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Abstract: The remediation of dredged sediments (DS) as a major waste generation field has become an
urgent environmental issue. In response to the limited strategies to restore DS, the current study aimed
to investigate the suitability of Paulownia tomentosa (Thunb.) Steud as a tool for decontamination of
DS, both independently and in combination with a sewage sludge-based biochar. The experimental
design included unamended and biochar-supplemented DS with the application rates of 2.5, 5.0, and
10.0%, in which vegetation of P. tomentosa was monitored. The results confirmed that the incorporation
of biochar enriched DS with the essential plant nutrients (P, Ca, and S), stimulated biomass yield
and improved the plant’s photosynthetic performance by up to 3.36 and 80.0 times, respectively;
the observed effects were correlated with the application rates. In addition, biochar enhanced the
phytostabilisation of organic contaminants and shifted the primary accumulation of potentially toxic
elements from the aboveground biomass to the roots. In spite of the inspiring results, further research
has to concentrate on the investigation of the mechanisms of improvement the plant’s development
depending on biochar’s properties and application rate and studying the biochar’s mitigation effects
in the explored DS research system.

Keywords: complex contamination; waste valorisation; Paulownia tomentosa; biochar dose;
circular economy

1. Introduction

Sediment dredging, an essential process required for water navigation, construction,
reclamation, mining, and environment replenishment activities [1], simultaneously leads
to significant waste generation [2], nowadays reaching up to 44, 50, 56, 80, 152, and
360 M m3 y−1 in the UK, Germany, France, Brazil, the USA, and India, respectively [3–5].
To reduce the volume of dredged sediments (DS) waste, and in line with the R6 concept of
a circular economy, this waste has to be re-used [6], ensuring the major R5 functions of DS
utilisation [7].

Recent studies have proposed different ways for reusing the waste DS in the construc-
tion of buildings and roads (concrete materials, bricks, and ceramics) [3,6,8–10] without any
constraints for contamination levels [9]. There are proposals to reuse DS in agriculture for
the prevention of soil erosion or as a peat substitution [3,4,11,12]; however, the approaches
have implementation’s barrier because of the strict request for recycled material in terms
of contamination [13–18]. Consequently, although the utilisation of waste sediments in
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agriculture looks very promising, prior to application, DS have to be significantly cleaned
from contaminants of both organic and inorganic origin. Indeed, given the substantial vol-
ume of sediments designated for dredging and recycling, estimated in the Czech Republic
as 200 M m3 [19], the further valorisation of DS demands the development of sustainable
approaches aimed at their remediation.

The biological cleaning of DS remains underexplored due to their heterogeneous
composition and limited oxygen availability [20]. Numerous studies have demonstrated
the viability of phytoremediation for the revitalisation of sediments both ex situ and
in situ [21–30]. The selection of plants should be based on the phytoremediation potential
in relation to the target contaminants and ecological adaptability [31]. Paulownia tomentosa
(Thunb.) Steud (P. tomentosa) is among the viable candidates due to the plant’s tolerance
to xenobiotics, essential yield achieved even under the non-optimised growth conditions,
and ability to accumulate trace elements (TEs) and organochlorine pesticides [32,33]. The
application of the widely utilised phytoagent Miscanthus × giganteus [34] in DS that is com-
plexly contaminated by pesticides and TEs, may be unsuccessful due to earlier reported
essential stress plant experiences in heavily pesticide-contaminated soil [35]. The substi-
tution of Miscanthus × giganteus for Miscanthus sinensis, proposed for Kazakhstan [35,36],
cannot be implemented in some European countries, including the Czech Republic, where
Miscanthus sinensis is classified as an invasive crop [37,38]. Despite the approved attrac-
tiveness of Paulownia sp. biomass for valorisation in biorefineries [39], the investigations
covering the scientific framework for utilisation are limited: from 1971 to 2021, only 820 sci-
entific documents were published on the related topics [40]. The studies dedicated to the
exploration of P. tomentosa as a phytoagent are almost absent, and the existing ones focus
on the phytoremediation of TE-contaminated soils [41–45]. Our previous research on the
behaviour of P. tomentosa in soils complexly contaminated with organochlorine pesticides
and TEs was pioneering [33] in terms of the utilisation of this plant for the phytoremedia-
tion of complexly contaminated soil. The current study aimed to continue investigation
on the potential of P. tomentosa to develop within the same contamination nature but in a
different substrate. In addition, recent phytoremediation studies give some preference to
tree plants since, along with greater yield performance and economically viable valorisation
options, they can capture carbon dioxide (CO2) and release oxygen into the atmosphere
more intensively compared to grass phyto-agents [46,47].

According to the integrated phytoremediation–bioenergy strategy [48], suggesting to advance
the phytoremediation process by utilising soil amendments, incorporation of biochar into the
phytoremediation process will provide an additional value due to its climate change-mitigating
potential by increasing C storage and decreasing GHG emissions [49]. Biochar is a C-rich substance
produced by the pyrolysis of organic wastes; it boosts crop productivity, improves soil biological and
physicochemical properties, and increases the activity of soil microbial communities [50]. Biochar
is gaining increasing attention as a novel stabilising agent that immobilises organic contaminants
and TEs through direct mechanisms such as electrostatic attraction, ion exchange, complexation,
and precipitation [51]. Additionally, it alters contaminant availability through indirect mechanisms,
i.e., influencing soil properties, i.e., pH, cation exchange capacity, mineral composition, microbial
abundance, and organic carbon content [51,52]. However, the positive effects of biochar depend
on factors such as the precursor material, pyrolysis conditions, and application rates [53–55], and
the benefits are not always guaranteed [49,56]. Kononchuk et al. [57] found that increasing the
biochar application rate does not necessarily improve the biomass yield, while Xu et al. [58]
highlighted that biochar may introduce environmental risks into phytoremediated systems, such
as nitrate leaching [51] or secondary contamination [55]. Recent studies have shown that biochar
incorporation can stimulate a removal efficiency of over 77% for Cu, Zn, and Pb [59]. Moreover, a
comparative analysis of slaked lime, phosphogypsum, bone meal, and rice husk-derived biochar
for their sorption capacity related to As, Cd, and Pb revealed that biochar had a significantly higher
sorption capacity [60]. Thus, despite holding a great potential, biochar remains an underexplored
“black gold” that requires further in-depth research and validation across various systems and
environmental matrices.
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The developing strategy on valorising DS through phytoremediation using the fast-
growing timber species P. tomentosa aligns with selected Sustainable Development Goals
(SDGs) outlined in the 2030 Agenda for Sustainable Development [61]. Specifically, the
approach supports SDG 6.6, which focuses on protecting and restoring water-related
ecosystems, is in line with SDG 14.a, which requests to strengthen scientific knowledge and
research capacity in improving the state of the environment, and SDG 15.3, which targets
the restoration of degraded land and soil by 2030 [61]. The proposed strategy fits within
SDG 6.6, as the contaminated DS investigated in this study are fluvial sediments. The
valorised (remediated) DS are intended for use as peat substitutes in sustainable agriculture,
aligning with SDG 15.3. As of 2 May 2024, progress toward pointed SDGs is varied: 35–50%
of targets are experiencing stagnation or regression, 30–65% show moderate progress, and
0–20% have been fully met [62]. These results underscore the urgent need to develop
sustainable measures and new technological approaches, including those for DS.

The current study aimed to evaluate the phytoremediation potential of P. tomentosa in
a ‘sediment–biochar’ system. In the case of positive results, the approach may be proposed
for the agriculture sector to receive the cleaned DS to be utilised for improving the soil
quality and expanding the land bank.

2. Materials and Methods
2.1. Sediments Collection

The dredged sediments utilised in the experiment were collected manually (by shovel)
in Hajek, Czech Republic (GPS 50◦17′31.5′′ N 12◦53′35.2′′ E). The sediments were complexly
contaminated with trace elements (TEs) and hexachlorocyclohexane (HCH) isomers (α-, β-,
γ-, δ-, and ε-). The contamination of the site originated from HCH production since the
1960s, primarily consisting of ballast isomers and chlorobenzenes [63]. Concentrations of
HCH isomers and TEs in the DS are presented in Table 1.

Table 1. Initial concentrations of HCH isomers (µg kg−1) and TEs (mg kg−1) in DS and biochar.

Contaminant MPC Sediments MAT Biochar

α-

10.3 a

18.1 ± 1.53 − −
β- 102 ± 9.02 − −
γ- 59.6 ± 5.88 − −
δ- 283 ± 21.5 − −
ε- 560 ± 41.0 − −

∑ 1023 ± 56.8 − −
Mg − 40,321 ± 1546 − 22,147 ± 1783
Al − 90,957 ± 816 − 42,842 ± 1057
Si − 197,636 ± 966 − 83,524 ± 979
P − 11,935 ± 345 − 176,149 ± 6165
S − 382 ± 30.0 − 10,257 ± 12.5
K − 12,154 ± 830 − 13,425 ± 613
Ca − 45,115 ± 944 − 132,669 ± 4541
Ti − 25,713 ± 510 − 5253 ± 250
Cr 200 459 ± 20.5 − 242 ± 9.00
Mn − 2888 ± 107 − 4039 ± 220
Fe − 124,914 ± 468 − 46,049 ± 2481
Cu 100 152 ± 9.50 143–6000 763 ± 37.5
Zn 300 131 ± 7.00 416–7400 3616 ± 287
Rb − 181 ± 6.00 − 43.6 ± 1.12
Sr − 400 ± 8.00 400 830 ± 60.0
Zr − 378 ± 6.00 − 143 ± 2.52
Nb − 137 ± 4.51 − −
Pb 100 202 ± 15.0 121–300 103 ± 5.65

Note: MPC—Maximum Permissible Concentrations [13]; MAT—maximum allowable thresholds [64]; a—MPC for
Benthic community (freshwater sediment) [65].



Sustainability 2024, 16, 9080 4 of 20

2.2. Experiment Layout

The planting material was the one-year-old seedlings of Paulownia tomentosa (Thunb.)
Steud (www.fascinujicipaulownia.cz, accessed on 25 September 2024). DS were amended
with 2.5, 5.0, and 10% biochar. The material was produced by Agmeco s.r.o. via pyrolysis
at 600–650 ◦C of sewage sludge from the municipal wastewater treatment plant in Brno,
Czech Republic. The results of biochar proximate and ultimate analyses are presented in
detail in Pidlisnyuk et al. [66,67]. The research biochar has an increased content of ash
(56.5 ± 0.21 wt.%), an alkaline pH (9.34 ± 0.26), and a first carbon (C) storage class with
the potential to sequester 190 g C kg−1 in soil for 100 years [68]. TEs content in biochar
is presented in Table 1. To obtain 2.5, 5, and 10% (w.w) biochar-amended sediments, 1.5,
3.0, and 6.0 kg of biochar, respectively, were added to 58.5, 57.0, and 54.0 kg of sediments
(20 kg per pot × 3) and thoroughly mixed 1 h in a concrete mixer. The seedlings were
planted in pots containing 20 kg of biochar-amended sediments and kept during the
experiment outside (yard of Crop Research Institute, Chomutov, the Czech Republic; GPS
50◦27′50.54′′ N, 13◦22′49.093′′ E). The experimental design was as follows:

Unamended sediments + P. tomentosa;
A total of 2.5% biochar-amended sediments + P. tomentosa;
A total of 5.0% biochar-amended sediments + P. tomentosa;
A total of 10% biochar-amended sediments + P. tomentosa.
Each variant was conducted in triplicate. The experiment was established on 1 June

2021, and finished on October 18, 2021, when plant biomass was harvested. During the
experiment, soil moisture was maintained when necessary. Physiological parameters,
i.e., plant height, stem diameter, and leaf length and width, were measured monthly. The
chlorophyll a fluorescence was analysed using a portable fluorimeter HandyPEA+ (Hansat-
ech Instruments Ltd., Norfolk, UK). The detailed description of fluorescence transient and
biophysical parameters examined was provided earlier [69].

2.3. Sample Collection at Harvest

The aboveground biomass (AGB) and roots of P. tomentosa were harvested following
the ISO 11464:2007 standard [70] and dried in the open air until a constant weight was
reached, i.e., when the difference between two consecutively measured weights was within
0.0001 g. Before drying, root samples were thoroughly washed under a tap water. The
dry weight (DW) was calculated for leaves, stems, and roots; each sample was separately
collected into the labelled plastic zip-lock bag and stored at room temperature until chemical
analysis was provided.

2.4. Chemical Analysis of Substrate and Plant Samples

The preparation of DS and plant samples for the chemical analysis was performed
following ISO 11465-2001 [71] and 11464:2007 [70]. The procedure was explained in detail
earlier [72]. Briefly, the samples of DS were dried at 105 ◦C to a constant mass; thereafter,
they were placed onto a clean sheet of paper and small stones, plant particles, and other
inclusions were removed. Bigger clods were ground in a porcelain mortar and mixed with
the main part of the DS sample. Then, the thoroughly mixed substrate was put on a piece
of clean paper in a square and divided into four equal parts using a spatula. Two opposite
parts were removed, and two others were combined, remixed, and used for the analysis.
This average sample was additionally sieved (0.25 mm pore size). The preparation of plant
samples is described in Section 2.3.

2.4.1. Chemical Analysis of Trace Elements Content

The TE content in the DS and plant samples was analysed using X-ray fluorescence
analysis following the United States Environmental Protection Agency [73] standard using
an Elvax Light SDD Analyzer (Elvatech, Kyiv, Ukraine). The layout of the analysis was
described in detail earlier in Pidlisnyuk et al. [74]. Briefly, plant samples were combusted
at 400 ◦C for 4 h, cooled for 1 h in desiccators, weighed, and processed for the analysis.

www.fascinujicipaulownia.cz
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The device used can detect chemical elements in a range from 11Na to 92U with a high
accuracy (0.01%). The time of data collection was 2 × 180 s for all the samples. The limits of
the absolute measuring error were ±0.05–0.20% (with the time of one measurement being
180 s). Three parallel measurements were taken for each sample. The level of TEs in the
soil was determined in mg kg−1. The level of TEs in the biomass was determined in mass
units in the ash and then recalculated to mg kg−1 based on the ash content of the initial
plant material. For the overall calculation, the concentration was expressed in mg kg−1

DW. In the case of the DS analysis, the samples (~2 g) were placed on ultra-thin (4 µm)
polypropylene film (supplied with the device), which is transparent to X-rays, and further
accurately transferred to the device, where a measurement was performed. In the case
of biomass tissues, the combusted samples (ash) of roots, stems, and leaves (~0.5 g) were
placed inside a plastic ring (d = 1.25 cm), which was located on a similar thin polypropylene
film, and compacted using a glass rod. The resulting sample was transferred into a device
for measurement.

2.4.2. Chemical Analysis of HCH Isomers Content

The concentrations of HCH isomers in the DS and plant samples were determined
following the procedure described earlier [63] using two GC-MS assemblies. An RSH/Trace
1310/TSQ 8000 GC-MS array (Thermo Fisher Scientific, Waltham, MA, USA) with a Scion-
5MS column (SCION Instruments, Goes, The Netherlands) was used. The limit of quan-
tification (LOQ) was <0.01 µg L−1. Samples were extracted using the headspace SPME
technique, either by using a PDMS/DVB fibre with a coating thickness of 100 µm (Supelco,
Bellefonte, PA, USA) or by directly injecting the sample in static headspace mode. Prior
to extraction, samples were derivatised so that acetylated chlorophenols were formed.
An isotopically labelled compound (γ-HCH D6) was used as an internal GC-MS/MS
analysis standard.

2.5. Phytoremediation Coefficients

The phytoremediation potential of P. tomentosa in relation to the complexly contami-
nated DS was evaluated using bioconcentration (BCF) and translocation (TLF) factors and
a comprehensive bio-concentration index (CBCI) [75].

The BCF was calculated according to Zayed et al. [76]:

BCF =
Contaminant concentration in plant tissues at harvest

Initial contaminant concentration in DSs
(1)

The TLF was calculated according to Yanqun et al. [77]:

TLF =
Contaminant concentration in aboveground biomass

Contaminant concentration in roots
(2)

The CBCI was calculated to evaluate the plant’s ability to accumulate multiple TEs
according to Zhao et al. [78]:

CBCI =
1
n

n

∑
i=1

BCFi − BCFi.min
BCFi.max − BCFi.min

(3)

where n is the total number of TEs and i is a particular TE.

2.6. Techno–Economic Analysis

To conduct the techno–economic analysis, two contrasting scenarios for plant biomass
valorisation were applied. The following parameters were used in both scenarios: (a) the
cost of planting materials was CZK 69 per seedling (~EUR 2.72), based on actual costs
from a supplier (www.fascinujicipaulownia.cz, accessed on 25 September 2024); (b) labour
requirements for farming operations such as ploughing, harrowing, planting, and weed

www.fascinujicipaulownia.cz
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control were 2, 1.29, 23.48, and 1 man h−1 ha−1, respectively [79–81]; (c) the labour cost
was set at EUR 7.93 h−1 [82]; (d) the market price of biochar was EUR 499 t−1 [81].

Additionally, the economic model was adapted to the functional unit of 1 m3 and
developed to account for the volume of sediments designated for dredging and recycling,
which is estimated at 200 M m3 in the Czech Republic [19]. Typically, economic or environ-
mental assessments of phytoremediation or plant cultivation are calculated per hectare (ha);
therefore, the 200 M m3 of dredged sediments was converted to hectares, corresponding to
approximately 10 ha, assuming a 2 m depth as optimal for a tree root development.

While the cost of sediment dredging typically plays a crucial role in the overall invest-
ment, it was excluded from the current model. This decision was made to focus on the value
added by biochar as a soil amendment under the assumption that the sediments had already
been dredged. In addition, dredging, transport, and disposal are the common steps in con-
taminated sediment remediation, with associated costs of USD 22.4 m−3 (~EUR 20.4 m−3)
for non-hopper dredging of contaminated sediments [83], USD 120 h−1 (~EUR 109 h−1)
for transport [84], and USD 150 m−3 (~EUR 137 m−3) for disposal [84]. The total cost of
dredging 200 M m3 of sediments would be EUR 4,080,000 (or EUR 408,000 ha−1). The total
cost of disposing of contaminated dredged sediments would be EUR 27,400,000 (or EUR
2,740,000 ha−1). These calculations were used to evaluate the feasibility of the proposed
phytoremediation strategy for valorising DS.

2.6.1. Scenario 1: Dual-Use Production for Timber and Woodchips

The first scenario followed the dual-use production approach proposed by Testa et al. [85],
focusing on P. tomentosa cultivation for high-quality wood biomass production. For this pur-
pose, the planting density should be ~600 plants per hectare (pl ha−1) [86]. Specifically, a
planting density of 625 pl ha−1 was used, with a 20-year lifecycle, harvesting every 4 years
to produce stems with a 25 cm diameter and 6 m length. The harvest cost was estimated at
EUR 800 [86]. The market price for timber was set at EUR 140 t−1, and, for wood chips, EUR
80 t−1 [85].

2.6.2. Scenario 2: Biomass–Biogas–Electricity Value Chain

The second scenario involved valorising plant biomass through a “biomass–biogas–
electricity” value chain [27,81]. For energy purposes, the planting density was increased to
2000–3500 pl ha−1 [86]. Specifically, 3000 pl ha−1 was used, with a 14-year lifecycle and
annual harvests. The harvest cost was set at EUR 600 [86]. The substrate-specific methane
yield (SMY) was 194 m3 (to DM)−1 [86]. According to Suhartini et al. [87], 1 m3 of methane
produces 0.036 GJ, and 1 GJ of electricity costs EUR 45.12 [88].

The economic efficiency was determined based on the following equation:

Revenue = Production value − Total production cost (4)

2.7. Statistical Analysis

Statistical analysis was performed using RStudio software (version 2023.06.0 Build 421,
RStudio PBC, 2023). An analysis of variance (ANOVA) was performed to detect statistically
significant differences between the examined treatments. If a significant difference was
detected by ANOVA, Tukey’s HSD test was performed for pairwise comparison. The
treatments were categorised according to results of the test (by letters in descending order),
and respective boxplots and graphs were produced.

3. Results and Discussion
3.1. Influence of Biochar Incorporation on DS Elemental Composition

Chemical analysis of DS on TEs content revealed that chromium (Cr), copper (Cu),
and lead (Pb) concentrations exceeded the MPC defined for sediments by 2.30, 2.08, and
2.02 times, respectively (Tables 1 and S1). Incorporation of biochar at three application
rates differently influenced the concentrations of essential for plant development (EEs) and
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potentially toxic (PTEs) elements. In the case of EEs, the DS were benefited gradually, in
terms of P, S, and Ca, with increasing biochar application rates, whereas the concentration of
Mg, Al, and Ti in research sediments decreased with the incorporation of biochar (Figure 1).
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Considering PTEs, concentrations of Cr, Mn, Fe, Zr, Rb, Nb, and Pb decreased in
biochar-amended sediments, while the content of Cu, Zn, and Sr increased by 29.1, 389, and
27.9% at the highest application rate of 10% (Figure 1). The reduction of PTEs concentrations
in DS corresponded to biochar application rates (except for Mn), specifically, up to 47.0, 23.1,
24.4, 24.1, 21.7, 31.9, and 45.5%, respectively. Indeed, biochar affected Cu and Pb contents
at the highest application rate only. Furthermore, even at 2.5% biochar, Zn concentration in
sediments exceeded the MPC value (Table S1).

3.2. Influence of Biochar Incorporation on Plant Physiological Parameters

Incorporation of biochar at distinct application rates led to a significant increase
in all parameters measured (Figure 2). P. tomentosa height increased by 45.7–49.8% at
2.5–5.0% biochar application rates, peaking at 10% biochar (by 82.0%). Stem diameter was
significantly influenced by 10% biochar only, increasing by 54.4% (Figure 2b). Meanwhile,
aboveground biomass (AGB) DW gradually increased with increasing biochar doses by
85.5, 182, and 336%, respectively (Figure 2c). Indeed, stem DW was more sensitive to
biochar incorporation with a significant increase even at 2.5% biochar, whereas a significant
difference in leaf DW was observed at higher application rates. Root biomass DW increased
equally without dependence on biochar application rates by up to 243% (Figure 2d). In
the case of leaf length, the biochar effect mirrored the pattern observed in plant height,
increasing the parameter by up to 74.1% (Table S2). Considering leaf width, biochar
incorporation exerted an impact similar to that observed for stem diameter, with an increase
of up to 78.5% (Table S2).

3.3. Influence of Biochar Incorporation on Plant Chlorophyll Fluorescence

To evaluate the structural and functional alterations in photosynthetic apparatus in
response to the complex contamination and biochar incorporation, twenty-three OJIP-test
parameters were examined (Table S3; Figures 3 and S1). All parameters either gradually
increased or decreased with increasing biochar application rates. Biochar incorporation
retarded the reaction centre (RCs) closure rate (M0) by inhibiting trapped energy flux
(TR0/RC) and enhancing electron transport (ET0/RC), which led to an increased probability
of moving electrons to the ETC by trapped exciton (ET0/TR0). The maximum quantum
yield of primary photochemistry (TR0/ABS or FV/FM) and RCs’ density per excited cross-
section (CS) increased with biochar incorporation, whereas the photon flux absorbed by
chlorophylls (ABS/RC) decreased. However, overall absorption-based performance (PIABS)
essentially increased by up to 80 times.
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Figure 3. Specific and phenomenological parameters of chlorophyll fluorescence of P. tomentosa grown in
biochar-amended sediments. Presented values normalised referring to control. Note: ABS—absorption;
RC—reaction centre; TR—trapped energy; ET—electron transport; DI—dissipation; CS—cross-section;
PI—performance index [89,90].

3.4. Influence of Biochar Incorporation on Plant Phytoremediation Potential

Analysing the uptake of HCH isomers by P. tomentosa, noticeable accumulation was
solely observed in the plant roots (Figure 4). Furthermore, β- and δ-isomers were only
found in plant roots among the five isomers detected in the DS. In the 5.0 and 10% biochar-
amended sediments, the root BCFs for β- and δ-isomers increased by up to 119%.
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Analysing the phytoremediation potential of P. tomentosa concerning elements in DS
revealed distinct accumulation trends as biochar application rates rose (Table S4): Mg, Al,
Si, Ti, Cr, Mn, Fe, Sr, Zr, and Pb decreased in AGB but increased in roots; P, S, Ca, and Zn
decreased in both plant tissues; K increased in both plant tissues; Cu and Rb increased in
AGB till 5.0% biochar with a subsequent decrease at 10% biochar.

Hence, upon evaluating the CBCI values separately for EEs and PTEs, it is evident that
biochar incorporation into sediments prompted a shift in the primary accumulation site
from AGB to roots, resulting in an overall decrease in TE accumulation within P. tomentosa
(Figures 4 and S2). Specifically, a notable reduction in EE accumulation occurred in both
AGB (0.81–0.40) and roots (0.32–0.09) when plants were grown in 0–5.0% biochar-amended
sediments. However, in 10% biochar-amended sediments, EE accumulation in roots in-
creased to 0.45 (Figure S2).

Unexpectedly, at 2.5% biochar, the translocation of S and K to AGB increased, while
Ca, Zn, and Pb translocation remained unchanged (Figure S3). However, in 5.0% biochar-
amended sediments, the translocation of P, S, K, Ca, Cu, Zn, Rb, Zr, and Pb to AGB increased,
while Mg, Al, and Mn translocation remained constant. Interestingly, in sediments with
10% biochar, translocation decreased for all elements except K and Pb.

3.5. Principal Component Analysis

In order to investigate the interconnection between varied applied treatments and
plant physiology, morphology, and phytoremediation potential, a correlation within physi-
ological, morphological, and phytoremediation parameters was estimated (Tables S5–S7),
and biplots of PCA were plotted (Figure 5). The first principal component (PC1) and second
principal component (PC2) accounted for 55.6 and 30.8% of the data variance, respectively,
covering 86.4% of data variability. The control treatment located on the left side is sep-
arated from the biochar-amended treatments by PC1 (Figure 5a). At the same time, the
control and 10% biochar-amended treatments are also differentiated from the remaining
biochar-amended treatments by PC2.

PC1 was mainly contributed by Zn and S accumulation in the roots, P accumulation
in the aboveground biomass, plant root biomass, and stress indicator (Fv/Fm). It can be
concluded that the incorporation of sludge-based biochar into contaminated DS positively
affects plant biomass productivity, eliminating the negative impact of complex contami-
nation. Furthermore, since Cr accumulation in roots, Cu, Mg, and K accumulation in the
aboveground biomass, and plant stem diameter are the main contributors to PC2, lower
application rates (2.5 and 5%) can be considered more suitable for application in P. tomentosa
phytoremediation of DS as it permitted them to avoid Cr accumulation in plant roots.
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3.6. Techno–Economic Analysis

In the establishment year, total labour requirements and costs for ploughing, har-
rowing, planting, and weed control were 29.8 man h−1 ha−1 and EUR 1036 ha−1 for the
unamended system, and 53.3 man h−1 ha−1 and EUR 1222 ha−1 for the biochar-amended
system (Table 2). Diesel consumption and costs were 50.8 L ha−1 and EUR 75.2 ha−1 for all
experimental treatments. Similar figures were obtained for scenario 2 except labour cost,
specifically EUR 836 ha−1 for the unamended system and EUR 1022 ha−1 for the biochar-
amended system (Table 3). For the second and subsequent years, total labour requirements,
labour costs, and diesel usage across all experimental treatments were 3 man h−1 ha−1,
EUR 824 (or 624) ha−1, 22.5 L ha−1, and EUR 33.3 ha−1, respectively.

Table 2. The economic costs of valorising P. tomentosa biomass via dual-use production for timber
and woodchips (Scenario 1).

Operation
Labour Diesel Materials Total Inputs

EUR ha−1 EUR ha−1 EUR ha−1 EUR ha−1 EUR 200 M m−3

Tillage Ploughing 15.9 37.0 − 52.9 529
Harrowing 10.2 4.93 − 15.2 152

Soil amending

Ctrl − − − − −
Biochar 2.5% 186 − 156 342 3421
Biochar 5.0% 186 − 312 498 4981
Biochar 10% 186 − 624 810 8099

Planting 186 − 1700 1886 18,862

Weed control 23.8 33.3 74.5 132 1316

Harvest − − − 800 8000

Total investments

1st year

Ctrl 236 75.2 1775 2086 20,858
Biochar 2.5% 422 75.2 1930 2428 24,279
Biochar 5.0% 422 75.2 2086 2584 25,839
Biochar 10% 422 75.2 2398 2896 28,958

Following years
No harvest 23.8 33.3 74.5 132 1316

Harvest 23.8 33.3 74.5 932 9316
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Table 3. The economic costs of valorising P. tomentosa biomass via the “biomass–biogas–electricity”
value chain (Scenario 2).

Operation
Labour Diesel Materials Total Inputs

EUR ha−1 EUR ha−1 EUR ha−1 EUR ha−1 EUR 200 M m−3

Tillage Ploughing 15.9 37.0 − 52.9 529
Harrowing 10.2 4.93 − 15.2 152

Soil amending

Ctrl − − − − −
Biochar 2.5% 186 − 749 935 9347
Biochar 5.0% 186 − 1497 1683 16,832
Biochar 10% 186 − 2994 3180 31,802

Planting 186 − 8160 8346 83,462

Weed control 23.8 33.3 74.5 132 1316

Harvest − − − 600 6000

Total investments

1st year

Ctrl 236 75.2 8235 8546 85,458
Biochar 2.5% 422 75.2 8983 9481 94,805
Biochar 5.0% 422 75.2 9732 10,229 102,290
Biochar 10% 422 75.2 11,229 11,726 117,260

2nd and following years 23.8 33.3 74.5 732 7316

According to the results presented in Tables 2 and 3, valorisation of the contaminated
DS through phytoremediation holds economic preference compared to disposal, which
incurs a total cost of EUR 27,400,000 200 M m−3 (or EUR 2740,000 ha−1). In both scenarios
for the establishment year, the largest share of the investment was attributed to the cost of
plant materials. However, in Scenario 1, the share of plant materials ranged from 58.7 to
81.5% (Table 2), while, in Scenario 2, the share was higher, ranging from 69.6 to 95.5%,
which can be explained by the higher planting density (3000 pl ha−1) [91]. Moreover, the
data obtained for Scenario 2 align with the results of the economic profitability analysis
of cultivating Miscanthus × giganteus in non-agricultural soils [81]. Regarding the cost of
biochar amendments at different application rates, in Scenario 1, the share of costs was 6.43,
12.1, and 21.6% for 2.5, 5.0, and 10% application rates, respectively (Table 2). In Scenario 2,
the corresponding values were 7.90, 14.6, and 26.6% (Table 3).

The economic revenue for both scenarios was estimated conservatively without fac-
toring in expected biomass yield growth over the plantation’s lifecycle. This approach
was used to confirm that the proposed valorisation strategy is viable and merits deeper
investigation. The preliminary findings indicated that (i) phytoremediation of contami-
nated DS by P. tomentosa without biochar does not achieve a positive return within the
20-year lifecycle of Scenario 1 or the 14-year lifecycle of Scenario 2; (ii) Scenario 1 is less
efficient than Scenario 2, as only the 5.0 and 10% biochar treatments showed positive
revenue starting from the 8th and 12th years (or the 2nd and 3rd harvests), respectively
(Figure 6). However, only 10% biochar application rate reaches the point of breaking-even
within the 20-year lifecycle; (iii) valorising post-phytoremediation P. tomentosa biomass
via Scenario 2 allows to determine the optimal biochar application rate to be 5% since
its pay-off period is only 1 year later than the 10% biochar application rate (Figure 7). In
addition, valorisation of P. tomentosa biomass grown in 2.5, 5.0, and 10% biochar-amended
DS through the biomass–biogas–electricity value chain will generate total revenues of EUR
26,556 ha−1, EUR 49,610 ha−1, and EUR 85,869 ha−1, respectively, over the 14-year lifecycle
(Figure 7).
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4. Discussion
4.1. Biochar–Sediment Interplay

The study findings revealed that amending DS with sewage sludge-based biochar
supplemented DS with P, S, and Ca. Similar patterns considering P content were observed
when the studied biochar was applied to the petroleum hydrocarbon-spiked soils at ap-
plication rates of 3.5 and 7%; specifically, biochar incorporation influenced the increase
in P content in soil by 79.3–116 and 26.2–34.5% irrespective of application rates for soils
spiked with 10 and 20 g PHs kg−1, respectively [66]. Whereas, in our study, an increase
in P content was linked to biochar application rates, in particular, an increase from 121 to
419%. Despite the assumption that the remediation of DS (ex situ) is closely linked to the
remediation of PTE-contaminated soils [92], this may not be entirely accurate, as evidenced
by the differing behaviour of the same biochar in DS compared to soil. Indeed, the existing
research has focused on changes in the proportions of metal fractions [93–95], making it
challenging to compare the specific impact of biochars on the content of EEs in DS.
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Cd, Cu, Zn, and Pb are the most commonly detected PTEs in DS [94]. Consequently, the
majority of studies on the biochar-supported remediation of DS have concentrated on these
PTEs, and only a few studies have explored phytoremediation with another pollutants. For
instance, Wang et al. [93] investigated the potential of biochar derived from palm sawdust
(at 550 ◦C), at the same application rates as in our study, for the remediation of Cu- and Pb-
spiked sediments, with concentrations of 631–644 and 725–731 mg kg−1, respectively. After
60 days, the bioavailability of Cu and Pb in 10% biochar-amended sediments significantly
decreased, while the residual fraction of PTEs increased by up to 87.7%. This phenomenon
can be attributed to the highly alkaline nature of the biochar they used (pH of 11.7) in
contrast to the biochar investigated in the current study (pH of 9.34) [93], which reduced
the availability of hydrogen cations in the DS, thereby promoting the binding of metal ions
to ligands and lowering their concentrations [95]. Another study tested biochar produced
from Phyllostachys pubescens biomass (at 600 ◦C) at various application rates (0.5–15%)
in sediments contaminated by Cr, Cu, Zn, and Pb with concentrations of 287, 135, 766,
and 44.3 mg kg−1, respectively, [96]. The incorporation of biochar into DS at application
rates higher than 5% resulted in a reduction of the bioavailable fraction of Cu, Zn, and Pb
by up to 79.7, 49.8, and 73.2%, respectively, while having no effect on Cr bioavailability.
Additionally, the leachability of Zn and Pb decreased, starting at a 3% biochar application
rate, and, for Cu, the reduction was observed starting at 5% [96].

Zhang et al. [30] investigated the phytoremediation of DS contaminated with Cd
(10.9 mg kg−1), Zn (510 mg kg−1), and Pb (83.6 mg kg−1) using Lolium perenne in the
presence of corn straw-derived biochar (at 300 ◦C) at an application rate of 3%. The incorpo-
ration of biochar to DS had minimal effect on Zn fractions, whereas the reducible fraction of
Pb decreased, and the residual fraction increased by 7.31% and 8.60%, respectively. These
findings contrast with the results of the current study, particularly for Zn, which could
be explained by the different feedstock used for biochar production. Indeed, biochar pro-
duced from the sewage sludge typically contains higher concentrations of PTEs compared
to plant-based biochar, leading to greater PTE bioavailability [94]. In our study, the Zn
concentration in the biochar was 3616 ± 287 mg kg−1 (Table 1). Additionally, pyrolysis
temperature plays a significant role in the bioavailability of PTEs in the presence of biochar.
The biochar investigated in the current study was produced at 600–650 ◦C, whereas the corn
straw-derived biochar was produced at 300 ◦C [30]. Increasing the pyrolysis temperature
from 350 to 600 ◦C led to an increase in Cu, Zn, and Pb concentrations in sludge-based
biochar by 18.2, 25.0, and 33.3%, respectively [97], likely due to the decomposition of
organic matter in the feedstock [98].

Thus, applying biochar in the phytoremediation of DS is considered a viable option to
create more favourable conditions for plant growth and mitigate contamination-induced
abiotic stress by supplying nutrient elements and sequestering or transforming potentially
toxic elements into non-available forms. In this regard, it is essential to continue inves-
tigating biochar’s role in the remediation of DS, taking into consideration the precursor
materials, pyrolysis conditions, and application rates.

4.2. Plant Morpho–Physiology Influenced by Biochar

When P. tomentosa was grown in unamended post-military soil complexly contami-
nated with diesel (1 g kg−1) and PTEs, plant height was higher by 51.2% compared to our
results (control), while stem diameter was lower by 42.3% [99]. However, when the same
biochar was incorporated into the soil at a 5% rate, plant height decreased by 12.9%, con-
trasting with the results of the current study [99]. Biochar produced from Kandelia obovata
biomass at 600 ◦C was applied to PAH-spiked DS at 1% application rate, resulting in a
46.7% increase in K. obovate biomass DW, aligning with our results [25]. A mixture of olive
and hazelnut biochars applied to Cu- and Zn-contaminated DS significantly improved the
biomass of Tamarix gallica and Carex acutiformis, with the optimal application rate being
3% [100]. A notable increase in leaf (46%), stem (33%), and root (18%) biomass of ramie
grown in DS contaminated by Cd, Cr, Cu, and Pb was observed with biochar application
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rates of 0.05–0.1, 0.05, and 0.01%, respectively, using biochar derived from tea waste at
300 ◦C [22]. 3% corn straw-derived biochar applied to Cd-, Zn-, and Pb-contaminated DS
alone had no significant effect on L. perenne biomass but did improve root length by 13.5%
compared to the control [30]. When combined with fulvic acid, the biochar increased both
the stem and root biomass by 16.9 and 17.1%, respectively [30].

Due to the widespread use of FV/FM as a sensitive indicator of PS performance [101], our
data were compared with the published findings. Under PTE contamination—specifically, Cd,
Zn, and Pb—the PS performance of P. tomentosa initially exhibited lower FV/FM (0.74–0.78).
However, after four weeks, it increased to 0.81–0.82, indicating plant tolerance to these
PTEs [41]. In another study [102], under the favourable conditions (using commercial peat-
moss substratum), Paulownia spp. exhibited FV/FM values of 0.74–0.75. Thus, a trend observed
in the current study of increasing FV/FM values in biochar-amended sediments (from 0.45 to
0.75) validates the assertion that biochar incorporation significantly improves P. tomentosa
development while mitigating the phytotoxicity of xenobiotics.

4.3. Influence of Biochar on P. tomentosa Phytoremediation Potential

Published studies on Paulownia sp. phytoremediation of soils contaminated with
organochlorine pesticides are limited, while investigations employing Paulownia sp. for
the remediation of DS are almost not presented. Moreover, existing research has primarily
focused on spiked soils; in contrast, in the current study, the historically contaminated
DS were examined. Our previous study examining the phytoremediation potential of
P. tomentosa grown in soil complexly contaminated by 24 organochlorine pesticides and
8 PTEs, with γ-HCH and other isomers concentrations of 76.4 and 600 µg kg−1, respectively,
reported different behaviour in relation to HCH isomers [33]. In particular, the plant BCF
values of γ-HCH for aboveground biomass and roots were 0.4 and 0.2, respectively [33].

As for PTEs, it was decided to compare the phytoremediation potential of P. tomentosa
with findings obtained in a similar system (DS) amended with biochar. For instance, amend-
ing DSs with a mixture of olive and hazelnut biochars had different impacts on Cu and
Zn accumulation in leaves of Tamarix gallica and Carex acutiformis; specifically, it gradually
increased Zn accumulation in Carex acutiformis leaves with increasing biochar application
rates of 3 to 10% and decreased Cu and Zn accumulation in leaves of Tamarix gallica starting
from 6 and 3% application rates, respectively [100]. The incorporation of 3% corn straw-
derived biochar into DS alone did not influence Zn accumulation either in the stem or roots
of L. perenne, whereas, in combination with fulvic acid, Zn accumulation in both plant parts
increased by 30.0 and 70.2%, respectively [30]. Pb accumulation decreased in the stems
and roots of L. perenne by 39.1–62.1 and 40.2–59.9%, respectively, in the presence of biochar
alone or when combined with fluvic acid [30].

4.4. Research Highlights and Future Implications

The study results suggest that Paulownia can be an optimal candidate for transforma-
tion of the contaminated DS into legislation-compliant peat substitutes. This potential is
supported by the plant’s ability to accumulate 41 out of 67 elements, including 8 noble
metals and 16 rare earth elements, from flotation tailings, which can be classified as “man-
made sediments” [103]. Recent studies have highlighted the growing interest in cultivating
Paulownia trees in European countries, positioning them as a strong alternative to native tree
species [104,105]. It is anticipated that the profitability of growing Paulownia will become
apparent soon, given its multi-purpose biomass utilised as an industrial raw material,
i.e., pulp, pencils, crayons, energy production, paper, nanocellulose, biochar, biopolymers,
wood plastics, and composites [85,86,104]. In light of Europe’s goal to become the first
“climate-neutral” continent by 2050 [106], the region is encouraged to cultivate fast-growing
lignocellulosic species, such as Populus, Eucalyptus, Salix, Robinia, and Paulownia, as short
rotation coppice species capable of thriving on marginal and abandoned lands [105]. A
techno–economic analysis of Paulownia dual-use (timber and woodchip) production in
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Southern Italy showed an annual gross margin of EUR 358 ha−1, compared to EUR 237 ha−1

for wine grapes [85], further confirming the profitability of Paulownia cultivation.
In addition to its economic viability, Paulownia has been proposed as a sustainable

tool for CO2 mitigation. Ghazzawy et al. [107] reported that planting 1.5 million Paulownia
trees on 2400 ha could capture 1.04 Mt of atmospheric CO2 over 10 years while producing
568,301 t of biomass. Considering an investment cost of USD 1128 billion and the marketing
value of the wood produced over 10 years (USD 1137 billion), the economic analysis
suggests that Paulownia trees could serve as a highly profitable, large-scale CO2 capture
tool with the potential to contribute to global climate goals by 2050 [106,107]. Therefore,
Paulownia should be considered a promising phytoagent for the ex situ remediation of
contaminated sediments.

The urgent need to restore DS was further highlighted by Soleimani et al. [27] during
the evaluation of the economic and environmental life cycle assessment (LCA) of phytore-
mediation of chloride-contaminated DS using Arundo donax. The biomass was valorised
through the Combined Heat and Power value chain. The study found that the costs and
environmental impact of the phytoremediation of 1 m3 of DS, whether conducted alone
or integrated with biomass valorisation, were significantly lower than those of sediment
landfilling. While the LCA model tested scenarios with no additives, mycorrhiza, humic
acid, and combinations of these additives, the incorporation of biochar could further reduce
costs and shorten the revenue time, making the approach even more cost-effective than
conventional sediment management methods [27,81].

Biochar has proven to be a valuable addition to the phytoremediation system [28,29,98,108,109].
Applying biochar derived from Miscanthus × giganteus (600 ◦C) at a 5% application rate improved
the dry weight of stems and the leaves-to-stem ratio in Paulownia plants grown in flotation tailings
during the first year of vegetation [103]. In line with the circular economy concept, i.e., closing
the economic loop of DS phytoremediation, post-phytoremediation Paulownia biomass can be
converted into biochar and reintegrated into the phytoremediation process. Paulownia-derived
biochar, produced at 700–800 ◦C, has shown promising results when applied to contaminated soil
at 2, 4, and 6% application rates. At the highest dose, it reduced the acid-soluble fraction of Cu by
35.0% and decreased the Fe/Mn oxide fraction of Pb by 9.85 and 8.37% at 2 and 6% application
rates, respectively [110]. Additionally, it increased the organic-bound fraction of Pb by 61.3% at the
6% application rate and doubled the organic-bound fraction of Cd at both the 4 and 6% application
rates [110].

In conclusion, the suitability of Paulownia for the phytoremediation of the contam-
inated DS is well supported by plant’s ability to accumulate a wide range of elements,
including rare and noble metals. The incorporation of biochar into the system enhances re-
mediation efficiency and accelerates economic viability, aligning with both circular economy
principles and global climate goals. Thus, phytoremediation using Paulownia supported by
biochar presents a viable and economically profitable approach for the ex situ remediation
of contaminated sediments.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/su16209080/s1, Figure S1: Experimental parameters of chlorophyll fluorescence
of P. tomentosa grown in biochar-amended sediments. Presented values normalised referring to control;
Figure S2: Comprehensive bio-concentration index representing overall ability of P. tomentosa to accumulate
EEs in biochar-amended sediments; Figure S3: Translocation factor values of P. tomentosa grown in biochar-
amended sediments; Table S1: Elemental composition of sediments amended with different doses of biochar
(mg kg−1); Table S2: Influence of biochar incorporation on leaf length and width (cm); Table S3: The
experimental, specific, and phenomenological parameters of chlorophyll fluorescence of P. tomentosa grown
in biochar-amended sediments. Numbers in brackets are the normalised values relative to the control;
Table S4: BCF values calculated for P. tomentosa grown in biochar-amended sediments; Table S5: Correlation
matrix for plant physiological parameters; Table S6: Correlation matrix for plant chlorophyll fluorescence
indicators; Table S7: Correlation matrix for bioconcentration factor values of aboveground biomass.

https://www.mdpi.com/article/10.3390/su16209080/s1
https://www.mdpi.com/article/10.3390/su16209080/s1


Sustainability 2024, 16, 9080 16 of 20

Author Contributions: Conceptualization, A.M.; methodology, A.M., P.H., V.P. and P.S.; software,
A.M.; validation, A.M.; formal analysis, A.M., P.H. and P.S.; investigation, A.M.; resources, V.P.; data
curation, A.M.; writing—original draft preparation, A.M.; writing—review and editing, A.M., V.P.
and A.N.; visualisation, A.M.; supervision, A.M.; project administration, V.P.; funding acquisition,
A.M. and V.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education, Republic of
Kazakhstan (grant No. AP14973042) and NATO SPS MYP (grant No. G6094).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. CEDA Dredging: The Facts 2024. Available online: https://dredging.org/media/ceda/org/documents/resources/cedavarious/

publications-dredging_the_facts.pdf (accessed on 25 September 2024).
2. SedNet White Paper on Circular Economy and Beneficial Use of Sediments 2022. Available online: https://sednet.org/wp-

content/uploads/2022/03/SedNet_White_paper_CE_V313.pdf (accessed on 25 September 2024).
3. Bose, B.P.; Dhar, M. Dredged Sediments Are One of the Valuable Resources: A Review. Int. J. Earth Sci. Knowl. Appl. 2022,

4, 324–331.
4. Solanki, P.; Jain, B.; Hu, X.; Sancheti, G. A Review of Beneficial Use and Management of Dredged Material. Waste 2023, 1, 815–840.

[CrossRef]
5. USACE. Dredging and Dredged Material Management; U.S. Army Corps of Engineers; United States Environmental Protection

Agency: Washington, DC, USA, 2015; p. 920.
6. Almokdad, M.; Zentar, R. Characterization of Recycled Dredged Sediments: Toward Circular Economy in Road Construction.

Constr. Build. Mater. 2023, 402, 132974. [CrossRef]
7. CEDA Sustainable Management of the Beneficial Use of Sediments: A Case-Studies Review 2019. Available online: http://www.

dredging.org/media/ceda/org/documents/resources/cedaonline/2019-05-BUS-ip.pdf (accessed on 24 September 2024).
8. Amar, M.; Benzerzour, M.; Kleib, J.; Abriak, N.-E. From Dredged Sediment to Supplementary Cementitious Material: Characteri-

zation, Treatment, and Reuse. Int. J. Sediment Res. 2021, 36, 92–109. [CrossRef]
9. Bortali, M.; Rabouli, M.; Yessari, M.; Hajjaji, A. Characterizing Harbor Dredged Sediment for Sustainable Reuse as Construction

Material. Sustainability 2023, 15, 1834. [CrossRef]
10. Cappuyns, V.; Deweirt, V.; Rousseau, S. Dredged Sediments as a Resource for Brick Production: Possibilities and Barriers from a

Consumers’ Perspective. Waste Manag. 2015, 38, 372–380. [CrossRef]
11. Ferrans, L.; Schmieder, F.; Mugwira, R.; Marques, M.; Hogland, W. Dredged Sediments as a Plant-Growing Substrate: Estimation

of Health Risk Index. Sci. Total Environ. 2022, 846, 157463. [CrossRef]
12. Ugolini, F.; Mariotti, B.; Maltoni, A.; Tani, A.; Salbitano, F.; Izquierdo, C.G.; Macci, C.; Masciandaro, G.; Tognetti, R. A Tree from

Waste: Decontaminated Dredged Sediments for Growing Forest Tree Seedlings. J. Environ. Manag. 2018, 211, 269–277. [CrossRef]
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