Advances in Studies on Heavy Metals in Urban Soil: A Bibliometric Analysis
Abstract
:1. Introduction
2. Data Sources and Methodology
2.1. Research Method
2.2. Data Sources and Search Strategy
3. Results and Discussion
3.1. Publication Statistics
3.2. Core Authors
3.3. High-Yielding Journals
3.4. High Output Countries and Institutes
3.5. Highly Cited Document Network Analysis
3.5.1. Co-Citation Analysis of Document
3.5.2. Document Co-Citation Cluster Analysis
3.6. Profiling of Keywords in the Paper
3.6.1. Urban Soil Heavy Metal Pollution Source Apportionment
3.6.2. Pollution Risk Assessment
3.6.3. Applications of Environmental Magnetism
3.7. Keyword Bursting Detection
3.8. Limitations of This Study
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuźniar, A.; Banach, A.; Stępniewska, Z.; Frąc, M.; Oszust, K.; Gryta, A.; Kłos, M.; Wolińska, A. Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals. Int. Agrophys. 2018, 32, 101–109. [Google Scholar] [CrossRef]
- Xie, Y.; Fan, J.; Zhu, W.; Amombo, E.; Lou, Y.; Chen, L.; Fu, J. Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front. Plant Sci. 2016, 7, 755. [Google Scholar] [CrossRef]
- Chen, J.; He, F.; Zhang, X.; Sun, X.; Zheng, J.; Zheng, J. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol. Ecol. 2014, 87, 164–181. [Google Scholar] [CrossRef] [PubMed]
- Oves, M.; Saghir, K.M. Heavy metals: Biological importance and detoxification strategies. J. Bioremediat. Biodegrad. 2016, 7, 1–15. [Google Scholar]
- Zaltauskaite, J.; Sliumpaite, I. Single and combined toxicity of copper and cadmium to H. vulgare growth and heavy metal bioaccumulation. E3S Web Conf. 2013, 1, 15013. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Yadav, P.; Singh, B.; Garg, V.K.; Mor, S.; Pulhani, V. Bioaccumulation and health risks of heavy metals associated with consumption of rice grains from croplands in Northern India. Hum. Ecol. Risk Assess. 2017, 23, 14–27. [Google Scholar] [CrossRef]
- Yousaf, B.; Liu, G.; Wang, R.; Zia-ur-Rehman, M.; Rizwan, M.S.; Imtiaz, M.; Murtaza, G.; Shakoor, A. Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil-plant system. Environ. Earth Sci. 2016, 75, 374. [Google Scholar] [CrossRef]
- Liang, Y.; Yi, X.; Dang, Z.; Wang, Q.; Luo, H.; Tang, J. Heavy metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong, China. Int. J. Environ. Res. Public Health 2017, 14, 1557. [Google Scholar] [CrossRef]
- Silva, A.L.O.; Barrocas, P.R.G.; Jacob, S.C.; Moreira, J.C. Dietary intake and health effects of selected toxic elements. Braz. J. Plant Physiol. 2005, 17, 79–93. [Google Scholar] [CrossRef]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Sci. Total Environ. 2013, 463, 530–540. [Google Scholar] [CrossRef]
- Tiller, K.G. Urban soil contamination in Australia. Aust. J. Soil. Res. 1992, 30, 937–957. [Google Scholar] [CrossRef]
- Napoletano, P.; Colombo, C.; Di Iorio, E.; Memoli, V.; Panico, S.C.; Ruggiero, A.G.; Santorufo, L.; Maisto, G.; De Marco, A. Integrated approach for quality assessment of technosols in experimental mesocosms. Sustainability 2021, 13, 9101. [Google Scholar] [CrossRef]
- Mielke, H.W.; Gonzales, C.R.; Smith, M.K.; Mielke, P.W. The urban environment and children’s health: Soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, USA. Environ. Res. 1999, 81, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.; Thornton, I.; Simpson, P.R. Urban geochemistry: A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Appl. Geochem. 1996, 11, 363–370. [Google Scholar] [CrossRef]
- Bi, X.; Zhang, M.; Wu, Y.; Fu, Z.; Sun, G.; Shang, L.; Li, Z.; Wang, P. Distribution patterns and sources of heavy metals in soils from an industry undeveloped city in Southern China. Ecotoxicol. Environ. Saf. 2020, 205, 111115. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.; Zhao, Y. Ecological risk assessment from the perspective of soil heavy metal accumulations in Xiamen city, China. Int. J. Sust. Dev. World 2018, 25, 411–419. [Google Scholar] [CrossRef]
- Pan, L.B.; Ma, J.; Wang, X.L.; Hou, H. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere 2016, 148, 248–254. [Google Scholar] [CrossRef]
- Cao, S.; Duan, X.; Zhao, X.; Chen, Y.; Wang, B.; Sun, C.; Zheng, B.; Wei, F. Health risks of children’s cumulative and aggregative exposure to metals and metalloids in a typical urban environment in China. Chemosphere 2016, 147, 404–411. [Google Scholar] [CrossRef]
- Haefliger, P.; Mathieu-Nolf, M.; Lociciro, S.; Ndiaye, C.; Coly, M.; Diouf, A.; Faye, A.L.; Sow, A.; Tempowski, J.; Pronczuk, J.; et al. Mass lead intoxication from informal used lead-acid battery recycling in Dakar, Senegal. Environ. Health Perspect. 2009, 117, 1535–1540. [Google Scholar] [CrossRef]
- Roels, H.A.; Buchet, J.P.; Lauwerys, R.R.; Bruaux, P.; Claeysthoreau, F.; Lafontaine, A.; Verduyn, G. Exposure to lead by the oral and the pulmonary routes of children living in the vicinity of a primary lead smelter. Environ. Res. 1980, 22, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.B.; Zheng, Y.M.; Lei, M.; Huang, Z.C.; Wu, H.T.; Chen, H.; Fan, K.K.; Yu, K.; Wu, X.; Tian, Q.Z. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 2005, 60, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Madrid, L.; Díaz-Barrientos, E.; Madrid, F. Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere 2002, 49, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Cai, Y.; Zhu, K.; Wei, J.; Lu, Y. Spatial heterogeneity analysis and source identification of heavy metals in soil: A case study of Chongqing, Southwest China. Chem. Biol. Technol. Agric. 2022, 9, 50. [Google Scholar] [CrossRef]
- Navarrete, I.A.; Gabiana, C.C.; Dumo, J.R.E.; Salmo, S.G.; Guzman, M.A.L.G.; Valera, N.S.; Espiritu, E.Q. Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines. Environ. Monit. Assess. 2017, 189, 145. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, H.; Bai, S. Heavy metal contents and magnetic susceptibility of soils along an urban-rural gradient in rapidly growing city of eastern China. Environ. Monit. Assess. 2009, 155, 91–101. [Google Scholar] [CrossRef]
- Li, F.J.; Yang, H.W.; Ayyamperumal, R.; Liu, Y. Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-Northwest China. Chemosphere 2022, 308, 136396. [Google Scholar] [CrossRef] [PubMed]
- Hani, A.; Pazira, E. Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environ. Monit. Assess. 2011, 176, 677–691. [Google Scholar] [CrossRef]
- Guney, M.; Onay, T.T.; Copty, N.K. Impact of overland traffic on heavy metal levels in highway dust and soils of Istanbul, Turkey. Environ. Monit. Assess. 2010, 164, 101–110. [Google Scholar] [CrossRef]
- Du, H.; Lu, X. Spatial distribution and source apportionment of heavy metal(loid)s in urban topsoil in Mianyang, Southwest China. Sci. Rep. 2022, 12, 10407. [Google Scholar] [CrossRef]
- Vorobyov, S.; Kozlov, D.; Poturaeva, T.; Chernyaeva, I. Distribution of heavy metals in soil of urban ecosystems by the example of the Oryol City. IOP Conf. Ser. Earth Environ. Sci. 2017, 66, 012002. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, X.; Huang, B.; Yu, D.; Wang, H.; Sun, W.; Oboern, I.; Blomback, K. Spatial distribution of heavy metals in agricultural soils of an industry-based peri-urban area in Wuxi, China. Pedosphere 2007, 17, 44–51. [Google Scholar] [CrossRef]
- Zhou, H.; Ouyang, T.; Guo, Y.; Peng, S.; He, C.; Zhu, Z. Assessment of soil heavy metal pollution and its ecological risk for city parks, vicinity of a landfill, and an industrial area within Guangzhou, South China. Appl. Sci. 2022, 12, 9345. [Google Scholar] [CrossRef]
- Moghtaderi, T.; Alamdar, R.; Rodríguez-Seijo, A.; Naghibi, S.J.; Kumar, V. Ecological risk assessment and source apportionment of heavy metal contamination in urban soils in Shiraz, Southwest Iran. Arab. J. Geosci. 2020, 13, 797. [Google Scholar] [CrossRef]
- Praveena, S.M.; Ismail, S.N.S.; Aris, A.Z. Health risk assessment of heavy metal exposure in urban soil from Seri Kembangan (Malaysia). Arab. J. Geosci. 2015, 8, 9753–9761. [Google Scholar] [CrossRef]
- Kong, S.; Tang, J.; Ouyang, F.; Chen, M. Research on the treatment of heavy metal pollution in urban soil based on biochar technology. Environ. Technol. Innov. 2021, 23, 101670. [Google Scholar] [CrossRef]
- Baghdadi, M.E.I.; Barakat, A.; Sajieddine, M.; Nadem, S. Heavy metal pollution and soil magnetic susceptibility in urban soil of Beni Mellal City (Morocco). Environ. Earth Sci. 2012, 66, 141–155. [Google Scholar] [CrossRef]
- Morton-Bermea, O.; Hernandez, E.; Martinez-Pichardo, E.; Soler-Arechalde, A.M.; Santa-Cruz, R.L.; Gonzalez-Hernandez, G.; Beramendi-Orosco, L.; Urrutia-Fucugauchi, J. Mexico City topsoils: Heavy metals vs. magnetic susceptibility. Geoderma 2009, 151, 121–125. [Google Scholar] [CrossRef]
- Tong, S.; Li, H.; Wang, L.; Tudi, M.; Yang, L. Concentration, Spatial Distribution, Contamination Degree and Human Health Risk Assessment of Heavy Metals in Urban Soils across China between 2003 and 2019—A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 3099. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Barsova, N.; Yakimenko, O.; Tolpeshta, I.; Motuzova, G. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environ. Pollut. 2019, 249, 200–207. [Google Scholar] [CrossRef]
- Sugimoto, C.R.; Ahn, Y.Y.; Smith, E.; Macaluso, B.; Lariviere, V. Factors affecting sex-related reporting in medical research: A cross-disciplinary bibliometric analysis. Lancet 2019, 393, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Park, E.O.; Kwon, J.; Chae, B.K. 30 years of contemporary hospitality management. Int. J. Contemp. Hosp. Manag. 2019, 31, 2641–2665. [Google Scholar] [CrossRef]
- Zupic, I.; Cater, T. Bibliometric methods in management and organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Zhang, P.; Yan, F.; Du, C. A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics. Renew. Sustain. Energy Rev. 2015, 48, 88–104. [Google Scholar] [CrossRef]
- Pauna, V.H.; Buonocore, E.; Renzi, M.; Russo, G.F.; Franzese, P.P. The issue of microplastics in marine ecosystems: A bibliometric network analysis. Mar. Pollut. Bull. 2019, 149, 110612. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, X.; Qin, B. A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective. Environ. Sci. Pollut. Res. 2016, 23, 12811–12821. [Google Scholar] [CrossRef]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101 (Suppl. S1), 5303–5310. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Eck, N.J.V.; Waltman, L.; Dekker, R.; Berg, J.V.D. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2405–2416. [Google Scholar]
- Tong, C.H. Let interdisciplinary research begin in undergraduate years. Nature 2010, 463, 157. [Google Scholar] [CrossRef]
- Eck, N.J.V.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [PubMed]
- Waltman, L.; Eck, N.J.V.; Noyons, E.C.M. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef]
- Price, D.J. Networks of scientific papers. Science 1965, 149, 510–515. [Google Scholar] [CrossRef]
- Milojevic, S. Practical method to reclassify Web of Science articles into unique subject categories and broad disciplines. Quant. Sci. Stud. 2020, 1, 183–206. [Google Scholar] [CrossRef]
- Birkle, C.; Pendlebury, D.A.; Schnell, J.; Adams, J. Web of Science as a data source for research on scientific and scholarly activity. Quant. Sci. Stud. 2020, 1, 363–376. [Google Scholar] [CrossRef]
- Liu, W.; Tang, L.; Hu, G. Funding information in Web of Science: An updated overview. Scientometrics 2020, 122, 1509–1524. [Google Scholar] [CrossRef]
- Liu, F. Retrieval strategy and possible explanations for the abnormal growth of research publications: Re-evaluating a bibliometric analysis of climate change. Scientometrics 2023, 128, 853–859. [Google Scholar] [CrossRef]
- Akhtar, S.; Luqman, M.; Farooq Awan, M.U.; Saba, I.; Khan, Z.I.; Ahmad, K.; Muneeb, A.; Nadeem, M.; Batool, A.I.; Shahzadi, M.; et al. Health risk implications of iron in wastewater soil-food crops grown in the vicinity of peri urban areas of the District Sargodha. PLoS ONE 2022, 17, e0275497. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Ashraf, M.; Parveen, R.; Arshad, F.; Hussain, A.; Bibi, Z.; Akram, N.A.; Noorka, I.R.; Mustafa, I. Risk assessment of heavy metal toxicity through contaminated vegetable from sewage water: Implications for populace health. Hum. Ecol. Risk Assess. 2016, 22, 302–311. [Google Scholar] [CrossRef]
- Ahmad, K.; Ashfaq, A.; Khan, Z.I.; Ashraf, M.; Akram, N.A.; Yasmin, S.; Batool, A.I.; Sher, M.; Shad, H.A.; Khan, A.; et al. Health risk assessment of heavy metals and metalloids via dietary intake of a potential vegetable (Coriandrum sativum L.) grown in contaminated water irrigated agricultural sites of Sargodha, Pakistan. Hum. Ecol. Risk Assess. 2016, 22, 597–610. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Wan, Y.; Wu, R.; Feng, D.; Li, K. Source identification and comprehensive apportionment of the accumulation of soil heavy metals by integrating pollution landscapes, pathways, and receptors. Sci. Total Environ. 2021, 786, 147436. [Google Scholar] [CrossRef]
- Yang, Y.; Christakos, G. Uncertainty assessment of heavy metal soil contamination mapping using spatiotemporal sequential indicator simulation with multi-temporal sampling points. Environ. Monit. Assess. 2015, 187, 571. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Y.; Cheng, J.; Li, Y.; Li, F.; Li, Y.; Shi, Z. Pollution assessment and source apportionment of soil heavy metals in a coastal industrial city, Zhejiang, Southeastern China. Int. J. Environ. Res. Public Health 2022, 19, 3335. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Ma, J.; Cheng, J.; Lei, K.; Li, F.; Shi, Z.; Li, Y. Collaborative evaluation of heavy metal pollution of soil-crop system in the southeast of Yangtze River Delta, China. Ecol. Indic. 2022, 143, 109412. [Google Scholar] [CrossRef]
- Hu, B.; Shao, S.; Fu, Z.; Li, Y.; Ni, H.; Chen, S.; Zhou, Y.; Jin, B.; Shi, Z. Identifying heavy metal pollution hot spots in soil-rice systems: A case study in South of Yangtze River Delta, China. Sci. Total Environ. 2019, 658, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Hu, L.; Zhou, Y.; Min, X.; She, S.; Chen, S.; Huang, M.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef] [PubMed]
- Dzikowski, P. A bibliometric analysis of born global firms. J. Bus. Res. 2018, 85, 281–294. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef]
- Morton-Bermea, O.; Hernández-Álvarez, E.; González-Hernández, G.; Romero, F.; Lozano, R.; Beramendi-Orosco, L.E. Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. J. Geochem. Explor. 2009, 101, 218–224. [Google Scholar] [CrossRef]
- Wang, X.; Qin, Y. Magnetic properties of urban topsoils and correlation with heavy metals: A case study from the city of Xuzhou, China. Environ. Geol. 2006, 49, 897–904. [Google Scholar] [CrossRef]
- Zhong, B.; Liang, T.; Wang, L.; Li, K. Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China. Sci. Total Environ. 2014, 490, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Krami, L.K.; Amiri, F.; Sefiyanian, A.; Shariff, A.R.B.M.; Tabatabaie, T.; Pradhan, B. Spatial patterns of heavy metals in soil under different geological structures and land uses for assessing metal enrichments. Environ. Monit. Assess. 2013, 185, 9871–9888. [Google Scholar] [CrossRef] [PubMed]
- Guagliardi, I.; Cicchella, D.; De Rosa, R. A geostatistical approach to assess concentration and spatial distribution of heavy metals in urban soils. Water Air Soil. Pollut. 2012, 223, 5983–5998. [Google Scholar] [CrossRef]
- Ahmed, F.; Ishiga, H. Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atmos. Environ. 2006, 40, 3835–3844. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; Miguel, E.D. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- Arnich, N.; Sirot, V.; Rivière, G.; Jean, J.; Noël, L.; Guérin, T.; Leblanc, J. Dietary exposure to trace elements and health risk assessment in the 2nd French Total Diet Study. Food Chem. Toxicol. 2012, 50, 2432–2449. [Google Scholar] [CrossRef]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Whiting, S.N.; de Souza, M.P.; Terry, N. Rhizosphere bacteria mobilize Zn for hyperaccumulation by thlaspi caerulescens. Environ. Sci. Technol. 2001, 35, 3144–3150. [Google Scholar] [CrossRef] [PubMed]
- Sobariu, D.L.; Fertu, D.I.T.; Diaconu, M.; Pavel, L.V.; Hlihor, R.; Drăgoi, E.N.; Curteanu, S.; Lenz, M.; Corvini, P.F.; Gavrilescu, M. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol. 2017, 39, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Solgi, E.; Oshvandi, Z. Spatial patterns, hotspot, and risk assessment of heavy metals in different land uses of urban soils (case study: Malayer city). Hum. Ecol. Risk Assess. 2018, 24, 256–270. [Google Scholar] [CrossRef]
- Shi, X.M.; Liu, S.; Song, L.; Wu, C.S.; Yang, B.; Lu, H.Z.; Wang, X.; Zakari, S. Contamination and source-specific risk analysis of soil heavy metals in a typical coal industrial city, central China. Sci. Total Environ. 2022, 836, 155694. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Y.; Sun, J.; Li, X.; Geng, X.; Zhao, M.; Sun, T.; Fan, Z. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using monte carlo simulation coupled with positive matrix factorization model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef] [PubMed]
- Vince, T.; Szabó, G.; Csoma, Z.; Sándor, G.; Szabó, S. The spatial distribution pattern of heavy metal concentrations in urban soils-a study of anthropogenic effects in Berehove, Ukraine. Open Geosci. 2014, 6, 330–343. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Q.; Xie, X.; Liu, R. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J. Hazard. Mater. 2010, 174, 455–462. [Google Scholar] [CrossRef]
- Huang, Y.; Deng, M.; Wu, S.; Japenga, J.; Li, T.; Yang, X.; He, Z. A modified receptor model for source apportionment of heavy metal pollution in soil. J. Hazard. Mater. 2018, 354, 161–169. [Google Scholar] [CrossRef]
- Qu, M.; Wang, Y.; Huang, B.; Zhao, Y. Source apportionment of soil heavy metals using robust absolute principal component scores-robust geographically weighted regression (RAPCS-RGWR) receptor model. Sci. Total Environ. 2018, 626, 203–210. [Google Scholar] [CrossRef]
- Liu, J.; Kang, H.; Tao, W.; Li, H.; He, D.; Ma, L.; Tang, H.; Wu, S.; Yang, K.; Li, X. A spatial distribution-principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil. Sci. Total Environ. 2023, 859, 160112. [Google Scholar] [CrossRef] [PubMed]
- Cortés, J.L.; Bautista, F.; Delgado, C.; Quintana, P.; Aguilar, D.; García, A.; Figueroa, C.; Gogichaishvili, A. Spatial distribution of heavy metals in urban dust from Ensenada, Baja California, Mexico. Rev. Chapingo Ser. Cienc. For. Ambiente 2016, 23, 47–60. [Google Scholar] [CrossRef]
- Ruhling, A. A European survey of atmospheric heavy metal deposition in 2000–2001. Environ. Pollut. 2002, 120, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Muya, F.N.; Sunday, C.E.; Baker, P.; Iwuoha, E. Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: A critical review. Water Sci. Technol. 2016, 73, 983–992. [Google Scholar] [CrossRef]
- Akhtar, S.; Khan, Z.I.; Ahmad, K.; Nadeem, M.; Ejaz, A.; Hussain, M.I.; Ashraf, M.A. Assessment of lead toxicity in diverse irrigation regimes and potential health implications of agriculturally grown crops in Pakistan. Agric. Water Manag. 2022, 271, 107743. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Q.; Zheng, K.; Jiao, Z.; Ruan, X.; Wang, Y. Migration of heavy metals in the soil-grape system and potential health risk assessment. Sci. Total Environ. 2022, 806, 150646. [Google Scholar] [CrossRef]
- Mehmood, K.; Ahmad, H.R.; Abbas, R.; Saifullah; Murtaza, G. Heavy metals in urban and peri-urban soils of a heavily-populated and industrialized city: Assessment of ecological risks and human health repercussions. Hum. Ecol. Risk Assess. 2019, 26, 1705–1722. [Google Scholar] [CrossRef]
- Adimalla, N.; Chen, J.; Qian, H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicol. Environ. Saf. 2020, 194, 110406. [Google Scholar] [CrossRef]
- Massas, I.; Ehaliotis, C.; Kalivas, D.; Panagopoulou, G. Concentrations and availability indicators of soil heavy metals; the case of children’s playgrounds in the city of Athens (Greece). Water Air Soil Pollut. 2010, 212, 51–63. [Google Scholar] [CrossRef]
- Song, D.; Zhuang, D.; Jiang, D.; Fu, J.; Wang, Q. Integrated health risk assessment of heavy metals in Suxian County, South China. Int. J. Environ. Res. Public Health 2015, 12, 7100–7117. [Google Scholar] [CrossRef]
- Khan, S.; Munir, S.; Sajjad, M.; Li, G. Urban park soil contamination by potentially harmful elements and human health risk in Peshawar City, Khyber Pakhtunkhwa, Pakistan. J. Geochem. Explor. 2016, 165, 102–110. [Google Scholar] [CrossRef]
- Teixeira, E.C.; Agudelo-Castañeda, D.M.; Mattiuzi, C.D.P. Contribution of polycyclic aromatic hydrocarbon (PAH) sources to the urban environment: A comparison of receptor models. Sci. Total Environ. 2015, 538, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Tang, X.Y.; Zhu, Y.G.; Zheng, M.H.; Miao, Q.L. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environ. Int. 2005, 31, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhou, S.; Bao, H.; Chen, D.; Wang, C.; Li, B.; Tong, G.; Yuan, Y.; Xu, B. Improving risk management by using the spatial interaction relationship of heavy metals and PAHs in urban soil. J. Hazard. Mater. 2019, 364, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Shi, Y.; Li, W.; Liu, J.; Cai, Y. Occurrence and distribution of antibiotics in urban soil in Beijing and Shanghai, China. Environ. Sci. Pollut. Res. 2015, 22, 11360–11371. [Google Scholar] [CrossRef]
- Weissmannova, H.D.; Pavlovsky, J. Indices of soil contamination by heavy metals-methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 2017, 189, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Karim, Z.; Qureshi, B.A.; Mumtaz, M. Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecol. Indic. 2015, 48, 358–364. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Han, W. Efficiently evaluating heavy metal urban soil pollution using an improved entropy-method-based topsis model. Arch. Environ. Contam. Toxicol. 2016, 71, 377–382. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Q.; Liu, B.; Guan, Y.; Wang, Y.; Li, D.; Zhou, X.; Kang, X. Magnetic response of heavy metal pollutionin soil of urban street greenbelts. Pol. J. Environ. Stud. 2022, 31, 1923–1933. [Google Scholar] [CrossRef]
- Hu, X.F.; Su, Y.; Ye, R.; Li, X.Q.; Zhang, G.L. Magnetic properties of the urban soils in Shanghai and their environmental implications. CATENA 2007, 70, 428–436. [Google Scholar] [CrossRef]
- Zhang, C.; Appel, E.; Qiao, Q. Heavy metal pollution in farmland irrigated with river water near a steel plant-magnetic and geochemical signature. Geophys. J. Int. 2013, 192, 963–974. [Google Scholar] [CrossRef]
- Hu, X.F.; Li, M.; He, Z.C.; Cui, L.; Liu, R.; Wang, X.D.; Wang, Z.H. Magnetic responses to heavy metal pollution of the industrial soils in Shanghai: Implying the influences of anthropogenic magnetic dustfall on urban environment. J. Appl. Geophys. 2022, 197, 104544. [Google Scholar] [CrossRef]
- Liu, D.; Ma, J.; Sun, Y.; Li, Y. Spatial distribution of soil magnetic susceptibility and correlation with heavy metal pollution in Kaifeng City, China. CATENA 2016, 139, 53–60. [Google Scholar] [CrossRef]
- Magiera, T.; Parzentny, H.; Róg, L.; Chybiorz, R.; Wawer, M. Spatial variation of soil magnetic susceptibility in relation to different emission sources in southern Poland. Geoderma 2015, 255, 94–103. [Google Scholar] [CrossRef]
- Wang, B.; Xia, D.; Yu, Y.; Jia, J.; Xu, S. Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China. Environ. Pollut. 2014, 184, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Rachwał, M.; Magiera, T.; Wawer, M. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons. Chemosphere 2015, 138, 863–873. [Google Scholar] [CrossRef]
- Wang, X.S. Assessment of heavy metal pollution in Xuzhou urban topsoils by magnetic susceptibility measurements. J. Appl. Geophys. 2013, 92, 76–83. [Google Scholar] [CrossRef]
- Li, X.D.; Poon, C.S.; Liu, P.S. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl. Geochem. 2001, 16, 1361–1368. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Franceschini, F.; Maisano, D.; Mastrogiacomo, L. Empirical analysis and classification of database errors in Scopus and Web of Science. J. Informetr. 2016, 10, 933–953. [Google Scholar] [CrossRef]
Rank | Author | Publications | Citations | C/P | H-Index | Current Affiliation | Country |
---|---|---|---|---|---|---|---|
1 | Ahmad, Kafeel | 12 | 138 | 11.5 | 5 | Jamia Millia Islamia | India |
2 | Khan, Zafar Iqbal | 12 | 138 | 11.5 | 5 | University of Sargodha | Pakistan |
3 | Huang, Biao | 12 | 272 | 22.67 | 6 | Institute of Soil Science | China |
4 | Yang, Yong | 11 | 125 | 11.36 | 11 | Huazhong Agricultural University | China |
5 | Christakos, George | 9 | 385 | 42.78 | 8 | California State University System | USA |
6 | Zhou, Shenglu | 9 | 249 | 27.67 | 9 | Nanjing University | China |
7 | Zhao, Yongcun | 8 | 333 | 41.63 | 5 | University of Chinese Academy of Sciences | China |
8 | Li, Yan | 7 | 294 | 42 | 10 | Zhejiang University | China |
9 | Shi, Zhou | 7 | 305 | 43.57 | 6 | Zhejiang University | China |
10 | Wu, Shaohua | 7 | 166 | 23.71 | 7 | Zhejiang University of Finance and Economics | China |
Rank | Journal | Publications | Citations | C/P | IF | Country |
---|---|---|---|---|---|---|
1 | Science of the Total Environment | 66 | 5152 | 78.06 | 10.237 | Netherlands |
2 | Environmental Science and Pollution Research | 62 | 1621 | 26.15 | 5.053 | Germany |
3 | Environmental Monitoring and Assessment | 58 | 1815 | 31.29 | 3.42 | Netherlands |
4 | International Journal of Environmental Research and Public Health | 47 | 1064 | 22.64 | 4.799 | Switzerland |
5 | Environmental Earth Sciences | 43 | 851 | 19.79 | 3.152 | Germany |
6 | Fresenius Environmental Bulletin | 39 | 213 | 5.46 | 0.583 | Germany |
7 | Environmental Geochemistry and Health | 35 | 1060 | 30.29 | 4.932 | Netherlands |
8 | Environmental Pollution | 32 | 2246 | 70.19 | 10.366 | United Kingdom |
9 | Chemosphere | 25 | 2196 | 87.84 | 8.52 | United Kingdom |
10 | Polish Journal of Environmental Studies | 25 | 225 | 9 | 1.845 | Poland |
Rank | Country | Publications | Citations | C/P | Continent |
---|---|---|---|---|---|
1 | China | 555 | 22,825 | 41.13 | Asia |
2 | Iran | 70 | 1454 | 20.77 | Asia |
3 | Turkey | 66 | 714 | 10.82 | Asia and Europe |
4 | USA | 57 | 1768 | 31.02 | North America |
5 | Russia | 52 | 515 | 9.9 | Europe |
6 | Pakistan | 49 | 1002 | 20.45 | Asia |
7 | India | 46 | 871 | 18.93 | Asia |
8 | Poland | 44 | 1084 | 24.64 | Europe |
9 | Saudi Arabia | 33 | 338 | 10.24 | Asia |
10 | Egypt | 31 | 471 | 15.19 | Africa |
Rank | Institution | Country | Publications | H-Index |
---|---|---|---|---|
1 | Chinese Academy of Sciences | China | 140 | 75 |
2 | Zhejiang University | China | 37 | 36 |
3 | University of Chinese Academy of Sciences | China | 33 | 41 |
4 | Nanjing University | China | 24 | 25 |
5 | China University of Geosciences | China | 21 | 29 |
6 | Huazhong Agricultural University | China | 15 | 13 |
7 | China University of Mining and Technology | China | 15 | 13 |
8 | Henan University | China | 11 | 8 |
9 | Beijing Normal University | China | 11 | 36 |
10 | Chinese Research Academy of Environmental Sciences | China | 11 | 22 |
11 | Islamic Azad University | Iran | 10 | 17 |
12 | Nanjing Forestry University | China | 8 | 7 |
13 | Ministry of Agriculture and Rural Affairs | China | 8 | 19 |
14 | University of Belgrade | Serbia | 8 | 17 |
15 | China Agricultural University | China | 8 | 8 |
Centrality | Title | Author | Journal | Year |
---|---|---|---|---|
0.26 | Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China | Jiang, Y.X. | Chemosphere | 2017 |
0.23 | Assessment of heavy metals pollution in urban topsoil from Changchun City, China | Yang, Z.P. | Journal of Geochemical Exploration | 2011 |
0.19 | Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach | Chabukdhara, M. | Ecotoxicology and Environmental Safety | 2013 |
0.16 | Pollution features and health risk of soil heavy metals in China | Chen, H.Y. | Science of the Total Environment | 2015 |
0.14 | Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China | Zhao, L. | Science of the Total Environment | 2014 |
0.14 | Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy | Manta, D.S. | Science of the Total Environment | 2002 |
0.13 | A review of heavy metal pollutions in urban soils, urban road dusts and agricultural soils from China | Wei, B.G. | Microchemical Journal | 2010 |
0.13 | Trace metal pollution in urban soils of China | Luo, X.S. | Science of the Total Environment | 2012 |
0.13 | Heavy metal pollution in street dust and roadside soil along the major national road in Kavala’s region, Greece | Christoforidis, A. | Geoderma | 2009 |
0.11 | Identification of trace element sources and associated risk assessment in vegetable soils of the urbanerural transitional area of Hangzhou, China | Chen, T. | Environmental Pollution | 2008 |
Rank | Frequency | Centrality | Keyword |
---|---|---|---|
1 | 763 | 0.04 | heavy metals |
2 | 737 | 0.05 | pollution |
3 | 342 | 0.04 | risk assessment |
4 | 332 | 0.01 | urban soil |
5 | 312 | 0.08 | city |
6 | 227 | 0.04 | spatial distribution |
7 | 223 | 0.07 | Pb |
8 | 193 | 0.07 | area |
9 | 188 | 0.08 | agricultural soil |
10 | 183 | 0.08 | sediment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Wang, C.; Song, J.; Ihenetu, S.C.; Li, G. Advances in Studies on Heavy Metals in Urban Soil: A Bibliometric Analysis. Sustainability 2024, 16, 860. https://doi.org/10.3390/su16020860
Tang S, Wang C, Song J, Ihenetu SC, Li G. Advances in Studies on Heavy Metals in Urban Soil: A Bibliometric Analysis. Sustainability. 2024; 16(2):860. https://doi.org/10.3390/su16020860
Chicago/Turabian StyleTang, Shuya, Chunhui Wang, Jing Song, Stanley Chukwuemeka Ihenetu, and Gang Li. 2024. "Advances in Studies on Heavy Metals in Urban Soil: A Bibliometric Analysis" Sustainability 16, no. 2: 860. https://doi.org/10.3390/su16020860
APA StyleTang, S., Wang, C., Song, J., Ihenetu, S. C., & Li, G. (2024). Advances in Studies on Heavy Metals in Urban Soil: A Bibliometric Analysis. Sustainability, 16(2), 860. https://doi.org/10.3390/su16020860