Land Use Changes and Future Land Use Scenario Simulations of the China–Pakistan Economic Corridor under the Belt and Road Initiative
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background to the Construction of the CPEC
2.2. Study Area
2.3. Data Source
2.4. Technical Route
2.5. Method
2.5.1. Dynamic Degree
2.5.2. Transfer Matrix
2.5.3. FLUS Model
2.5.4. Neighborhood Weight
2.5.5. Transfer Costs
2.5.6. Scenario Settings
- (1)
- Natural Development
- (2)
- Investment Priority
- (3)
- Ecological Protection
- (4)
- Harmonious Development
3. Results
3.1. Characteristics of Spatial and Temporal Changes in Land Use
3.1.1. Analysis of Land Use Types
3.1.2. Analysis of Structural Changes
3.1.3. Dynamic Degree Analysis
3.2. FLUS Simulation Results and Process
3.2.1. Accuracy Verification
3.2.2. Driving Factor Analysis
3.2.3. Analysis of Results of Multi-Scenario Simulations
- (1)
- Natural Development Scenarios
- (2)
- Investment Priority Scenarios
- (3)
- Ecological Protection Scenarios
- (4)
- Harmonized Development Scenarios
4. Discussion
4.1. Land Use Change in the CPEC
4.2. Multi-Scenario Simulation of Land Use Change in the CPEC
4.3. Research Limitations and Future Perspectives
5. Conclusions
- (1)
- The land use types in the CPEC from 2000 to 2020 were mainly dominated by farmland, forest land, and grassland. In terms of land use quantity changes, urban land, forest land, and grassland showed an increasing trend, while farmland, unutilized land, and water area land types showed a decreasing trend. In terms of land use transfer changes, the most transferred land was unutilized land, which was mainly converted to grassland, concentrated in the mountainous areas of central and western Pakistan.
- (2)
- The FLUS model was used to simulate the current land use status of the CPEC in 2020, and the results showed that the simulation accuracy was as high as 0.88, indicating that the FLUS model has a strong applicability in the CPEC.
- (3)
- The multi-scenario simulation of land use found that the urban land expansion is most obvious in the investment priority scenario, while the harmonious development scenario focuses on balancing economic growth and ecological protection, with changes in unutilized land, farmland, and forest land all showing significant scenario differences. Overall, the harmonious development scenario strikes a better balance between infrastructure development, economic development, and ecological protection, and it can provide a scientific basis for the future land management of the CPEC; it highlights the importance of promoting economic growth and ecological protection and ultimately realizing sustainable development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban Land Teleconnections and Sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [PubMed]
- Rosa, E.A.; Rudel, T.K.; York, R.; Jorgenson, A.K.; Dietz, T. The Human (Anthropogenic) Driving Forces of Global Climate Change. Clim. Change Soc. Sociol. Perspect. 2015, 2, 32–60. [Google Scholar]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-Scenario Simulation of Ecosystem Service Value for Optimization of Land Use in the Sichuan-Yunnan Ecological Barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Hanifehlou, A.; Hosseini, S.A.; Javadi, S.; Sharafati, A. Sustainable Exploitation of Groundwater Resources Considering the Effects of Climate Change and Land Use to Provide Adaptation Solutions (Case Study of the Hashtgerd Plain). Acta Geophys. 2022, 70, 1829–1846. [Google Scholar] [CrossRef]
- Nie, W.; Xu, B.; Yang, F.; Shi, Y.; Liu, B.; Wu, R.; Lin, W.; Pei, H.; Bao, Z. Simulating Future Land Use by Coupling Ecological Security Patterns and Multiple Scenarios. Sci. Total Environ. 2023, 859, 160262. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic Simulation of Land Use Change and Assessment of Carbon Storage Based on Climate Change Scenarios at the City Level: A Case Study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Hinz, R.; Sulser, T.B.; Huefner, R.; Mason-D’Croz, D.; Dunston, S.; Nautiyal, S.; Ringler, C.; Schuengel, J.; Tikhile, P.; Wimmer, F.; et al. Agricultural Development and Land Use Change in India: A Scenario Analysis of Trade-Offs Between UN Sustainable Development Goals (SDGs). Earth’s Future 2020, 8, e2019EF001287. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Y.; Lin, C.; Wu, F. Analysis and Comprehensive Evaluation of Sustainable Land Use in China: Based on Sustainable Development Goals Framework. J. Clean. Prod. 2021, 310, 127205. [Google Scholar] [CrossRef]
- Long, H.; Zhang, Y.; Ma, L.; Tu, S. Land Use Transitions: Progress, Challenges and Prospects. Land 2021, 10, 903. [Google Scholar] [CrossRef]
- Roy, P.S.; Ramachandran, R.M.; Paul, O.; Thakur, P.K.; Ravan, S.; Behera, M.D.; Sarangi, C.; Kanawade, V.P. Anthropogenic Land Use and Land Cover Changes—A Review on Its Environmental Consequences and Climate Change. J. Indian Soc. Remote Sens. 2022, 50, 1615–1640. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of Land Use Change on Ecosystem Services: A Review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Deng, Y.; Jia, L.; Guo, Y.; Li, H.; Yao, S.; Chu, L.; Lu, W.; Hou, M.; Mo, B.; Wang, Y. Evaluation of the Ecological Effects of Ecological Restoration Programs: A Case Study of the Sloping Land Conversion Program on the Loess Plateau, China. Int. J. Environ. Res. Public Health 2022, 19, 7841. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Wu, X.; Wang, Z.; Wu, X.; Wang, S. Coupling Human and Natural Systems for Sustainability: Experiences from China’s Loess Plateau. Earth Syst. Dyn. Discuss. 2022, 13, 795–808. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Y. Spatiotemporal Evolution and Determinants of Urban Land Use Efficiency under Green Development Orientation: Insights from 284 Cities and Eight Economic Zones in China, 2005–2019. Appl. Geogr. 2023, 161, 103117. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Land Use Change and Driving Factors in Rural China during the Period 1995-2015. Land Use Policy 2020, 99, 105048. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Shao, X.; Zhang, Y.; Cao, Y. Land-Use Changes and Policy Dimension Driving Forces in China: Present, Trend and Future. Land Use Policy 2012, 29, 737–749. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, A.-X.; Liu, J. Land-Use Change Modeling with Cellular Automata Using Land Natural Evolution Unit. Catena 2023, 224, 106998. [Google Scholar] [CrossRef]
- Ren, Y.; Lü, Y.; Comber, A.; Fu, B.; Harris, P.; Wu, L. Spatially Explicit Simulation of Land Use/Land Cover Changes: Current Coverage and Future Prospects. Earth-Sci. Rev. 2019, 190, 398–415. [Google Scholar] [CrossRef]
- Song, W.; Yang, D.; Wang, Y. Integrating an Abandoned Farmland Simulation Model (AFSM) Using System Dynamics and CLUE-S for Sustainable Agriculture. Agric. Syst. 2024, 219, 104063. [Google Scholar] [CrossRef]
- Fu, F.; Jia, X.; Zhao, Q.; Tian, F.; Wei, D.; Zhao, Y.; Zhang, Y.; Zhang, J.; Hu, X.; Yang, L. Predicting Land Use Change around Railway Stations: An Enhanced CA-Markov Model. Sustain. Cities Soc. 2024, 101, 105138. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Z.; Lin, J.; Wang, H.; Zheng, S.; Yang, S. Assessing Current and Future Soil Erosion under Changing Land Use Based on InVEST and FLUS Models in the Yihe River Basin, North China. Int. Soil Water Conserv. Res. 2024, 12, 298–312. [Google Scholar] [CrossRef]
- Xu, X.; Kong, W.; Wang, L.; Wang, T.; Luo, P.; Cui, J. A Novel and Dynamic Land Use/Cover Change Research Framework Based on an Improved PLUS Model and a Fuzzy Multiobjective Programming Model. Ecol. Inform. 2024, 80, 102460. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, Q.; Sun, Y.; Du, Q.; Xiao, X.; Luo, H.; Zhang, J.; Mi, J. Simulation of Future Land Use/Cover Change (LUCC) in Typical Watersheds of Arid Regions under Multiple Scenarios. J. Environ. Manag. 2023, 335, 117543. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yu, S.; Zhang, H.; Wang, Y.; Liang, C. Analysis of Land Use Change Drivers and Simulation of Different Future Scenarios: Taking Shanxi Province of China as an Example. Int. J. Environ. Res. Public Health 2023, 20, 1626. [Google Scholar] [CrossRef]
- Liu, J.; Xiong, J.; Chen, Y.; Sun, H.; Zhao, X.; Tu, F.; Gu, Y. An Integrated Model Chain for Future Flood Risk Prediction under Land-Use Changes. J. Environ. Manag. 2023, 342, 118125. [Google Scholar] [CrossRef]
- Wolf, S.O. The China-Pakistan Economic Corridor of the Belt and Road Initiative: Concept, Context and Assessment; Contemporary South Asian Studies; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-16197-2. [Google Scholar]
- Zheng, C.; Liang, J.; Wang, J. The Impact of Climate and Land Use on the Spatio-Temporal Changes of NDVI of China-Pakistan Economic Corridor. J. Ecol. Rural Environ. 2022, 38, 1147–1156. [Google Scholar]
- ESA. Climate Change Initiative-Land Cover. Available online: https://www.esa.int/ (accessed on 15 August 2024).
- WorldPop. High Resolution Population Distribution Maps. Available online: https://hub.worldpop.org/ (accessed on 15 August 2024).
- AG, M. OpenStreetMap. Available online: https://openmaptiles.org/languages/zh/ (accessed on 15 August 2024).
- Earth Science Data Systems, N. SRTM|Earthdata. Available online: https://www.earthdata.nasa.gov/sensors/srtm (accessed on 1 October 2024).
- Harmonized World Soil Database. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 15 August 2024).
- NCDC. Climate Data Online. Available online: https://www.ncdc.noaa.gov/cdo-web/datasets (accessed on 16 August 2024).
- Seyam, M.M.H.; Haque, M.R.; Rahman, M.M. Identifying the Land Use Land Cover (LULC) Changes Using Remote Sensing and GIS Approach: A Case Study at Bhaluka in Mymensingh, Bangladesh. Case Stud. Chem. Environ. Eng. 2023, 7, 100293. [Google Scholar] [CrossRef]
- Weng, Q. Land Use Change Analysis in the Zhujiang Delta of China Using Satellite Remote Sensing, GIS and Stochastic Modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.-O. Neural-Network-Based Cellular Automata for Simulating Multiple Land Use Changes Using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Wang, X.; Ma, B.W.; Li, D.; Chen, K.L.; Yao, H.S. Multi-scenario simulation and prediction of ecological space in Hubei province based on FLUS model. J. Nat. Resour. 2020, 35, 230–242. (In Chinese) [Google Scholar]
- Lambin, E.F.; Meyfroidt, P. Land Use Transitions: Socio-Ecological Feedback versus Socio-Economic Change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The New Geography of Contemporary Urbanization and the Environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef]
- Verburg, P.H.; Eickhout, B.; van Meijl, H. A Multi-Scale, Multi-Model Approach for Analyzing the Future Dynamics of European Land Use. Ann. Reg. Sci. 2008, 42, 57–77. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A Pathway for Stabilization of Radiative Forcing by 2100. Clim. Change 2011, 109, 77. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The Causes of Land-Use and Land-Cover Change: Moving beyond the Myths. Glob. Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling Urban Land Use Change by the Integration of Cellular Automaton and Markov Model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, Q.; Lin, J.; Luo, H.; Tan, Z.; Ma, Y. Simulating Land Use/Land Cover Change in an Arid Region with the Coupling Models. Ecol. Indic. 2021, 122, 107231. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land Use/Land Cover Prediction and Analysis of the Middle Reaches of the Yangtze River under Different Scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef]
- Lin, W.; Sun, Y.; Nijhuis, S.; Wang, Z. Scenario-Based Flood Risk Assessment for Urbanizing Deltas Using Future Land-Use Simulation (FLUS): Guangzhou Metropolitan Area as a Case Study. Sci. Total Environ. 2020, 739, 139899. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Cai, T.; Wen, Q.; Han, J.; Wang, S.; Wang, J.; Yin, C. Scenario Simulation of Land Use Change and Carbon Storage Response in Henan Province, China: 1990–2050. Ecol. Indic. 2023, 154, 110660. [Google Scholar] [CrossRef]
- Yousafzai, S.; Saeed, R.; Rahman, G.; Farish, S. Spatio-Temporal Assessment of Land Use Dynamics and Urbanization: Linking with Environmental Aspects and DPSIR Framework Approach. Environ. Sci. Pollut. Res. 2022, 29, 81337–81350. [Google Scholar] [CrossRef] [PubMed]
- Arshad, S.; Hasan Kazmi, J.; Fatima, M.; Khan, N. Change Detection of Land Cover/Land Use Dynamics in Arid Region of Bahawalpur District, Pakistan. Appl. Geomat. 2022, 14, 387–403. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Akram, W.; Ahmad, A.; Habib-ur-Rahman, M.; Ghaffar, A.; Amin, A.; Awais, M.; Farid, H.U.; Farooq, A.; et al. Study of Land Cover/Land Use Changes Using RS and GIS: A Case Study of Multan District, Pakistan. Environ. Monit. Assess. 2020, 192, 2. [Google Scholar] [CrossRef]
- Shih, J.; Ma, Y.; Xu, Z. Impact of land use change on habitat quality in Kashgar. Southwest J. Agric. 2023, 36, 2480–2490. (In Chinese) [Google Scholar] [CrossRef]
- Sun, Y.; Maimaitituxun, M.; Mahemujiang, A.; Tao, H.; Li, Q. Research on the Temporal and Spatial Dynamic Changes of Vegetation Coverage in Kashgar City from 1995 to 2020. China Rural. Water Conserv. Hydropower 2022, 1, 71–78+92. (In Chinese) [Google Scholar]
- Suo, X.; Cao, S. China’s Three North Shelter Forest Program: Cost–Benefit Analysis and Policy Implications. Environ. Dev. Sustain. 2021, 23, 14605–14618. [Google Scholar] [CrossRef]
- Zhang, H.D.; Meng, L.Q.; Ai, S.; Saitiniaz, A.; Dilai; Ju, X.F. Spatial and temporal evolution of vegetation growth in the Kashgar oasis area of Xinjiang and its response to mean temperature and precipitation. Xinjiang Geol. 2023, 41, 76. (In Chinese) [Google Scholar]
- Waleed, M.; Sajjad, M.; Shazil, M.S. Urbanization-Led Land Cover Change Impacts Terrestrial Carbon Storage Capacity: A High-Resolution Remote Sensing-Based Nation-Wide Assessment in Pakistan (1990–2020). Environ. Impact Assess. Rev. 2024, 105, 107396. [Google Scholar] [CrossRef]
- Zhang, R.; Liang, T.; Guo, J.; Xie, H.; Feng, Q.; Aimaiti, Y. Grassland Dynamics in Response to Climate Change and Human Activities in Xinjiang from 2000 to 2014. Sci. Rep. 2018, 8, 2888. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Qamer, F.M.; Murthy, M.S.; Tripathi, N.K.; Ning, W.; Sharma, E.; Ali, G. Grassland Growth in Response to Climate Variability in the Upper Indus Basin, Pakistan. Climate 2015, 3, 697–714. [Google Scholar] [CrossRef]
- Akhtar, M.; Zhao, Y.; Gao, G.; Gulzar, Q.; Hussain, A. Assessment of Spatiotemporal Variations of Ecosystem Service Values and Hotspots in a Dryland: A Case-study in Pakistan. Land Degrad. Dev. 2022, 33, 1383–1397. [Google Scholar] [CrossRef]
- Ali, A. China Pakistan Economic Corridor (CPEC): Prospects and Challenges for Regional Integeration. Int. J. Soc. Sci. Humanit. 2015, 7, 1–15. [Google Scholar]
- Esteban, M. The China-Pakistan Corridor. Strateg. Stud. 2016, 36, 63–74. [Google Scholar]
- Ibrar, M.; Mi, J.; Mumtaz, M.; Rafiq, M.; Buriro, N. The Importance of China-Pakistan Economic Corridor from Regional Development Perspective. In Proceedings of the 31st International Business Information Management Association (IBIMA 2018), Milan, Italy, 25–26 April 2018. [Google Scholar]
- Song, J.; Betz, F.; Aishan, T.; Halik, Ü.; Abliz, A. Impact of Water Supply on the Restoration of the Severely Damaged Riparian Plants along the Tarim River in Xinjiang, Northwest China. Ecol. Indic. 2024, 158, 111570. [Google Scholar] [CrossRef]
- Chen, H.; Chao, W.; Xue, Z.; Wei, H.; Li, Q. The Assessment of Green Poverty Reduction Strategies in Ecologically Fragile Areas: A Case Study of Southern Xinjiang in China. Sustainability 2024, 16, 6441. [Google Scholar] [CrossRef]
- Chen, D.; Deng, X.; Jin, G.; Samie, A.; Li, Z. Land-Use-Change Induced Dynamics of Carbon Stocks of the Terrestrial Ecosystem in Pakistan. Phys. Chem. Earth Parts A/B/C 2017, 101, 13–20. [Google Scholar] [CrossRef]
- Aziz, T. Changes in Land Use and Ecosystem Services Values in Pakistan, 1950–2050. Environ. Dev. 2021, 37, 100576. [Google Scholar] [CrossRef]
- Bi, X.; Li, B.; Zhang, L.; Nan, B.; Zhang, X.; Yang, Z. Response of Grassland Productivity to Climate Change and Anthropogenic Activities in Arid Regions of Central Asia. PeerJ 2020, 8, e9797. [Google Scholar] [CrossRef]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X. Effects of Land Use and Climate Change on Ecosystem Services in Central Asia’s Arid Regions: A Case Study in Altay Prefecture, China. Sci. Total Environ. 2017, 607, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Xie, W. Why Pakistan Needs More Reservoirs, and Fast. Nature 2018, 560, 431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.R.; Li, A.N.; Nan, X.; Lei, G.; Wang, C. Multi-scenario Simulation of Land Use Change Along China-Pakistan Economic Corridor through Coupling FLUs Model with SD Model. J. Geo-Inf. Sci. 2020, 22, 2393–2409. (In Chinese) [Google Scholar]
- Ali, M. China–Pakistan Economic Corridor: Prospects and Challenges. Contemp. South Asia 2020, 28, 100–112. [Google Scholar] [CrossRef]
- Afzal, J.; Afzal, M.A.; Nishtar, Z. Completion of the Ten Years of the China-Pakistan Economic Corridor (CPEC) and Its Economical Goals. Inverge J. Soc. Sci. 2023, 2, 23–29. [Google Scholar]
- Long, H.; Qu, Y. Land Use Transitions and Land Management: A Mutual Feedback Perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Shen, Q.; Chen, Q.; Tang, B.; Yeung, S.; Hu, Y.; Cheung, G. A System Dynamics Model for the Sustainable Land Use Planning and Development. Habitat Int. 2009, 33, 15–25. [Google Scholar] [CrossRef]
- Valbuena, D.; Verburg, P.H.; Bregt, A.K.; Ligtenberg, A. An Agent-Based Approach to Model Land-Use Change at a Regional Scale. Landsc. Ecol. 2010, 25, 185–199. [Google Scholar] [CrossRef]
- Razzaq, N. China-Pakistan Economic Corridor (CPEC) and Climate Change in Balochistan: Problems and Prospects. J. Dev. Soc. Sci. 2023, 4, 433–438. [Google Scholar]
Category | Data Name | Year | Data Source |
---|---|---|---|
Land database | Land use data | 2000–2020 | European Space Agency (http://maps.elie.ucl.ac.be/CCI/viewer/ (accessed on 3 January 2024)) [29] |
Socio-economic data | Population distribution | 2015–2020 | WorldPop (https://hub.worldpop.org/geodata/listing?id=76 (accessed on 25 January 2024)) [30] |
GDP (NPP-VIIRS Nigh-time Lighting Data) | 2015–2020 | Google Earth Engine | |
Basic geographic information | Constructions | 2020 | OpenStreetMap (https://openmaptiles.org/languages/zh/ (accessed on 25 January 2024)) [31] |
Road | |||
River | |||
Topography | Digital elevation model data | 2020 | SRTM (https://lpdaac.usgs.gov/products/srtmgl1v003/ (accessed on 6 January 2024)) [32] |
Slope | |||
Slope direction | |||
Soil | Soil pH | 2020 | HWSD (https://lpdaac.usgs.gov/products/srtmgl1v003/ (accessed on 16 January 2024)) [33] |
Quantity of sediment | |||
Organic carbon | |||
Climactic | Temperatures | 2015–2020 | National Weather Data Center (https://www.ncdc.noaa.gov/cdo-web/datasets (accessed on 5 January 2024)) [34] |
Quantity of rainfall |
Farmland | Forest Land | Grassland | Water Area | Urban Land | Unutilized Land | |
---|---|---|---|---|---|---|
Natural Development | 0.7 | 0.5 | 0.6 | 0.4 | 0.7 | 0.4 |
Investment Priority | 0.4 | 0.3 | 0.4 | 0.2 | 1 | 0.2 |
Ecological Protection | 0.2 | 1 | 0.6 | 0.3 | 0.2 | 0.2 |
Harmonious Development | 0.5 | 0.7 | 0.6 | 0.4 | 0.9 | 0.4 |
Mark | Natural Development | Investment Priority | Ecological Protection | Harmonious Development | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | |
a | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
b | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
d | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
e | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Types | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | ||||
---|---|---|---|---|---|---|---|---|
Variation | Dynamic Degree | Variation | Dynamic Degree | Variation | Dynamic Degree | Variation | Dynamic Degree | |
Farmland | 9313 | 0.057% | 13,774 | 0.083% | −6581 | 0.040% | −14,061 | 0.085% |
Forest land | −4226 | 0.097% | 3048 | 0.070% | 1396 | 0.032% | 6400 | 0.147% |
Grassland | 152,464 | 1.019% | 130,505 | 0.830% | −3058 | 0.019% | 14,257 | 0.087% |
Water area | −341 | 0.076% | −3041 | 0.683% | 1191 | 0.277% | 524 | 0.120% |
Urban land | 18,985 | 41.470% | 9415 | 6.691% | 12,522 | 6.668% | 11,284 | 4.507% |
Unutilized land | −176,201 | 0.608% | −153,701 | 0.547% | −5470 | 0.020% | −18,404 | 0.067% |
General | 19,622.6 | 0.37% | 15,775.4 | 0.30% | 4055.13 | 0.080% | 7958.34 | 0.015% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Chen, H.; Hai, Y. Land Use Changes and Future Land Use Scenario Simulations of the China–Pakistan Economic Corridor under the Belt and Road Initiative. Sustainability 2024, 16, 8842. https://doi.org/10.3390/su16208842
Deng Y, Chen H, Hai Y. Land Use Changes and Future Land Use Scenario Simulations of the China–Pakistan Economic Corridor under the Belt and Road Initiative. Sustainability. 2024; 16(20):8842. https://doi.org/10.3390/su16208842
Chicago/Turabian StyleDeng, Yuanjie, Hang Chen, and Yifeng Hai. 2024. "Land Use Changes and Future Land Use Scenario Simulations of the China–Pakistan Economic Corridor under the Belt and Road Initiative" Sustainability 16, no. 20: 8842. https://doi.org/10.3390/su16208842
APA StyleDeng, Y., Chen, H., & Hai, Y. (2024). Land Use Changes and Future Land Use Scenario Simulations of the China–Pakistan Economic Corridor under the Belt and Road Initiative. Sustainability, 16(20), 8842. https://doi.org/10.3390/su16208842