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Abstract: With growing environmental concerns and regulatory requirements, manufacturers are
increasingly required to monitor and reduce the environmental impacts of their production processes.
Despite increasing digitalization and data-collection capabilities, manufacturers are challenged
in collecting the right data and framing process improvement targets. To address this challenge,
this paper presents a bottom-up methodology based on the life cycle assessment for identifying
performance indicators with the goal of monitoring and reducing the overall environmental impacts
of a manufacturing process. More specifically, process performance indicators are defined as a set
of controllable process parameters, and their suitability for sustainability monitoring is evaluated
based on their sensitivity, measurability, actionability, reliability, timeliness, and human-centricity
with respect to a chosen environmental impact category. The bottom-up formulation of process
performance indicators is demonstrated through a real-world case study on an infeed centerless
grinding process in a large manufacturing company. Results from the case study show that the
process performance indicators with regards to climate change impacts included (i) reduction in
grinding time, (ii) reduction in total grinding power, (iii) reduction in sparkout time, and (iv) increase
in batch size.

Keywords: life cycle assessment; sustainable manufacturing; key performance indicators

1. Introduction

Industrial activities continue to remain a significant contributor to environmental
impacts, accounting for 9.2 gigatonnes of global carbon dioxide emissions in 2022 [1]. In
order to address climate change challenges and ensure sustainable development, indus-
tries, including the manufacturing sector, are increasingly quantifying the environmental
impacts of their production processes and searching for new solutions to mitigate such
impacts. In this regard, Life Cycle Assessment (LCA) is a widely used tool for assessing
the environmental sustainability performance of manufacturing processes, products, and
services. The overarching goal of LCA is to provide a systematic procedure that helps in the
quantification of the environmental impact of products and manufacturing processes [2].
However, conducting detailed LCAs is time- and cost-intensive, can be uncertain [3,4], and
is challenging to interpret for design and manufacturing decision-making [5].

1.1. Performance Indicators for Sustainable Manufacturing

In light of the above challenges, key performance indicators (KPIs) have been pro-
posed as a means for guiding sustainable manufacturing. Herein, a KPI, or more generally,
an indicator, has been defined as a parameter that provides more information on significant
phenomena relevant to specified performance objectives [6]. Typical indicators used for
sustainable manufacturing include measures for energy, carbon dioxide emissions, other
process emissions, and waste. Providing a thorough review of the different types of KPIs

Sustainability 2024, 16, 806. https://doi.org/10.3390/su16020806 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16020806
https://doi.org/10.3390/su16020806
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4920-5782
https://orcid.org/0000-0002-9716-0486
https://doi.org/10.3390/su16020806
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16020806?type=check_update&version=1


Sustainability 2024, 16, 806 2 of 24

for environmental sustainability performance measurement is out of the scope of this work.
Interested readers are directed to prior works that have compiled KPI databases [7–11].
It is important to note that KPIs for sustainable manufacturing have been defined across
hierarchies (i.e., organization, factory, production line, unit process) and can be qualitative,
quantitative, or mixed [12]. Moreover, KPIs for environmental sustainability performance
measurement are typically defined based on process inventory flows (e.g., energy use,
water use, process emissions), as they serve as a proxy for the resulting environmental
impacts of the process; they can be easily estimated for a given manufacturing system
and are generally easier to understand than corresponding measures for environmental
impacts [13–17]. Previous research has demonstrated the use of various approaches for
identifying potential process improvements with regard to sustainability. Barbosa et al. [18]
used two alternative systems to reduce the flow rate of water/coolant while maintaining
the quality of workpieces. The authors conducted a series of experiments employing
minimum quantity lubrication and directional device system approaches. Additionally,
Shahbazi et al. [16] focused on identifying material efficiency indicators to evaluate opera-
tional performance and provide decision-makers with information on areas for sustainable
process improvements. From a number of material efficiency indicators used in seven
global manufacturing companies in Sweden, the authors narrowed their selection down to
three environmental indicators. Similarly, Fan et al. [13] collected a list of environmental,
economic, and social indicators to evaluate sustainable manufacturing. The authors empiri-
cally shortlisted the indicators and assessed them based on relevance, analytical soundness,
and measurability.

Two broad approaches have been identified for defining KPIs relevant to sustainable
manufacturing [19]. The bottom-up approach involves defining metrics that are currently
in use or necessary to be measured and using them as a basis for developing a KPI. A
common characteristic of bottom-up KPIs is they can be directly quantified based on the
operational data from manufacturing systems (e.g., energy efficiency, percentage of re-
cycled material used) and are therefore useful for modeling and improving system- and
process-level performance [20]. On the other hand, in the top-down approach, the defini-
tion of KPIs is driven by the overall organizational goals and may include a collection of
processes/systems relevant to that goal [19]. Approaches for introducing KPIs relevant
to sustainable manufacturing have also been discussed in prior work [19,21,22] with a
generalized approach involving the definition of the overall production goals and objec-
tives, identification and definition of KPIs, selection of relevant KPIs, implementation and
monitoring of KPIs, and continuous process improvement. Significant questions to be
addressed in this process include (i) defining which environmental sustainability indicators
should be in focus, (ii) defining the boundaries of the measurement, (iii) identifying the
needs for data collection and reporting, and (iv) evaluating the challenges and benefits of
implementing and monitoring a selected KPI.

1.2. Challenges in Defining Bottom-Up Indicators in Sustainable Manufacturing

While bottom-up indicators for sustainable manufacturing can support process im-
provement, prior research has highlighted it can be challenging to apply them in practice.
Significant areas of concern while developing bottom-up KPIs include inconsistencies
in defining KPIs and lack of systematic methods for selecting and evaluating KPIs [19].
Reconciling bottom-up KPIs with organizational strategies and top-down indicators is also
a concern and can result in siloed treatment of sustainability performance [20]. Bottom-up
indicators also tend to be compliance-driven and are typically lagging indicators; relatively
few leading indicators exist for proactive improvement of sustainability performance [23].
In this regard, it is important to note that bottom-up indicators are typically inventory-
based KPIs and evaluate the operational performance of manufacturing systems (e.g.,
efficiency, productivity, and quality). Such measures offer little detail on how sustainability
performance could be improved or why an improvement occurred in the first place. Fur-
thermore, continuous monitoring of inventory-based KPIs offers greater advantages for the
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sustainability improvement of manufacturing systems over non-simultaneous, manual data
collection and interpretation [24]. However, there is limited prior research on understand-
ing the challenges associated with the real-time collection of such data from manufacturing
systems [25,26]. Finally, manufacturing companies are often more concerned with moni-
toring the time- and cost-productivity of their operations and have established different
measurement and data collection systems for tracking such metrics. The integration of
the above productivity metrics and sustainability-related KPIs is a challenge given the
complexities in relating this data [27].

1.3. Motivations for Defining Process Parameter-Based Performance Indicators

Inventory-based KPIs can provide an understanding of process sustainability perfor-
mance and enable the identification of hotspots [28,29]. However, they do not necessarily
provide insights into (i) why a specific resource/emission has increased or decreased and
(ii) how a process can be improved/controlled to reduce a specific resource consump-
tion/emission. To address the above questions, there is a need to define indicators based
on process parameters in addition to inventory-based KPIs. This argument stems from the
fact that process parameters (e.g., material removal rate, processing time) can be selected
by manufacturers in the process planning stage and serve as a means to control inventory
flows (e.g., energy consumption, water use) and, consequently, the resulting environmental
impacts of a process. Analytical and experimental approaches for constructing manufactur-
ing process models that link inventory flows to process parameters have been presented in
prior research [30,31]. They can help establish unit process-level sustainability indicators
enabling process sustainability monitoring as well as linking integrated process sustain-
ability and quality performance [32]. Filleti et al. [33] conducted a productive performance
assessment and LCIA study, incorporating eleven different impact categories, to evaluate
the effects of varying specific material removal rates and wheel types. The study results
indicate the environmental hotspots and potential areas for improvement. However, most
prior work develops indicators based on physical inventory data. There is limited prior
work that discusses how process parameter-based indicators can be systematically defined
and selected for unit manufacturing processes [34]. This research gap can be significant,
as bottom-up approaches for defining and evaluating process parameter-based indicators
are not necessarily equivalent to inventory-based KPIs. To illustrate, the relevance of
inventory-based KPIs (e.g., energy waste/efficiency, material waste) to an overall environ-
mental sustainability objective (e.g., CO2 emissions, circular economy indicators) is readily
established using methods such as life cycle impact assessment [35]. Furthermore, it is
sufficient to perform real-time measurement of inventory-based KPIs at an aggregated level
at source/sink points (potentially spanning multiple unit manufacturing processes) for
monitoring the sustainability performance of manufacturing systems. The above aspects
are not necessarily true in the case of process parameter-based indicators, as they need to
be collected and interpreted at a unit process level, and their collection can directly impact
the operational feasibility of a unit manufacturing process [26].

1.4. Indicator Selection Criteria

Methodologies for assessing the overall quality of KPIs have been an active area of re-
search, and there is no widespread consensus on adopting a specific approach. Researchers
have suggested the use of SMART principles, where well-designed KPIs are defined to
be specific, measurable, achievable, relevant, and time-bound with regard to an overall
goal/target [36]. The sustainable measures initiative [9] expands on this definition and
includes the need for sustainability-related KPIs to be understandable by the community
and lay people, to be reliable/usable by presenting trusted and accurate information from
the organization or manufacturing process under evaluation, to be accessible by being
based on data and information that can be easily accessed and acquired within the orga-
nization or process/product system, and to be long-term-oriented, i.e., ensure its future
use, development, and adoption as an organizational or process/product sustainability
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standard. Kibira et al. [19] suggest that KPIs should be cost-effective, quantifiable, calcula-
ble, comparable, understandable, and offer management support. Other methods include
the above aspects and also stress that indicators must be rooted in a strong scientific basis,
have appropriate temporal as well as spatial scale, be compatible with other developed in-
dicators, provide benefits that outweigh the costs of their usage, and be manageable [37,38].
A broader review of requirements of common environmental indicator selection criteria is
provided in Niemeijer and de Groot [39]. The authors classify indicator selection criteria
based on five dimensions: scientific, systemic, intrinsic, financial and practical, and policy
and management. At a policy level, the European Environment Agency suggests that
sustainability-related KPIs are relevant to European Union (EU) policy, show progress
towards policy targets, are understandable, and are a part of EU priority policy issues [40].
As evident from the above discussions, there is a general consensus on the properties of
well-designed KPIs. However, the selection of specific indicator selection criteria depends
on the adopted KPI definition methodology (i.e., bottom-up or top-down methodology) and
the intended application of the KPIs (e.g., inform policy, affect industry, or process changes).

This paper develops a systematic, bottom-up methodology for identifying and select-
ing process parameter-based indicators in the context of sustainable manufacturing. The
methodology focuses on identifying process parameters that can act as leading indicators
for sustainable manufacturing. In other words, monitoring such parameters enables a
causal understanding of the sustainability performance of unit manufacturing processes
and proactive improvement through avenues such as optimizing process performance
and modifying manufacturing equipment. The proposed approach also extends prior
selection criteria for inventory-based KPIs and interprets them in the context of process
parameter-based KPIs. More specifically, the suitability of process parameters as indicators
for sustainability performance is evaluated based on their sensitivity, measurability, action-
ability, reliability, timeliness, and human-centricity with respect to a chosen environmental
impact category. The bottom-up formulation of process parameter-based performance
indicators is demonstrated through a real-world case study on an infeed centerless grinding
process in a large manufacturing company.

2. Materials and Methods

In this work, our focus is on developing a bottom-up approach for defining process
parameter-based indicators. To this end, our methodology for the formulation of indicator
evaluation criteria was based on compiling evaluation criteria from prior research discussed
above and categorizing them into common themes. Table 1 describes the indicator evalua-
tion criteria proposed in this work, the suggested interpretation, and relevant measures
suggested in prior work. For each theme, a suitable criterion name and interpretation text
was formulated.

• The first theme that emerged from the analysis relates to the relevance of a process
parameter-based indicator to a chosen environmental impact category/indicator. In
other words, any change in the environmental impact indicator should be captured
through a change in the chosen process parameter-based indicator. The relationship
between the process parameter-based indicator and the environmental impact indica-
tor should also be rooted in a proper scientific basis. These aspects are interpreted as
the sensitivity of the process parameter-based indicator to the environmental impact
indicator. The formulation of the sensitivity criterion is given in Table 1.

• The second theme relates to the measurability/quantification of the process parameter-
based indicator for a unit manufacturing process. Herein, it is important to note that
the measurability relates to the practical aspects of continually monitoring the process
parameter for a given production setup. This includes aspects such as the feasibility,
cost, and management of measurement processes, as well as the impact the measure-
ments can have on the production process or the measurement of other indicators.

• The third theme relates to the usefulness/usability of the developed indicators to key
stakeholders (i.e., technicians and engineers) from the perspective of product/process
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improvement. It implies that the chosen process parameters can be controlled at the
product/process planning stage in order to affect the sustainability performance of
the unit manufacturing process. This concept is interpreted as actionability.

• The fourth theme corresponds to the reliability of the process parameter-based indi-
cator and its usefulness as an indicator over time. This includes any uncertainties
in the measurement process, deviations in the indicator over time, and the effect of
uncontrollable process parameters (e.g., ambient temperature) on the indicator.

• The fifth theme is related to the timeliness of the process parameter-based indicator and
reflects the usefulness of the process parameter-based indicator as a leading indicator
in the context of sustainable manufacturing. In other words, the indicator should be
easily accessible by stakeholders during key decision-making activities (e.g., process
planning), apart from being actionable.

• The sixth theme corresponds to the level of understanding of the process parameter-
based indicator by the relevant stakeholders. Ideally, the indicator is already defined
and measured in ongoing production activities, with a good understanding of its
impact on other aspects of production. Finally, it is important to note the need
for existing human skills in the organization to measure, monitor, and control the
indicator. These aspects are collectively defined as human-centricity. The formulation
of the human-centricity criterion is given in Table 1.

The review of prior work also highlighted important themes to be considered in the
design of the overall indicator selection methodology. Specifically, the goal and scope of
the process monitoring systems should be clearly defined, including assumptions made in
the process [37]. The definition of the indicator, as well as the measurement process for the
indicator, should lend itself toward standardization; ideally, such standards are a part of
the ongoing production process [9].

The overarching aim of the proposed framework is to help manufacturers define
performance indicators that can be monitored for a specific manufacturing process on an
operational production line. The goal is to support the correction of sub-optimal behavior
and identify potential improvements to the manufacturing process from the perspective of
environmental sustainability. Figure 1 presents the overall methodology for the proposed
work. The different steps in the methodology are detailed in the sections below.

Relate inventory flows and process 
parameters

Define the goal 
and scope of the 

process 
monitoring 

system

Generate a 
detailed model 

of the 
manufacturing 

system
Compute selection criterion for process 

parameters

1. Sensitivity
2. Measurability
3. Actionability
4. Reliability
5. Timeliness
6. Human-centricity 

Select process 
performance 
indicator(s)

Sec. 2.1. Sec. 2.2. Sec. 2.3.

Sec. 2.4.

Sec. 2.5.

Figure 1. Overview of the methodology for defining process performance indicators for monitoring a
given manufacturing system.
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Table 1. Formulation of selection criteria for process parameter-based indicators.

Criterion
Name

Interpretation Associated
Prior Criteria

Sensitive Describes the sensitivity (magnitude of
change) of the process parameters with
respect to the chosen environmental im-
pact indicator (for a specific impact cat-
egory). A process parameter with a sig-
nificant and predictable sensitivity to the
selected environmental impact indicator
is preferred.

Specific [9,36],
relevant [9,36],
strong scientific
basis [37–39]

Measurable Describes the ease of measurement of a
process parameter on a specific manufac-
turing process. It is important to note
that measurability is defined on a prac-
tical basis, specific to a production setup.
For example, it is important to consider
aspects such as the cost of measurement
and the ability to measure the process pa-
rameter without significantly impacting
established production processes and re-
quirements.

Measurable [9,36],
accessible [9,39],
benefits outweigh
costs [37], re-
source demand
and operational
simplicity [39]

Actionable Describes the ability of the process param-
eter to be controlled through changes to
the product and/or process. Thus, affect-
ing the process parameter enables improv-
ing the environmental sustainability per-
formance of a manufacturing process

Useful [9],
achievable [36],
manageable [38,39],

Reliable Describes the reliability of measuring the
process parameter over time. For exam-
ple, if a process parameter is uncontrolled
or if there is significant uncertainty in its
measurement, monitoring this process pa-
rameter over time does not give a reliable
indicator of process improvement.

Reliable/useful
[9,39], long-term
oriented [9],
robustness and
uncertainty [39]

Timely Data and information collection, calcula-
tion, and evaluation for an indicator must
be completed in a timely manner for in-
formative decision-making

Time-bound [36],
timely [9], antici-
patory [39]

Human-
centric

Should be defined based on aspects that
process engineers and operators already
consider in production planning. This
should give them a good understanding
of the process, how to control and monitor
it, and the skills to change it if needed.

Understandable/
comprehensible
[9,39],
user-driven [39],
necessary
skills [39]

2.1. Goal and Scope Definition

The method for selecting the appropriate performance indicators for a process begins
with defining the goal and scope of the monitoring system. This involves (i) defining the
production and manufacturing systems that will be monitored, (ii) selecting environmental
impact categories/indicators for the system, and (iii) identifying the appropriate personnel
in the organization who can participate in the indicator evaluation process. The selection
of a production system for monitoring can be motivated based on several criteria, e.g.,
increased resource consumption of the production system, need for further energy savings,
and need for reducing process losses. After identifying a production system, manufacturing
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process(es) of interest within the production system are selected for further analysis. The
selection of specific environmental indicator(s) should be reflected in the analysis. To
illustrate, if the focus is on reducing climate change-related impacts, then subsequent
mapping of inventory flows, selection of process parameters, and performance indicators
should include inventory flows (e.g., energy consumption) that significantly influence this
indicator. The proposed methodology does not distinguish between the use of process-
and product-focused environmental indicator(s), and they should be selected to reflect
the study goals. For example, if the goal of the monitoring system is to minimize process
impacts (regardless of the type of part being manufactured), the selected environmental
indicator(s) can be quantified over a chosen time period. On the other hand, environmental
indicator(s) can be quantified per produced part if the aim is to minimize the process
impacts of producing a specific part. Conducting detailed inventory analyses to quantify
the selected environmental indicators can be time- and cost-intensive, depending on the
selected manufacturing system. If so, a streamlined approach can be adopted where the
focus is restricted to a limited set of process inventory (e.g., electricity consumption), or
environmental impact indicators can be quantified for sub-systems or sub-processes. In
such cases, an iterative refinement of the inventory analysis may be required depending
on the utility of the obtained results towards the study goals. The proposed methodology
requires inputs from domain experts such as process engineers and/or technical operators.
The selected experts should have a detailed understanding of the production system and
enough experience to identify the various process parameters and inventory flows for the
analyzed manufacturing process, as well as the challenges and opportunities in monitoring
these data.

2.2. Generate a Detailed Model of the Manufacturing System

Inventory models constructed for conducting environmental sustainability assess-
ments typically include aggregated quantities of resource flows and, therefore, do not
provide sufficient details about the manufacturing process. To provide a more detailed
characterization of the manufacturing process, a detailed system model is constructed. A
detailed system model for a manufacturing system consists of (i) a decomposed model for
the analyzed machinery, detailing significant sub-systems, shown in Figure 2a, and (ii) a
list of process parameters and inventory data for the corresponding sub-systems. Herein,
sub-systems are defined as distinct mechanical, hydraulic, electrical, and electronic sys-
tems that have significantly influenced process inventory flows (i.e., resource consumption
and/or emissions) and process performance. It should be noted that while data-intensive,
the knowledge for creating sub-system models is typically readily available in the form of
mechanical and electrical drawings provided by machine tool manufacturers.
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Figure 2. (a) The selection of a production system for monitoring, e.g., within a factory, is based on
the goal and scope of the study. Once a production system is identified, corresponding machine
tools (M#) and sub-systems (S#) are identified to define relevant process parameters and inventory
flows. (b) Inventory flows are related to product and process information by constructing a detailed
unit manufacturing process model. These relationships can be represented through analytical,
experimental, and simulation-based models for input–output transformations.
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2.3. Relate Inventory Flows and Process Parameters

To establish relationships between inventory flows and process parameters, it is neces-
sary to identify which of the process parameters defined in the previous section have an
actual influence on inventory flows. A generic method for modeling unit manufacturing
processes (see Figure 2b) towards the above goal is outlined in the ASTM E3012-16 stan-
dard for the characterization of environmental aspects in manufacturing processes [41].
In order to model the influence of specific process parameter(s) on the chosen environ-
mental impact indicator(s), a corresponding mapping is constructed between these data.
Typically, such mappings can be constructed using methods such as (i) analytical pro-
cess modeling, e.g., unit process life cycle inventory model, (ii) process simulation, and
(iii) experimental studies that can establish correlations between process variations and
process flows. Several reusable unit process life cycle inventory models have been devel-
oped over the past decades that enable mapping process parameters to inventory flows.
According to Overcash et al. [42], 31 such models have been developed for various man-
ufacturing processes. Regardless of the chosen approach, the end result of any chosen
method is a mathematical quantification of dependencies between the process parameters
and environment. In cases where the manufacturing process is characterized by a large
number of process parameters, or if there are significant time or resource constraints, the
mapping can be restricted based on a defined threshold for the selection criterion (described
in the following section).

2.4. Compute Selection Criterion for Process Parameters

The goal of defining the indicator selection criteria is to assist decision-makers in
selecting process parameters that can act as performance indicators for a chosen envi-
ronmental impact. Therefore, an evaluation methodology for each criterion is developed
in this work, which is subsequently discussed in the overall methodology description.
Table 2 summarizes the proposed approach for evaluating the six selection criteria detailed
in Table 1. The design of the evaluation methodology was developed in consultation with a
total of six process engineers and technicians from a large manufacturing company. Feed-
back was collected on the design of the evaluation methodology, scoring, and aggregation
system and consolidated in the form of an Excel-based questionnaire that is provided as
Supplementary Material (S1). It is important to emphasize that the variables for calculating
the indicator selection criteria and the criteria themselves are non-dimensional and do not
have measurement units. Please refer to the Supplementary Material S1 for further details.

Table 2. Evaluation methodology for indicator selection criteria.

Criterion Evaluation Methodology

Sensitivity Quantitative estimate for sensitivity estimated through experimen-
tal studies or through analytical process modeling.

Measurability A normalized measurability score M is calculated, which encodes dif-
ficulties in the measuring process and relevant inventory parameters.

Actionability High/medium/low evaluation encoding the controllability of pro-
cess parameters.

Reliability A normalized reliability score R is calculated, which encodes the
accuracy and precision of process measurements.

Timeliness High/medium/low evaluation encoding the the ease-of-
availability of process parameters for product and process
planning.

Human-
centricity

High/medium/low evaluation based on the understandability of
process parameters and their effects by the people responsible for
the manufacturing process.
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• Sensitivity assessment is based on the quantitative estimation of the sensitivity for
the ith process parameter Pi to a chosen environmental indicator EI. In other words,
the partial rate of change in Pi with respect to EI is measured in the neighborhood of
the nominal value of Pi (∂Pi/∂EI). The sensitivity is estimated at the nominal value for
the process parameter, which is determined from empirical data for the process setup.
Finally, a normalized sensitivity score (Si) for the ith process/inventory parameter
from the set of all (NP) process parameters is calculated as shown in Equation (1).

Si =
si

maxi∈NP(|si|)
(1)

• Measurability assessment is performed through a questionnaire (see Supplementary
Material S1) that evaluates five criteria describing the difficulty of measurement,
adapted from the DVS framework described in the author’s previous work [43].
Supplementary Material S1 explains how to score the process parameters according to
all five measurability criteria and provides a definition for each criterion. A normalized
measurability score (Mi) for the ith process/inventory parameter from the set of all
(NP) process/inventory parameters is computed using the formula in Equation (2).

Mi = 1 −
C1i

D × C2i
D × C3i

D × C4i
D × C5i

D
maxi∈NP(C1i

D × C2i
D × C3i

D × C4i
D × C5i

D)
(2)

Here, C1i
D,C2i

D,...C5i
D represent the difficulty-related criteria scores for the ith process

parameter, established from the questionnaire.
• Actionability assessment defines whether a given process parameter is relevant for

improving the environmental sustainability performance through the environmental
indicator. Two aspects are evaluated on a 3-point Likert scale (High = +1, Medium = 0,
Low = −1) (i) controllability of the process parameter during the production process
(C1A), (ii) degree to which the process parameter can be controlled (affected) in the
product/process planning stage (C2A), and (iii) feasibility of implementing the action
the relevant controls (C3A). An overall score (A) is computed by averaging the ratings
for the above questions, as shown in Equation (3).

Ai =
C1i

A + C2i
A + C3i

A
3

(3)

Here, C1i
A,C2i

A,C3i
A represent the actionability-related criteria scores for the ith process

parameter, established from the questionnaire.
• Reliability assessment is performed through a questionnaire (see Supplementary

Material S1) that evaluates four criteria encoding factors that can affect the accuracy
as well as the precision of process data measurements and is adapted from the DVS
framework described in the author’s previous work [43]. Supplementary Material S1
explains how to score the process parameters according to all four reliability criteria
and provides a definition for each criterion. The overall reliability score (Ri) for the ith

process/inventory parameter from the set of all (NP) process/inventory parameters is
computed using the formula in Equation (4).

Ri = 1 −
C1i

V × C2i
V × C3i

V × C4i
V

maxi∈NP(C1i
V × C2i

V × C3i
V × C4i

V)
(4)

Here, C1i
V ,C2i

V ,...C4i
V represent the variability-related criteria scores for the ith process

parameter, established from the questionnaire.

• Timeliness assessment evaluates the ability of data collected on the process param-
eter to be available to decision-makers during product and process planning tasks,
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which could influence the environmental sustainability performance of the process.
Timeliness is assessed on a 3-point Likert scale (High = +1, Medium = 0, Low = −1)
and is based on the following aspects, (i) data collection and analysis for the process
parameter can be conducted at a rate that is meaningful for product/process planning
(C1T), (ii) data can be archived in systems that are accessible during product/process
planning (C2T). An overall timeliness rating (T) is computed by averaging these two
ratings, as shown in Equation (5).

Ti =
C1i

T + C2i
T

2
(5)

Here, C1i
T and C2i

T represent the timeliness-related criteria scores for the ith process
parameter.

• Human-centricity is also assessed on a 3-point Likert scale (High = +1, Medium = 0,
Low = −1) by the process engineers and operators participating in the analysis. The as-
pects addressed under human-centricity, include (i) do all relevant stakeholders have a
common understanding of the process parameter (C1H), (ii) do relevant stakeholders
understand how the change in the process parameter influences the process perfor-
mance (C2H) (iii) do relevant stakeholders have an understanding of how changes to
the process parameters affect the sustainability aspects of the process performance
(C3H), and (iv) do relevant stakeholders have the necessary skills to control the process
parameter (C4H)? An overall score (H) is computed, as shown in Equation (6).

Hi =
C1i

H + C2i
H + C3i

H + C4i
H

4
(6)

Here, C1i
H ,C2i

H ...C4i
H represent the human-centricity related criteria scores for the ith

process parameter.

It should be noted that, as stated in the goal and scope definition, the involvement
of domain experts is required for conducting the above evaluations. The information is
produced by generating a detailed model of the system, and the mapping of inventory flows
to process parameters is used as a basis for making the above evaluations. The objective
of these evaluations is to identify the relative benefits of selecting a process performance
indicator for a given manufacturing system. As the evaluation process is highly dependent
on the system being analyzed (e.g., level of automation, standard operating procedure),
results from the evaluation may not be transferable to other production setups for the
same manufacturing process. An Excel-based questionnaire that can be used to evaluate
the six criteria is provided in Supplementary Material (S1). The design and validity of
the questionnaire were checked using discussions with process engineers and technicians
and an expert assessment of the applicability of the framework to three conventional and
automated manufacturing processes (plunge grinding, infeed grinding, and superfinishing)
at two different production sites.

2.5. Selection of Performance Indicator(s)

Results from evaluating the six indicator selection criteria are used as the basis for
selecting relevant process performance indicators. In general, a higher rating on all six
criteria implies the parameter is more suitable for selection as a process performance
indicator. It may be necessary to trade off performance on the six process performance
selection criteria in practice. This could be achieved by establishing a threshold for filtering
low-performing parameters and through additional discussions with the involved domain
experts. As indicated in Figure 1, the overall process for selecting performance indicators
is considered to be iterative, and each stage in the method could be refined based on an
initial set of results.
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3. Case Study

This section describes the case study used to demonstrate the application of the
indicator selection methodology proposed in this work. The selection was based on the
fact that the system represented a critical production operation in the company and was a
significant source of manufacturing impacts for the produced product. Furthermore, the
company was interested in upgrading the centerless grinding process, and its operation
was flexible and could be optimized towards reducing the overall environmental impact of
manufacturing. Prior research has also indicated the challenges in using inventory-based
KPIs (e.g., volume of material removed) for monitoring the sustainability performance
of finishing processes [32]; this makes infeed centerless grinding a suitable candidate for
demonstrating the use of process parameter-based KPIs. The above factors motivated the
authors to select an infeed centerless grinding process in a high-volume production system
for shaft and rotor production within a large pump manufacturing company for the case
study. We begin the description of the case study by presenting a short background on
centerless grinding and subsequently describe the specific system utilized for the case study.

3.1. System Description

The infeed grinding process belongs to the family of centerless grinding processes that
are used to machine cylindrical workpieces to fine tolerances and high surface finish. The
process setup for centerless grinding typically consists of three main grinding elements:
(i) a grinding wheel, (ii) a regulating wheel, and (iii) a work rest blade. The regulating
wheel axis is parallel to the grinding wheel axis and forces the workpiece against the
work rest blade while the grinding wheel removes the workpiece material. Radial feed is
provided through the inwards and outwards motion of the regulating wheel, and thus, the
feed rate is specified by the axial (linear) speed of the regulating wheel. The stability of the
centerless grinding process is ensured by maintaining a greater friction force between the
workpiece and the regulating wheel than the friction force between the workpiece and the
grinding wheel [26]. This is achieved by selecting a regulating wheel material such that
there is a high friction coefficient between the wheel material and the workpiece material,
as well as an angle provided at the top of the work support blade in order to create a
normal force that presses the workpiece against the regulating wheel (Cincinnati Machines
(Cincinnati, OH, USA), Technical Documentation for Cincinnati Milacron 3-300 Twin Grip).
Due to the high friction coefficient between the regulating wheel and the workpiece, the
surface speed of the workpiece is governed by the surface speed of the regulating wheel.
The grinding process can be supplied with workpieces either manually or automatically.

The case study was conducted on a fully automated infeed centerless grinding process
using a Danobat Estarta 318 MV-DC machine. This case study includes two types of
peripheral systems, (i) peripherals that are directly connected to the grinding process, and
(ii) peripherals that are a part of the centralized production system and supply/evacuate
resources to multiple processes. For the studied process, coolant, water, and compressed
air were supplied by a centralized system.

3.2. Application of Indicator Selection Methodology
3.2.1. Manufacturing System Selection and Modeling

Goal and scope definition: The goal and scope definition for developing the mon-
itoring system was performed in collaboration with two domain experts: one process
engineer and one technician with experience in the studied infeed process. Based on the
sustainability strategy of the company, the focus was restricted to monitoring and reducing
the climate change-related impacts, i.e., the global warming potential (GWP) of the system.
Process GWP was assessed based on the resources consumed to machine a specific rotor
design, as the focus was to minimize process impacts during the aforementioned opera-
tion. A preliminary assessment of the system showed that electrical energy consumption
was the most significant contributor to the above indicator, as the material consumption
(i.e., cooling fluid, lubricating fluid, and wheel debris) per produced part, and consequently,
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their contribution to GWP was insignificant. Therefore, the study focuses on the selection
of indicators for GWP reduction through reducing energy use. While the focus on GWP
simplified the inventory collection process, alternate environmental impacts, e.g., emissions
to water or air due to cooling fluid use, were not considered and, therefore, not reflected in
the eventual choice of process performance indicators.

Generate a detailed model of the manufacturing system: A decomposed system
model for the centerless grinding process was generated by the authors in collaboration
with the domain experts (see Figure 3). A detailed model of the manufacturing system,
including relevant sub-systems and inventory flows is also shown in Figure 3. The analyzed
infeed centerless grinding process setup is typically used to machine two types of rotors
that have the same diameters but different material structures. For example, the removal
of softer material (e.g., copper) requires a smaller depth of cut, compared to the depth of
cut needed to remove material from workpieces made from tougher materials (e.g., steel).
Therefore, the environmental sustainability performance of this process is also influenced
by the type of material and process parameters such as the depth of cut. Relevant inventory
flows for the studied process are shown in Figure 3 and include,

• Input materials: A workpiece (WP) that is to be ground to the required specifications
while fulfilling predefined dimensional and quality requirements as well as mate-
rial characteristics. Other material inputs, e.g., grinding, regulating, and dressing
wheels, that have to be replaced periodically, e.g., lubricating fluid, cooling fluid, and
compressed air.

• Input energy: The centerless grinding machine, peripherals, and auxiliary systems are
driven by electrical energy. Significant sub-systems with regards to energy consump-
tion are broken down in terms of the (i) main machine: electronics, regulations wheel,
and grinding wheel spindles, and (ii) peripheral systems: coolant pump, hydraulic
pump, and waste collector.

• Outputs emissions and wastes: These include (i) direct emissions: air, heat (ii) produced
wastes: cooling mist, grinding wheel and the regulating wheel debris, and removed
workpiece material.

• Output products: The ground workpiece is transferred to other downstream manufac-
turing processes.

Figure 3. Decomposed system model and process flows of the in-feed centerless grinding process.
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The detailed list of identified process parameters and inventory flows, as well as the
process sequence for the centerless grinding process is provided in the Supplementary
Information (Sections S2.2 and S2.3).

3.2.2. Relate Inventory Flows and Process Parameters

Analytical inventory modeling: Using the identified process parameters from the
decomposed system model and the process sequence, a power-time graph was constructed
for the process. This enables the construction of analytical models for process GWP based
on the total energy consumption of the centerless grinding process. The equations for
estimating GWP and total energy consumption for the in-feed centerless grinding process
are provided in S2.3 in the Supplementary Information.

Experimental setup for inventory modeling: The experiment was conducted in a
real-world production setting, and the schematic illustration of the process setup and
hardware configuration is presented in Figure 4. It aimed to collect nominal values for
power and time-related process parameters and corresponding inventory data (i.e., energy
consumption) necessary for performing sensitivity analysis. To run the in-feed centerless
grinding process setup, process parameters for the specific type of rotor were set and
remained constant throughout the entire experiment. The energy loggers were configured
for data sampling every 1 s, at a nominal frequency of 50 Hz, and using a 3-phase 4-wire Y
electrical connection. Based on the analytical model and the power-time graph provided
in Section S2.3 in Supplementary Material, it was determined which parameters need
to be measured for different power modes. However, to measure the parameters, it
was necessary to isolate the power draw for individual peripheral systems, as depicted
in Figure 4. The experiment was conducted in three iterations; iteration 1 focused on
experimentally measuring power-related parameters for the centerless grinding setup,
while iterations 2 and 3 mirrored the nominal production process in order to measure
time-related parameters and process energy consumption.

In the first iteration, dedicated to measuring power parameters, it was necessary to
manually control the peripheral equipment. To initiate the experiment, the machine was
shut down, and the energy logger showed no signals of power draw. Subsequently, the
peripheral systems were switched on one at a time, enabling the power data sampling for
the specific system. Equipment, including the coolant pump and the handling system, could
not be controlled manually because their initiation was triggered by the working mode of
other equipment. Nonetheless, the operation of these systems remained unchanged over
the experiments, as the geometry of the rotor being produced as well as process parameters,
including the peripheral speed of the grinding wheel, feed rate, depth of cut, spark-out
time, number of cycles for lubricating the regulating wheel and dressing the grinding
wheel, were held constant. The sequence of activating the peripheral systems, as well as
the type of activation, is presented in Table 3. To generate the nominal value, 5–10 min
of data samples were collected (per parameter) at a 1 Hz sampling rate after equipment
stabilization and averaged over time.

The second and third iterations followed the standard operating procedure (with
the same operator) and sequence of operations for the production of a rotor (refer to the
power-time graph in Section S2.3 of the Supplementary Material). During this phase of
the experiment, energy loggers remained connected to the electrical cabinets while time
parameters were measured for individual operations. The decision to replicate the same
setup in the third iteration was intentional so as to average the manually collected time-
related parameters over two independent experiments. Nominal values for both power
and time parameters are presented in Section S2.4 of the Supplementary Material.
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Figure 4. Schematic illustration of the in-feed centerless grinding process and hardware configuration
of the experimental setup.

Table 3. Sequence of activating the peripherals systems throughout the first iteration of the experiment.

Sequence of
Operation Activation Equipment

Seq 1 Manually
Electronics
Air supply
Motor for workpiece waste
(wear of material)

Seq 2 Manually Hydraulic pump - grinding
wheel

Seq 3 Manually Grinding wheel and Regulat-
ing wheel

Seq 4 Manually—After GW and
RW are started Coolant

Seq 5 Automatically—When the
tank is full Pump for coolant

Seq 6 Automatically—When the
safety doors are closed Handling system

Seq 7 Manually—After everything
is prepared Master—Notify

Seq 8 Automatically
A1 axis (gripper for work-
piece movement within pro-
cess)

Seq 9 Automatically Grinding

Seq 10 250 cycles Lubrication of regulating
wheel
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Table 3. Cont.

Sequence of
Operation Activation Equipment

Seq 11 5 cycles Dressing of grinding wheel

Seq 12 Approaching and retracting
during grinding process Z1 motor of workrest blade

Seq 13 Approaching and retracting
during grinding process Z2 axis regulating wheel motor

Seq 14 Grinding wheel moving
along X axis

X axis grinding wheel spin-
dle movement motor

3.2.3. Performance Indicator(s) Definition

Compute selection criterion for process parameters: Sensitivity analysis was per-
formed by varying the reported nominal values of the process parameters (described
in S2.4) by a range of ±10%, and estimating the corresponding effects on GWP scores using
the analytical model described in S2.3. An experimental assessment of sensitivity could
not be performed due to the high utilization rate of the centerless grinding process in the
company’s day-to-day production. The measurability, actionability, reliability, timeliness,
and human-centricity scores for the identified set of process parameters were assessed by
the two domain experts as per the described methodology. The Excel-based questionnaire
used for this assessment is provided as a part of the Supplementary Information (S1).
Selection of performance indicator(s): The definition of process performance indicators
with regard to the GWP-related performance of the centerless grinding process was based
on the evaluation of the 6 selection criteria. In this regard, the top three process param-
eters suitable for monitoring were determined based on their overall score across the 6
selection criteria. In this case study, no specific targets were established for the identified
performance indicators.

4. Results and Discussion

Results from the sensitivity analysis are shown in Figure 5. As shown, the grinding
time (tgrinding) was the most sensitive parameter to the total GWP of the centerless grinding
process (GWPtotal). A ±10% variation in tgrinding around its nominal value resulted in a
variation of ±7.80% for GWPtotal . The sensitivity of GWPtotal to variation in grinding power
consumption (Pgrinding), spindle power of the grinding wheel (Pspindle

g ) and the spindle

power of the regulating wheel (Pspindle
r ) was also notable at ±4.86%, ±2.70%, and ±2.70%,

respectively. The results from the sensitivity analysis are the same for Pspindle
g and Pspindle

r
as, due to the complexity of the process setup, it was only possible to measure the combined
energy consumption of grinding and regulating wheel spindles. Variation in sparkout time
(tsp) had a moderate effect on GWPtotal (±0.73%), even though the machine setup allows
continuous monitoring of this parameter.

Results detailing the measurability assessment and reliability assessment are shown
in Table 4. Please note that all provided results are averaged across individual ratings
provided by the domain experts. Results are listed in ascending order, where a higher
score indicates a parameter is considered to be more measurable and more reliable relative
to the rest of the parameters. Even though the infeed centerless grinding process is fully
automated, the process setup does not enable monitoring and acquisition of the process
parameters listed in Table 4. This resulted in most parameters mentioned being scored
at 3 for C1D by the domain experts. Results also show that it is possible to measure the
specified process parameters at a high level of granularity and that the operators have
in-depth knowledge of the production setup and knowledge of how to measure all listed
parameters in Table 4, as evidenced by a low score (1) for both C2D and C5D. Results from
the complexity evaluation for infeed centerless grinding setup (C3D) indicate that while
direct measurement was possible for all listed parameters, most such measurements would
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require minor modifications of the process setup (C3D = 2). Finally, measurement of the
listed parameters causes minor or no disruptions to production, as indicated by the low
scores (C4D = 1 or C4D = 2) for all process parameters. In general, the measurability rating
M for all process parameters was observed to be relatively close. This stems from the fact
that the infeed centerless grinding setup is a fully automated process that already has some
monitoring of process parameters. The setup can also be easily modified to enable monitor-
ing of other time- and power-related parameters. Results from the reliability assessment
show a similar tendency to the measurability score. In general, the reliability rating R
for all process parameters is high and observed to be relatively close. The measurement
of almost all listed parameters is affected by the lack of a standard operating procedure,
as indicated by the high scores (C1V ≥ 3). For example, the last standard procedure to
set process parameters and load the work pieces causes significant variabilities in setup,
loading, and unloading times (tsetup, tloading, tunloading). Similarly, the lack of clear guidance
on setting a specified spindle power for the grinding and regulating wheel affects power
measurements for these components (Pspindle

g and Pgrinding). Results show that Pspindle
g and

Pgrinding can also vary due to process variations and the fact that the machining of the
different parts can impact the measurement of the parameters (C2V ≥ 1). Variabilities in
environmental conditions and the reliability of the measurement process itself (i.e., accuracy
and precision) do not significantly affect the overall reliability score (C3V = 1 & C4V = 1)
for all process parameters.

Results from the actionability, timeliness, and human-centricity assessment are shown
in Table 5. Please note the provided results are averaged across individual ratings pro-
vided by the six domain experts. Results are listed in ascending order, where a higher
score indicates a better performance along the specified indicator selection criterion. The
actionability measurement results showed that the time parameters in the case of criterion
C1A were assessed with +1, mostly due to the fact that the infeed grinding setup is auto-
mated. Considering that the time parameters are inputs to the process and can be modified
in isolation, they can be controlled/changed through the program. However, tsetup has
significantly lower scores compared to the other time-related parameters. As shown in
Table 5, it was scored with 0 for (C1A) and (C2A). This is due to the fact that the setup
operation for the infeed grinding machine is entirely manual. It is difficult to plan/predict
and control the parameter as it depends on the operators’ level of experience and machine
state. Furthermore, power-related parameters were generally not easily controlled, as they
depend on a significant number of parameters. For example, Pgrinding cannot be controlled
in isolation in the current setup. Similarly, Pg

spindle and Pr
spindle are set in accordance with

other process parameters and cannot be controlled individually as the production setup
does not power the spindles separately. On the contrary, a majority of parameters were
scored with +1 for C3A criterion; as the existing setup is automated, it is easy to implement
modifications to the setup that can make these parameters controllable. The overall timeli-
ness score shows the readiness of the infeed production setup to enable access to the process
parameters to the relevant stakeholders. The existing setup of the infeed grinding process
does not enable data collection of the process parameters at the specified rate relevant for
the process planning stage. Consequently, the majority of the parameters were scored as
−1 for C1T . However, N was scored with +1 as the setup has access to this parameter,
and it can be archived in existing systems. Human-centricity scores showed that there is a
common understanding of process parameters and their influence on process performance.
However, there is a lack of understanding of the influence of individual power and time
parameters on sustainability performance. Thus, all time- and power-related parameters
were assessed as −1 for C3H .

The most significant process parameters for monitoring process GWP performance
are listed in Table 6. The selection of the four process performance indicators, i.e., tgrinding,
Pgrinding, Pcooling_pump, and tsp, with regard to the GWP-related performance of the infeed
centerless grinding process was based on their overall score across the six indicator selec-
tion criteria. The sensitivity analysis showed that the tgrinding and Pgrinding have the highest
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influence on the total GWP of the process. Thus, variations in the process parameters can
significantly influence process GWP performance. However, human-centricity assessment
showed that stakeholders were not aware of the individual influence of process parameters
on the sustainability performance of the process. Thus, continuous monitoring of these
parameters, in a manner that can be made visible to stakeholders, can be viewed as highly
important. In particular, Pgrinding is not an independent parameter, and small changes in the
process setup can lead to unexpected changes in the grinding power consumption. Process
GWP performance was moderately sensitive to Pcooling_pump. However, the actionability
score for Pcooling_pump is greater than Pgrinding as it represents the power consumption of
a peripheral system that is independent of process mechanics. Thus, there is a good un-
derstanding of how Pcooling_pump influences the overall grinding process. Nevertheless, the
measurability assessment showed all parameters are accessible on the high-granularity
level, and relatively small upgrades in the production setup could enable continuous moni-
toring of the parameters. tsp is the only parameter that is directly accessible and controlled
through the existing setup, and decreasing this parameter can result in a corresponding
decrease in process GWP.
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Figure 5. Sensitivity of time- and power-related process parameters with regards to the total process
energy consumption for the infeed centerless grinding process. The red color indicates the change in
GWPtotal for a −10% change for each process parameter, compared to their nominal values, and vice
versa (+10%) for the blue color.

In terms of the utility of bottom-up KPIs and their relation to the overall organiza-
tional goals regarding sustainability, the case study focused on a company with an overall
ambition of transitioning to net-zero climate impact operations, including impacts resulting
from manufacturing. Currently, these goals are translated into top-down KPIs in terms
of monitoring energy, water, air, and other resource consumption in production. Such
KPIs are used to justify production interventions and upgrades when there is a significant
increase in their values over past baselines. However, the experts involved in the case study
indicated that such KPIs can identify a change in resource consumption but do not point
to the underlying reason for the change. Consequently, there is little room for systematic
process improvement and proactive optimization based on such KPIs. On the other hand,
the bottom-up, process parameter-based KPIs directly correspond to the processes being
analyzed and allow for the above activities to occur. Even so, the direct contribution of these
KPIs to the overall goals is challenging to establish, requiring that resource consumption
data need to be actively monitored across the production system.
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Table 4. Measurability and reliability assessment of process parameters for the infeed centerless
grinding setup. Results are averaged across all respondents, and the scores are listed in ascending
order. A larger score indicates higher measurability/reliability. Please see the questionnaire in S1 for
further details.

Criteria

Parameter C1D C2D C3D C4D C5D M

Measurability

Pgrinding 3 1 2 2 1 0.99616
tgrinding 3 1 2 2 1 0.99616
Phydraulic 3 1 2 1.50 1 0.99712
Pspindle

r 3 1 2 1.50 1 0.99712
Pspindle

g 3 1 2 1.50 1 0.99712
Pel_wp 3 1 1.50 1.50 1 0.99784
tloading 3 1 2 1 1 0.99808
tunloading 3 1 2 1 1 0.99808
tsetup 3 1 2 1 1 0.99808
Pcooling_pump 3 1 2 1 1 0.99808
tdressing 3 1 2 1 1 0.99808
tapp 2.50 1 2 1 1 0.9984
trt 2.50 1 2 1 1 0.9984
tsp 1 1 1 1 1 0.99968
N 1 1 1 1 1 0.99984

Parameter C1V C2V C3V C4V R

Reliability

Pgrinding 3.50 2 1 1 0.9888
Pspindle

g 4 1.50 1 1 0.9904
Pspindle

r 3 1 1 1 0.9904
tloading 4 1 1 1 0.9936
tapp 4 1 1 1 0.9936
tgrinding 4 1 1 1 0.9936
tsp 4 1 1 1 0.9936
trt 4 1 1 1 0.9936
tunloading 4 1 1 1 0.9936
tsetup 4 1 1 1 0.9936
Pel_wp 4 1 1 1 0.9936
Pcooling_pump 4 1 1 1 0.9936
Phydraulic 4 1 1 1 0.9936
tdressing 4 1 1 1 0.9936
N 1 1 1 1 0.9984

Table 5. Actionability, timeliness, and human-centricity assessment for the process parameters of the
in-feed centerless grinding process. Results are averaged across all respondents.

Criteria

Parameter C1A C2A C3A A

Pgrinding −1 0 1 0
Phydraulic 0 0 0 0
Pspindle

r 0 0 0 0
Pspindle

g 0 0 0 0
tsetup 0 0 1 0.3333
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Table 5. Cont.

Criteria

Parameter C1A C2A C3A A

Actionability

Pcooling_pump 0 0 1 0.3333
Pel_wp 0 1 1 0.6666
tgrinding 0 1 1 0.6666
tloading 1 1 1 1
tunloading 1 1 1 1
N 1 1 1 1
tdressing 1 1 1 1
tsp 1 1 1 1
tapp 1 1 1 1
trt 1 1 1 1

Parameter C1T C2T T

Timeliness

Phydraulic −1 0 −0.5
Pgrinding −1 0 −0.5
Pspindle

g −1 0 −0.5
Pspindle

r −1 0 −0.5
tsetup −1 0 −0.5
Pel_wp −1 0 −0.5
Pcooling_pump −1 0 −0.5
tloading −1 0 −0.5
tapp −1 0 −0.5
tgrinding −1 0 −0.5
trt −1 0 −0.5
tunloading −1 0 −0.5
tdressing −1 0 −0.5
tsp 0 0 0
N 1 1 1

Parameter C1H C2H C3H C4H H

Human-centricity

tsetup 1 0 −1 1 0.25
Pel_wp 1 0 −1 1 0.25
Pcooling_pump 1 0 −1 1 0.25
Pgrinding 1 1 −1 0 0.25
Pspindle

g 1 1 −1 0 0.25
Pspindle

r 1 1 −1 0 0.25
Phydraulic 1 1 −1 1 0.5
tdressing 1 1 −1 1 0.5
tloading 1 1 −1 1 0.5
tapp 1 1 −1 1 0.5
tgrinding 1 1 −1 1 0.5
tsp 1 1 −1 1 0.5
trt 1 1 −1 1 0.5
tunloading 1 1 −1 1 0.5
N 1 1 0 1 0.75
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Table 6. Selected performance indicators for the infeed centerless grinding process.

Parameter Performance
Indicator S M A R T H

tgrinding % reduction in
grinding time
over the baseline
value of 8.0 s

7.8% 0.99616 0.6666 0.9936 −0.5 0.5

Pgrinding % reduction in
grinding power
consumption
over the baseline
value of 8.3 kW

4.9% 0.99616 0.0 0.9888 −0.5 0.25

Pcooling_pump % reduction in
cooling pump
power consump-
tion over the
baseline value
of 2.01 kW

2.7% 0.99808 0.3333 0.9936 −0.5 0.25

tsp % reduction in
sparkout time
over the baseline
value of 2.0 s

0.73% 0.99968 1.0 0.9936 0.0 0.5

5. Conclusions

This paper discusses a methodology for the bottom-up definition of process indicators
to monitor the environmental sustainability-related performance of manufacturing pro-
cesses in real-world production settings. Indicator selection and definition are carried out
by assessing the sensitivity, measurability, actionability, reliability, timeliness, and human-
centricity of process parameters with respect to a given environmental impact category.
The application of this method is demonstrated for an infeed centerless grinding process
in a large pump manufacturing company to improve climate change-related performance.
Results showed that the percentage reduction in grinding time, the percentage reduction in
grinding power, the percentage reduction in sparkout time, and the percentage increase in
batch size (over their baseline values) serve as useful performance indicators for reducing
the global warming potential associated with process energy consumption.

One of the significant limitations in applying the methodology in practice is the need
for domain experts in the evaluation process. Although the domain experts agreed on the
usefulness of the proposed methodology, they noted that significant amounts of data need
to be collected, analyzed, and interpreted to arrive at the indicator definitions. Such data
(and access to expertise) might not be readily available for other processes, which could
present additional challenges in applying the proposed method. Furthermore, it should
be noted the assessment performed by the domain experts is specific to a given process
and production setup. Therefore, transferring the results to other similar processes requires
careful consideration and may not always be possible. Finally, it should be noted that the
methodology relies on the knowledge of domain experts. Its validity is, therefore, strongly
linked to their experience and understanding of the manufacturing process. Involving
multiple independent experts in the assessment process could mitigate underlying biases
or misinformation of a single decision-maker. Nonetheless, the utility of the selected
indicators can only be validated through long-term monitoring of these indicators and
observing if they help enable sustainability-related process improvements. A long-term
validation was not conducted as a part of this work due to time constraints. Further studies
that benchmark the proposed indicator selection methodology with other relevant methods
for defining process parameter-based KPIs are required to strengthen the validity of the
presented work.
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Our future work will aim to address the aforementioned shortcomings by exploring
more streamlined approaches for evaluating the six indicator selection criteria for relevant
process parameters. We will also investigate approaches for integrating uncertainties
resulting from subjective evaluation of the indicator selection criteria into the decision-
making process for selecting the indicators to be monitored. We also aim to conduct
long-term studies in the company evaluating the benefit of implementing the prescribed
monitoring strategies and evaluating any resulting environmental sustainability-related
benefits from doing so.
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Nomenclature

M# Corresponding machine tool for identified production system
S# Corresponding sub-systems for identified production system
Si Normalized sensitivity score of the ith process parameter
si Sensitivity score of the ith process parameter
Np Total number of process/inventory parameters
Mi Normalized measurability score of the ith process parameter
C1i

D Measurability criterion evaluating digitalization of the ith process parameter
C2i

D Measurability criterion evaluating data granularity of the ith process parameter

C3i
D

Measurability criterion evaluating complexity of the process architecture of the ith
process parameter

C4i
D

Measurability criterion evaluating the impact of data collection on the process of the
ith process parameter

C5i
D

Measurability criterion evaluating operator/technician knowledge of the ith
process parameter

Ai Overall actionability score of the ith process parameter

C1i
A

Actionability criterion evaluating controllability of the ith process parameter during
the production process

C2i
A

Actionability criterion evaluating the degree to which ith process parameter can be
controlled (affected) in the product/process planning stage

C3i
A

Actionability criterion evaluating the possibility of implementing the action to the
relevant controls of the ith process parameter

Ri Overall reliability score of the ith process parameter

C1i
V

Reliability criterion evaluating the standard operating procedure of the ith process
parameter

https://www.mdpi.com/article/10.3390/su16020806/s1
https://www.mdpi.com/article/10.3390/su16020806/s1
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C2i
V

Reliability criterion evaluating the variability of process setup for ith process
parameter

C3i
V

Reliability criterion evaluating the variability of the environmental conditions of the
ith process parameter

C4i
V

Reliability criterion evaluating the accuracy of the ith process parameter
measurement

Ti Overall timeliness score of the ith process parameter

C1i
T

Timeliness criterion evaluating if data collection and analysis for the ith process
parameter can be conducted at a rate that is meaningful for product/process
planning

C2i
T

Timeliness criterion evaluating if data can be archived in systems that are accessible
during product/process planning for ith process parameter

Hi Overall human-centricity score of the ith process parameter

C1i
H

Human-centricity criterion evaluating if all relevant stakeholders have a common
understanding of the ith process parameter

C2i
H

Human-centricity criterion evaluating if all relevant stakeholders understand how
the change in ith process parameter influences the process performance

C3i
H

Human-centricity criterion evaluating if all relevant stakeholders have an
understanding of how changes to ith process parameters affect the sustainability
aspects of the process performance

C4i
H

Human-centricity criterion evaluating if all relevant stakeholders have the
necessary skills to control ith process parameter?

Pgrinding Grinding power consumption
Phydraulic Power consumption of the hydraulic system
Pcooling_pump Power consumption of the cooling pump

Pspindle
g Power consumption of the grinding wheel spindle motor

Pspindle
r Power consumption of the regulating wheel spindle motor

Pel_wp Power consumption of the electronic system and waste pump
tloading Loading time
tunloading Unloading time
tapp Approaching time of the regulating wheel
trt Retracting time of the regulating wheel
tsp Spark-out time
tgrinding Grinding time
tsetup Setup time
tdressing Dressing time
N Size of the batch
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