/su16020783
Starzec M, Kordana-Obuch S. Evaluating the Utility of Selected Machine Learning Models for Predicting Stormwater Levels in Small Streams. Sustainability. 2024; 16(2):783. https://doi.org/10.3390/su16020783
Chicago/Turabian StyleStarzec, Mariusz, and Sabina Kordana-Obuch. 2024. "Evaluating the Utility of Selected Machine Learning Models for Predicting Stormwater Levels in Small Streams" Sustainability 16, no. 2: 783. https://doi.org/10.3390/su16020783
APA StyleStarzec, M., & Kordana-Obuch, S. (2024). Evaluating the Utility of Selected Machine Learning Models for Predicting Stormwater Levels in Small Streams. Sustainability, 16(2), 783. https://doi.org/10.3390/su16020783