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Abstract: This paper presents a novel mathematical framework for assessing and predicting the
resilience of critical coastal infrastructures against wave overtopping hazards and extreme climatic
events. A probabilistic sensitivity analysis model is developed to evaluate the relative influence of
hydrodynamic, geomorphological, and structural factors contributing to wave overtopping dynamics.
Additionally, a stochastic Gaussian process (GP) model is introduced to predict the mean overtopping
discharge from coastal defences. Both the sensitivity analysis and the predictive models are validated
using a large homogeneous dataset comprising 163 laboratory and field-scale tests. Statistical
evaluations demonstrate the superior performance of the GPs in identifying key parameters driving
wave overtopping and predicting mean discharge rates, outperforming existing regression-based
formulae. The proposed model offers a robust predictive tool for assessing the performance of critical
coastal protection infrastructures under various climate scenarios.

Keywords: climate resilience; coastal flooding; Gaussian processes; probabilistic sensitivity analysis;
wave overtopping; coastal defence

1. Introduction

Coastal regions are densely populated, with over 2.4 billion people (40% of the world’s
population) living within 100 km of the coast [1]. More than 600 million people (10% of the
world’s population) live in coastal areas less than 10 meters above sea level, making them
highly vulnerable to flooding and inundation during extreme climatic events. Over the past
century, global sea levels have risen at an accelerating rate, with projections suggesting a rise
of over a meter by 2100. Such increases contribute to a host of adverse outcomes, including
intensified erosion, storm surge flooding, inundation, contamination of freshwater, and the
loss of coastal lowlands and wetlands [2,3]. The rise in sea level and associated risks
affect two-thirds of the world’s 23 most densely populated cities [4]. In recent years,
coastal flooding triggered by extreme events has had devastating socioeconomic impacts.
The scientific prediction for a high-emission climate change scenario (+2 ◦C temperature
rise) estimates an annual $14 trillion cost of flooding worldwide [5], with significant damage
to critical infrastructures.

Coastal defences play a vital role in protecting coasts from flooding and erosion. The
effective and optimal design of coastal protection structures are important for safeguarding
coastal communities from storm surges and extreme climatic events [6]. In the past decades,
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several types of flood protection schemes, including hard-engineered, soft nature-based,
and hybrid solutions, have been developed and tested [7]. Hard defences, in particular,
vary widely in terms of shape, structural design, and materials. Extensive research has been
conducted to evaluate the performance of these defences under changing hydrodynamic,
geomorphological, and structural conditions. Wave overtopping is a crucial design param-
eter for coastal defences as it directly affects both the structural integrity of the defence
and the level of protection it provides. Given the direct link between wave overtopping
and the vulnerability of coastal areas to flooding, it is vital to develop robust methods for
evaluating and predicting wave overtopping under different hydrodynamic and structural
conditions. However, accurately predicting the performance of critical coastal infrastruc-
ture remains a significant challenge. This difficulty stems from the complexity of nearshore
processes, which operate at varying spatial and temporal scales. It is further compounded
by the non-linear interactions between hydrodynamics and geomorphology, the complex
geometry of nearshore areas and coastal defences, and the uncertainties associated with the
incident wave climate. Furthermore, a lack of comprehensive data and field observations
exacerbates these challenges [8,9].

The interaction between nearshore wave dynamics and defence structures leads to
complex hydrodynamic responses, which are influenced by factors such as water depth h,
incident wave height H, and period T. Previous studies undertook extensive laboratory
physical modelling and field measurements to investigate the effects of wave structure
interactions on the structural response to wave overtopping. The majority of these investi-
gations led to empirical formulae for overtopping; however, these formulae are typically
valid only within specific hydrodynamic ranges or for particular structural configurations.
In recent decades, efforts have been made to develop integrated tide-surge and wave flood
models, often using RANS-VOF models and shallow water equations [10,11]. Despite their
utility, these models are limited by their depth- and time-averaged nature of flow solvers
and the inherent simplifications in turbulence closure models. More recently, Lagrangian
particle-based models have been employed to simulate wave interactions with coastal in-
frastructures and overtopping processes ([12,13]). These models are advantageous because
they account for depth-varying hydrodynamics in wave–structure interactions. However,
they are often case-specific, computationally expensive, and time-consuming. To address
the challenges associated with understanding wave overtopping processes from laboratory
and numerical models, machine learning approaches have gained traction as a reliable
method for predicting wave run-up and overtopping at coastal defences [6,14]. Machine
learning techniques have shown superior predictive capabilities compared with traditional
overtopping formulae based on a regression analysis of physical model data. Nonetheless,
existing predictive tools for wave overtopping are generally limited by their focus on
specific geometries and hydrodynamic conditions. There remains a critical need to develop
a more comprehensive predictive framework capable of providing robust overtopping
estimates across a wide range of defence structures and hydro-meteorological conditions.

We now explore the complex processes driving overtopping. A thorough understand-
ing of these processes will provide insights for selecting input parameters to develop an
efficient model and improving predictive capabilities.

2. Wave Overtopping Processes

Overtopping is a complex, multi-faceted phenomenon influenced by the interaction
between nearshore wave processes, seabed topography, and the configuration of coastal
defence structures. The complicated interactions between the incident wave and coastal
defences can generate overtopping flows that are sudden and do not follow the typical
wave up-rush (run-up) processes. To fully understand wave–structure interactions, it is
necessary to study the nearshore wave processes. Waves approaching coastal protection
structures can be classified into ‘breaking’ or ‘non-breaking’ waves. Extensive research has
been conducted to explore the distinct interactions between these wave types and coastal
defences (e.g., see [15,16]). Although these two terms may not be entirely precise, they are
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widely used in the literature to characterise wave overtopping behaviours. This section
provides an overview of the key concepts related to wave overtopping.

Wave breaking on beaches and gently sloping structures is commonly characterised by
the Iribarren number, also known as the surf similarity parameter (shown in Equation (1)).
The Iribarren number defines four distinct breaking regimes, including spilling (ξop < 0.4),
plunging (0.4 < ξop < 2.3), collapsing (2.3 < ξop < 3.2), and surging (ξop > 3.2). These regimes
are frequently used in design manuals [17] to assess armour stability for sloped structures.

ξop =
tan(α)
(Sop)0.5 (1)

where α is the beach slope and Sop is the wave steepness.
For vertical walls and steep structures, the impulsive and non-impulsive breaking is

defined by the slope and the incident wave’s wavelength. Besley et al. [18] introduced the
wave breaking parameter, h∗, which is based on the depth at the toe of the wall (hs) and
nearshore incident wave conditions (Equation (2)).

h∗ =
hs

Hsi
(

2πhs

gT2
m
) (2)

where Hsi is the inshore significant wave height and Tm is the averaged wave period
determined from spectral moments or a zero-crossing analysis. Besley et al. [18] suggested
that impulsive wave conditions occur at the wall when h∗ ≤ 0.3 and that pulsating
conditions occur when h∗ > 0.3.

Wave overtopping rates must remain below tolerable thresholds under design and
operational conditions to ensure the safety of people and property on or behind coastal
defence structures [19–21]. The volume of overtopping is significantly influenced by the
nature of wave interactions with the defence structure. When waves break onto or over the
structure, overtopping tends to produce relatively continuous volumes of water, known
as ‘green water’. In contrast, when waves break seaward of the structure, overtopping
occurs in the form of fine droplets—a phenomenon referred to as ‘splash overtopping’. This
type of overtopping is typically carried by the wave’s momentum or enhanced by onshore
winds [22]. Onshore winds can play a critical role in intensifying overtopping, especially
when reflected waves (e.g., from steep walls) interact with incoming waves, creating
local clapotis effects. Although onshore wind significantly influences spray overtopping,
particularly from vertical walls, limited data are quantifying its impact. Research indicates
that while onshore wind has minimal effect on ‘green overtopping’, it can amplify spray
overtopping from vertical walls by a factor of up to three [23].

3. Database

The overtopping data utilised in this study are derived from both two-dimensional
and three-dimensional physical modelling tests, as well as full-scale field-based (prototype)
measurements reported in the CLASH dataset [24]. This comprehensive dataset comprises
163 test series with a total of 10,532 data points and 31 parameters. The dataset includes
overtopping records for a range of hydrodynamics and structural configurations, covering
both small-scale and large-scale laboratory studies, as well as field measurements. Table 1
summarises the parameters recorded in the dataset. The homogeneous database includes
measurements from various types of hard-engineered coastal protection structures, includ-
ing vertical structures, rubble mound breakwaters (with rock or concrete armour), dikes,
berm breakwaters, and composite structures. Notably, the dataset also features tests with
zero overtopping, making it particularly valuable for developing predictive models. De
Rouck et al. [25] compared the dataset to empirical overtopping prediction formulae for
vertical structures [22], sloping structures (γ f = 0.5, as suggested in [26]), and dikes [26].
This comparison aimed to identify outliers within the dataset. A general form of the
overtopping formulae proposed in the EurOtop manual is presented in Equation (3) [27].
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q
(gH3

m0)
0.5

= A exp
(
− BRc

γHm0

)
(3)

where Hm0 denotes the significant wave height based on spectral analysis, Rc is the structure
crest freeboard relative to still water line, γ is a correction factor for the roughness and angle
of wave approach or structure geometry, and A and B are constants (fitting coefficients)
that are determined for different types of structures based on a regression analysis.

Table 1. Summary of dataset parameters used in this study and the experimental range.

Parameter Range Parameter Range Description

Structural parameters Hydrodynamic parameters

hdeep[m] (0, 100) Hm0 deep [m] (0.003, 5.920) = 4
√

m0
m[−] (6, 1000) Tp deep [s] [0.545, 15]
h [m] (0.029, 9.32) Tm deep[s] (0.454, 12.5) = m2/m0
ht[m] (0.025, 7.78) Tm−1,0 deep [s] (0.495, 13.636) = m−1/m0
Bt[m] (0, 10) β[o ] (0, 80)
γ f [−] (0.35, 1) Hm0 toe[m] (0.003, 3.8) =4

√
m0

cot αd[−] (0, 7) Tp toe[s] (0.545, 16.4)
cot αd[−] (−5, 9.706) Tm toe[s] (0.454, 11.881) = m2/m0
cot αexcl [−] (−1.533, 8.144) Tm−1,0 toe[s] (0.495, 10.64) = m−1/m0
cot αincl [−] (−1.533, 12.821) q[m3/s.m] (0, 1.65 × 10−1)
Rc[m] (0, 8.345) Pow[−] (0, 81)
B[m] (0, 8)
hb[m] (−0.208, 1.175) General parameters
tan αB[−] (0, 0.125) RF[−] (1, 4)
Bh[m] (0, 8) CF[−] (1, 4)
Ac[m] (0, 7.87)
Gc[m] (0, 5.6)

All data used in this study are classified with a reliability factor (RF) and complexity
factor (CF), based on the screening study conducted in [28]. Table 1 presents the range of
RF and CF for the CLASH dataset. Tests with an RF/CF of four are deemed unreliable
and are excluded from the modelling process in this study. Figure 1 shows a schematic of
the hydrodynamic and structural parameters considered in this study for the probabilistic
sensitivity analysis and for developing a predictive model. To present a holistic overview
of the data used for this study and the range they cover, Figure 2 plots dimensionless
wave overtopping rates measured against a relative crest freeboard. The dataset effectively
covers the range of 10−6 ≤ q ≤ 10−1 and 0.3 ≤ Rc/Hm0 ≤ 3.5. Notably, outliers are present,
manifested as large, unexpected overtopping values. These outliers are primarily attributed
to experimental conditions, such as very small wave steepness and shallow foreshores.
Additionally, the unrealistically low wave overtopping discharges observed for cases with
small relative freeboards are associated with tests involving high and wide-crested rubble
mound armour.

The range of wave steepness as a function of the wave height was determined for all
the data and is presented in Figure 3. Wave steepnesses (Sop) exceeding 0.07 are physically
unrealistic, while values lower than 0.005 are challenging to generate reliably in controlled
conditions. Therefore, tests with Sop > 0.07 or Sop < 0.005 are considered unreliable and
are excluded from further analysis in this study.

Figure 4 illustrates the combination of upper and down slopes for structures with and
without berms. The majority of the tests involve uniform sloping structures. A negative
upper slope corresponds to structures with a large return wall, while data with cot(αup) = 0
represent structures with a vertical upper section and a sloping lower section. Data points
along the vertical axis correspond to structures with a vertical down slope and sloping
upper section. Further analysis of the dataset reveals that most data points fall within the
range of 0 < width/Hm0,toe < 10 and −5 < level/Hm0,toe < 5.
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Figure 1. Schematic description of parameters recorded in the CLASH overtopping database (adopted
from [28]).

Figure 2. Dimensionless overtopping records for a range of relative crest heights tested within the
CLASH dataset (adopted from [28]).

Figure 3. Range of wave steepness as a function of the wave height for all data (adopted from [28]).



Sustainability 2024, 16, 9110 6 of 22

Figure 4. Upper slope cot αu versus down slope cot αd (adopted from [28]).

4. Method

This section outlines the use of Gaussian process regression (GPR) to probabilistically
model the complex relationships between wave overtopping (q) and the input parameters
listed in Table 1. Before introducing the GPR approach, the variance-based and emulator-
based methods are described as efficient probabilistic sensitivity analysis (SA) techniques.
These methods are used to determine the relative importance and influence of each input
parameter on wave overtopping. By building a model that focuses on the most influential
input parameters, we aim to reduce model complexity, prevent overfitting, and improve
predictive accuracy.

4.1. Probabilistic Sensitivity Analysis

In this paper, a global SA of the model output is performed, which evaluates the
relative importance of input parameters when they are varied extensively, accounting for
their uncertainties over a broad range. One approach to global SA is the analysis of variance
of the model response originally proposed by [29]. This method identifies the contribution
of individual inputs or groups of inputs to the overall variance in the model’s output. It
also assesses the total effect of each input on output variance, including both its marginal
influence and its interaction with other inputs. Several computational techniques can be
applied to carry out this SA, as detailed in [29–31]. This study adopts the emulator-based
method outlined by [32] to determine the sensitivity measures.

To conduct the SA, we consider how a function f (x) depends on its input variables.
In this study, f typically represents the function that computes wave overtopping as a
function of a vector of input parameters illustrated in Table 1. Some key notations are
introduced below. We define a d-dimensional random vector as X = (X1, . . . , Xd), where Xi
denotes the ith element of X. The sub-vector (Xi, Xj) is represented as Xi,j. More generally,
if p represents a set of indices, then Xp indicates the sub-vector of X comprising elements
with those indices. X−i is defined as the sub-vector of X containing all elements except xi.
Similarly, x = (x1, . . . , xd) represents the corresponding observed random vector X. In this
context, X serves as an input vector consisting of all input parameters outlined in Table 1,
while q (wave overtopping) is regarded as the output variable and is denoted by Y.

4.1.1. Function Decomposition for Main Effects and Interactions

Sobol [29] demonstrates that any function f (·) with quadratic integrability can be
expressed through its main effects (MEs) and interactions, as follows:

y = f (x) = z0 + Σd
i=1zi(xi) + Σi<jzi,j(xi,j) + . . . + z1,2,...,d(x). (4)
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In the context of a relationship between y and x, expressed by y = f (x) ( where f (.)
represents a function involving uncertain quantities x), the expected value of which is
represented by z0 = E[ f (X)]. The function zi(xi), as seen in Equation (5), stands for the
“main effect” of the ith variable, xi, and is expressed as:

zi(xi) = E[ f (X) | xi]− E[ f (X)]. (5)

The ME, zi(xi), is the function solely dependent on xi that provides the optimal approxima-
tion of f (.) by minimising the variance when averaged over all other variables [32,33].

The function zi,j(xi,j), as presented in Equation (6), characterises the first-order in-
teraction between variables xi and xj. Likewise, zi,j,k(xi,j,k) represents the second-order
interaction among xi, xj, and xk, with this pattern extending to higher-order interactions.

zi,j(xi,j) = E[ f (X) | xi,j]− zi(xi)− zj(xj)− E[ f (X)]. (6)

In the context of this study, the main effect (ME) represents the expected change in
wave overtopping when input parameter i takes a specific value xi, while the uncertainty
in the remaining parameters is still accounted for.

It is common for the functions in Sobol’s decomposition to be pairwise orthogonal.
The definitions of the main effects and interaction terms in Sobol’s decomposition, as given
in Equation (4), depend on the distribution of the input parameters, X denoted by G (further
details are discussed in Section 4.2.2).

The sensitivity metrics evaluated in this study help identify which input parameters
in X most significantly contribute to the uncertainty in f (.). Examining the MEs and, where
applicable, first-order interaction terms provides valuable insights. Their corresponding
plots offer a useful visual tool for understanding how individual inputs affect the model’s
output and how these inputs interact to influence the overall behaviour of the model.

4.1.2. Variance-Based Methods

Variance-based methods assess the sensitivity of the output, in this case, the over-
topping volume, Y = f (X), by analysing how changes in model input parameters affect
the variance of Y. A comprehensive review of this approach can be found in [30]. Two
key sensitivity measures for the model output Y with respect to an individual input xi are
introduced. The variance of the ME indicates the potential reduction in the overall variance
of f (·) if xi’s were known. The first of these measures is defined in Equation (5).

Vi = var{E(Y | Xi)}. (7)

The second variance-based SA measure, proposed by [34], can be written as:

VTi = var(Y)− var{E(Y | X−i)} (8)

which is the remaining uncertainty in Y that is unexplained after everything has been learnt
except xi.

These two measures (Equations (6) and (7)) can be converted into scale-invariant
measures by dividing by var(Y), as follows:

Si =
Vi

var(Y)
, STi =

VTi

var(Y)
= 1 − S−i (9)

where Si is the ME index of xi and STi is the total effect index of xi.
The variance measures are linked to the Sobol decomposition when the parameters are

independent. The total variance of f can be represented as the sum of the variances for each
term as given in Equation (7) (see [32,33] for further details on the Sobol decomposition).
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4.2. Emulator-Based Sensitivity Analysis

Theoretically, if the function f (x) was not extremely complex, the sensitivity measures
discussed earlier could be computed analytically. However, given the complexity of the
models in this study, these measures cannot be evaluated analytically. Instead, a com-
putationally efficient and robust model is required to compute the sensitivity measures
discussed in Section 4.1.

When f (x) is computationally inexpensive and can be quickly computed and easily
evaluated for many different inputs, standard Monte Carlo (MC) methods are sufficient
for estimating var(Y) and other sensitivity measures introduced in Section 4.1. However,
the computation techniques proposed by [29,30] require many thousands of function evalua-
tions, making them impractical for more expensive functions.To address this computational
complexity, the promising methodology outlined in [32], based on the Bayesian paradigm,
enables the estimation of all necessary quantities for sensitivity analysis in modeling and
predicting wave overtopping for coastal defenses.

Because the functional relationship f (.) between wave overtopping and the input
parameters given in Table 1 is unknown for any specific input configuration x until the
model is actually run for those inputs, we need to make some assumptions. Within a
Bayesian framework, it is appropriate to define a prior distribution for the values of
f (x) at various x points. This prior distribution is then updated using Bayesian methods,
with data D = {(xi, yi) : yi = f (xi), i = 1, . . . , n} being generated from a sequence of model
simulations. The outcome is a posterior distribution for f (·), enabling formal Bayesian
inferences regarding the sensitivity analysis measures described earlier.

While uncertainty persists regarding the function f (·) at input or parameter values
where it has not been evaluated, considering the correlation between function values at
different points can help reduce this uncertainty. Typically, the expected value of the
posterior distribution serves as a point estimate for f (·). In SA, two distinct distributions
are utilised: first, the distribution G, representing uncertainty in model inputs/parameters
x, which is propagated to output values via f (·); and second, the posterior distribution
on f (·), serving a purely computational role. This latter can be refined by increasing the
number of training points x, but it has no operational interpretation.

4.2.1. Gaussian Process Emulators

Consider the function or complex model under investigation as a deterministic code
that yields an output y = f (x) for a given input vector x. A GP emulator offers a prior
representation of our uncertain understanding of this function’s values before the deter-
ministic code is executed. Evaluating the code at various input configurations generates
the data required to construct a posterior distribution. The process for defining the prior
distribution for f (·) involves two stages: initially, a GP is chosen as the prior distribution
based on specific hyperparameters. Subsequently, these hyperparameters are estimated to
define the mean vector and covariance matrix of the GP model. The key requirement for
employing the GP is that f (·) should be a smooth function. Thus, knowing the value of f (x)
should provide insight into the value of f (x′) for x near x′. This smoothness assumption
gives GPs a significant computational advantage over Monte Carlo (MC) methods, which
often ignore the expected similarity of function values at proximate points. In this study,
we select high-reliability points (see Section 5.1) to minimise noise in our model and select
a subset of data that only includes overtopping measurements in the presence of a berm,
thereby eliminating a distinct class of events that could violate the continuity assumption
inherent in GPs. One of the key strengths of GPs is their ability to provide uncertainty
quantification in predictions, even when the smoothness assumption is partially violated.
While incorporating non-stationary kernels could allow us to handle potential discontinu-
ities more explicitly, such an approach lies beyond the scope of this study. Instead, we rely
on careful data selection to maintain model validity and enhance prediction robustness.

Using a GP prior for f (·) means that the uncertainty about f (x1), . . . , f (xn), given
any set of points x1, . . . , xn, can be expressed as a multivariate normal distribution. Con-
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sequently, we need to make feasible prior assumptions about the mean and covariance.
The mean of f (x), given the hyperparameters β, is modelled as

E[ f (x)|β] = h(x)T β (10)

where h(·) is a vector of q known functions of x and β is a vector of coefficients. The selection
of h(·) is flexible, but it should be made to incorporate any prior beliefs we have about the
form of f (·). The covariance between f (x) and f (x′) is given by:

cov( f (x), f (x′)|σ2) = σ2c(x, x′) (11)

where c(·, ·) is a monotone correlation function on R+ with c(x, x) = 1, and it decreases as
|x − x′| increases. Furthermore, the function c(·, ·) must ensure that the covariance matrix
of any set of outputs {y1 = f (x1), . . . , yn = f (xn)} is positive semi-definite. Throughout
this paper, we use the following correlation function, which satisfies all the conditions
mentioned above and is widely used for its computational convenience:

c(x, x′) = exp{−(x − x′)TB(x − x′)}, (12)

where B is a diagonal matrix composed of positive smoothness parameters {(
√

2bi)
−2}d

i=1,
where d represents the dimension of x. It should be noted that B functions to re-scale the
distance between x and x′, thereby determining the proximity required between two inputs
x and x′ for the correlation between f (x) and f (x′) to achieve a specific value.

The normal inverse gamma distribution for (β, σ2) was proposed in [32] for fixed
hyperparameters z, V, a and d, as represented by

p(β, σ2) ∝ (σ2)−
1
2 (d+q+2) exp{−{(β − z)TV−1(β − z) + a}/(2σ2)}

The function f (·) yields outputs at n predetermined design points x1, . . . , xn, gen-
erating the dataset as y = { f (x1), . . . , f (xn)}. Unlike MC methods, these points are
intentionally chosen to provide informative insights about f (·). Typically, these design
points are strategically distributed across the input space X of X, the unknown variables,
guided by the probability distribution G(X). Consequently, the selection of design points
is influenced by G(·), as detailed in [35]. The standardised posterior distribution of f (·),
conditioned on y = { f (x1), . . . , f (xn)}, is then determined as:

f (x)− m∗(x)
σ̂
√

c∗(x, x′)
| y ∼ td+n, (13)

where td+n stands for a Student’s t-distribution with n + d degrees of freedom.
The mean of the resulting posterior is then given by

m∗(x) = h(x)T β̂ + t(x)T A−1(y − Hβ̂), (14)

the updated correlation function described in Equation (12) given the observed data can be
written as:

c∗(x, x′) = c(x, x′)− t(x)T A−1t(x′) + (h(x)T

− t(x)T A−1H)(HT A−1H)−1(h(x′)T − t(x′)T A−1H)T (15)

and

t(x)T = (c(x, x1), . . . , c(x, xn)), (16)

HT = (hT(x1)
T , . . . , hT(xn)

T),



Sustainability 2024, 16, 9110 10 of 22

A =


1 c(x1, x2) . . . c(x1, xn)

c(x2, x1) 1
...

...
. . .

c(xn, x1) . . . 1

 (17)

β = V∗(V−1z + HT A−1y),

σ̂2 =
{a + zTV−1z + yT A−1y − β̂

T
(V∗)−1β̂}

(n + d − 2)

V∗ = (V−1 + HT A−1H)−1.

The outputs for any set of inputs will follow a multivariate t-distribution, with the co-
variance between any two outputs being defined by Equation (13). The t-distribution
arises as the marginal distribution for f (·) after integrating the hyperparameters β and σ2.
In practice, additional hyperparameters, known as smoothness parameters B, are involved
in modelling the correlation function, c(·, ·). It is often impractical to give B a fully analyti-
cal Bayesian treatment as integrating the posterior distribution analytically with respect
to these parameters is generally impossible. One straightforward approach is to keep B
fixed. Alternatively, numerical methods, such as Markov chain Monte Carlo (MCMC)
sampling, can be used to integrate the posterior distribution, though this is computationally
intensive. A practical and robust approach is to estimate the hyperparameters of c(·, ·)
from the posterior distribution and substitute these estimates into c(·, ·) in the relevant
formulae [36]. These estimates can be obtained using the posterior mode combined with a
cross-validation approach [37]. The GEM-SA tool can estimate the smoothness parameters
using either method.

4.2.2. Analysis of Main Effects and Interactions

This section explains how sensitivity metrics discussed earlier can be estimated using
the GP posterior distribution obtained in Section 4.2.1. An important insight from [32] is
that inferences about f (.) can be used to derive information about the main and interaction
effects of f (.). This is because these effects are linear functions of f (.) and td+n after
standardisation, as illustrated in (13). As a result, the derived posterior for the main and
interaction effects will also be td+n. In particular, if the posterior mean of f (.) is expressed
as shown in Equation (14), subsequently for

E(Y | xp) =
∫

χ−p f (x)dG−p|p(x−p | xp) (18)

(where χ−p refers to the input space corresponding to x−p, while G−p|p(x−p | xp) represents
the conditional distribution of x−p given xp under G), the posterior mean of this quantity
can be written as:

EpostE(Y | xp) = Rp(xp)β̂ + Tp(xp)e (19)

where
Rp(xp) =

∫
χ−p

h(x)TdG−p|p(x−p | xp), (20)

Tp(xp) =
∫

χ−p
t(x)TdG−p|p(x−p | xp) (21)

and e = A−1(y − Hβ̂).
Similarly, the mean of posterior for ME or interaction can be derived in the follow-

ing way:
Epost{zi(xi)} = {Ri(xi)− R}β̂ + {Ti(xi)− T}e. (22)
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In a similar manner, the standard deviations of the MEs and interactions can be derived;
see [32] for more details on the computational aspects.

The posterior mean of the ME Epos(zi(xi)) can be plotted against xi, with bounds
representing, for example, plus and minus two posterior standard deviations. By standard-
ising the input variables, we can visualise Epos(zi(xi)) for i = 1, . . . , d on a single plot. This
provides a concise graphical summary of the influence that each input variable exerts on
the model’s output. Section 5 will present this plot using the dataset introduced in Section 3,
offering insights into the impact of different parameters on wave overtopping predictions.

Direct posterior inference for the variance-based measures, specifically VTi discussed
in Section 4.1.2, presents greater challenges due to their nature as quadratic functionals
of the underlying function f (.). These measures are more complex than simple linear
functionals like the main effects. To handle this computational complexity and derive
these sensitivity measures within a Bayesian framework, advanced techniques are required.
An in-depth exploration of these methods, including how Gaussian process (GP) emulators
can be utilised to compute such measures, is detailed in [32].

5. Results
5.1. Data Preparation and Initial Examination of the CLASH Dataset

This section describes the pre-processing steps taken prior to implementing a novel
probabilistic sensitivity analysis approach and predictive modelling for the wave overtop-
ping dataset (Section 3). Initial examination and visualisation of the CLASH dataset in
Section 3 revealed a highly non-linear and complex relationship between variables. As a
result, standard linear regression models are not suitable for modelling wave overtopping
data with such a complex dependency structure. Previous studies have attempted to model
these intricate relationships between variables in wave run-up and overtopping using
artificial neural networks (ANNs) [38,39].

The emulator-based sensitivity analysis, outlined in Section 4.2, will be used to per-
form an SA of the parameters influencing wave overtopping. This probabilistic method
is developed based on the GP regression as a computationally efficient non-parametric
Bayesian machine learning technique. To train the GP model required for computing the
SA measures described in Sections 4.1.2 and 4.2.2, and to address the other computational
objectives discussed in Section 4, the following steps were implemented:

1. Database cleaning and the selection of a highly reliable subset.
2. Perform an exploratory analysis of the subset.
3. Fit a Gaussian process regression model for the selected subset of the dataset.
4. Compute the SA measures, including the variance-based indexes and the main effects.
5. Illustrate the corresponding SA plots.
6. Interpret the SA results, perform an uncertainty analysis, and draw conclusions about

the most influencing input parameters affecting the wave overtopping.

The CLASH wave overtopping database contains observations and measurements
collected from several sources with varying levels of reliability. Numerical modelling has
been implemented to fill the gaps in the dataset, and in order to discern between observed
and modelled data, each row was given a reliability rating ranging between 1 and 4, with 1
being for “highly reliable” data points and 4 for “highly unreliable” data.

Selecting only the highest reliability entries in the CLASH dataset offers two significant
benefits: it reduces the training time for the Gaussian process regression (GPR) model and
increases accuracy due to the improved quality of the training points. This initial screening
of the dataset, focusing on high-reliability data, results in a dataset of size 3385 × 29.
After removing any entries with missing values, the final dataset is further reduced to 3208
observations, consisting of 27 feature variables and 1 output (q[m3/s.m], which represents
the wave overtopping discharge per unit width. The choice of using GPR for the model
development is well justified because GPR is known for its efficiency in constructing
reliable models with far fewer training points compared with methods like artificial neural
networks (ANNs). ANNs, as employed in previous studies, typically require large training
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datasets to generalise effectively. In contrast, GPR’s ability to incorporate uncertainty and
work with smaller, higher-quality datasets makes it a more appropriate choice for this study.
This further supports the adoption of the GPR approach for modelling wave overtopping,
especially given the non-linear and complex dependency structure present in the data.

The dataset screening process was further refined by eliminating non-informative
feature variables. This was accomplished through an initial data analysis involving the
regression of feature variables against the output variable. During this analysis, the scatter
plot (Figure 5 left) and histogram (Figure 5 right) of ‘Width of Berm (B)’ revealed that the
recorded values for this variable were predominantly zeros. This presented a potential issue
for the modelling process. Not only does a variable with mostly zero values contribute little
information to the model, but it can also cause numerical challenges during the training
phase, particularly for data-driven models like the GPR approach employed here. To
mitigate these issues, this study opted to focus on analysing a smaller subset of the dataset,
consisting of 330 high-reliability data points. By selecting this high-quality subset, the aim
was to probabilistically identify the most suitable model linking wave overtopping to
the remaining 27 input parameters. This step ensures that the model is developed using
informative and reliable data, thus improving the overall accuracy and robustness of the
predictive modelling process.

Figure 5. Scatter plot (left) and histogram (right) of ‘width of berm’ in the dataset with the highest
level of reliability.

5.2. GP-Based Sensitivity Analysis for the Wave Overtopping Dataset

The SA of the overtopping parameter, q, with respect to the changes in the input
parameters described in Section 5.1, has been conducted. The results, expressed in terms of
variance-based measures and total effects, are presented in Table 2.

To identify the variables that are most influential on the overtopping parameter,
the correlation coefficients between the input variables and the wave overtopping dis-
charge parameter, q, were examined. Figure 6 illustrates the correlation matrix of these
variables. Several strong positive correlations are apparent. For example, significant cor-
relations are observed between (H(m, deep), q), (T(p, deep), q), and (T(m, deep), q). In contrast,
the correlations between (m, q) and (b, q) are very weak. Despite Figure 6 being useful for
assessing the strength and direction of correlations between the input variables and q, it
does not provide insight into the underlying functional relationships between the input
parameters and q.
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Table 2. The emulator-based SA of the overtopping parameter with respect to the changes in other
input parameters. The seven parameters contributing the greatest variance are in bold.

Parameters Variance (%) Total Effect

Signif wave height (Hm,deep) 10.93 11.22

Peak period in the deep (Tp,deep) 5.53 5.83

Mean period m2/m0, deep (Tm,deep) 0.79 0.89

Mean period, deep (Tm−1,deep) 7.63 7.77

Off-shore Water depth, (Hdeep) 1.93 2.04

Slope of foreshore (m) 1.28 1.38

Angle of wave attack (β) 0.85 0.96

Water depth at toe (h) 1.59 1.69

Signif wave height at toe (Hm,toe) 8.11 8.22

Peak period, toe (Tp,toe) 15.75 15.86

Mean wave period, toe (Tm,toe) 8.48 8.59

Spectral wave period at toe (Tm−1,toe) 4.06 4.17

Water depth on toe (ht) 1.27 1.40

Toe width (Bt) 0.95 1.06

Roughness/perm factor (γ f ) 0.06 0.17

Cot downward slope, berm (cotαd) 4.01 4.30

Cot upward slope, berm (cot αu) 0.65 0.68

Cot slope, excl berm (cot ffexcl) 16.91 17.02

Cot slope, incl berm (cot αincl) 1.07 1.37

Crest freeboard (Rc) 0.74 1.04

Width of berm (B) 2.15 2.22

Water depth on berm (hb) 2.51 2.65

tan of slope of berm (tan ab) 0.32 0.43

Width of horizontally schematised berm (Bh) 1.50 1.62

Width of crest (Gc) 0.39 0.50

Armour crest freeboard (Ac) 0.20 0.31

Total variance (%) 99.64

Estimated mean output 0.00779018

Estimated variance output 1.35091 × 10−6

Figure 7 illustrates the scatter plots between several input parameters (mainly struc-
tural and geomorphological parameters, as listed in Table 1) and the wave overtopping
discharge parameter, q. Due to space constraints, not all input parameters could be in-
cluded in this figure. From the scatter plots and the computed correlations between each
input variable and q, it becomes clear that the relationships between these variables and
the wave overtopping discharge are highly non-linear. Moreover, some input parameters,
such as cot αexcl or cot αincl , exhibit distributions with multiple modes, suggesting that their
relationships with q and even other input parameters defy interpretation via any known
mathematical functional forms. Consequently, it would be misleading to rely solely on
correlation coefficients for the SA of this complex, non-linear system, as highlighted by [40].

Using correlation coefficients in such a scenario could obscure the true effects of
input variables on the prediction of the wave overtopping discharge parameter. Addi-
tionally, conventional SA methods, including Markov chain Monte Carlo (MCMC)-based
approaches [41], may struggle to capture the complex, non-linear dependencies and inter-
actions inherent in this model.
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Figure 6. Correlation plot of all variables in the subset of the CLASH dataset.

To examine the variation of model output with respect to the uncertainty in the input
variables, we further develop the probabilistic SA approaches described in Section 4.1.
The GP emulator helps to overcome the computational challenges involved in calculating
the SA indices for the complex, non-linear system considered in this study. These SA
indices allow us to evaluate the contribution of each input variable to the overall variability
of the system. Specifically, by leveraging the GP emulator, we efficiently compute these
indices and quantify the influence of each variable on the wave overtopping model’s
output. The probabilistic SA enables us to assess how uncertainty in the input variables
propagates through the model and affects the overtopping discharge parameter. This
approach is crucial for understanding which variables are the most influential in predicting
wave overtopping, allowing for a more focused analysis and potential simplifications in
the model complexity without compromising accuracy. The SA indices thus provide a
powerful tool for identifying key drivers of uncertainty and guiding decision making in
model refinement and resource allocation.

Table 2 provides the results of the emulator-based SA for the wave overtopping pa-
rameter with respect to changes in the input parameters discussed in Table 1. The results
highlight that a significant portion of the variability in wave overtopping discharge, approx-
imately 20%, can be attributed to ‘significant wave height’ measurements. Furthermore,
the results indicate that Hm,deep accounts for 10.93% and Hm,toe accounts for 8.11% of the
total variance. Further investigation into the relationship between these hydrodynamic
parameters and wave overtopping discharge reveals strong correlations. Figure 8 illustrates
that significant wave height parameters (Hm,deep, Hm,toe) are also highly correlated. This
correlation indicates that significant wave height is a key factor influencing wave overtop-
ping and suggests it could be pivotal in simplifying the final model or reducing model
dimensionality. Given these findings, a significant wave height should be included as one
of the primary features in any predictive model for wave overtopping. This inclusion will
enhance model accuracy and focus, leveraging the substantial variance contribution from
these hydrodynamic parameters.
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Figure 7. Correlation plot between some input parameters (randomly selected) and the overtop-
ping parameter. Red stars indicate the level of statistical significance: * for p ≤ 0.05, ** for p ≤ 0.01,
and *** for p ≤ 0.001.

The most influential input parameter identified by the models is the ‘mean cotangent
of structure slope without contribution to the berm’, denoted by cot αexcl , which contributes
approximately 17% to the total variance of the wave overtopping output. This finding of the
model aligns with fundamental underlying theories, which emphasise the importance of
the slope in determining the wave breaker index (Iribarren number). The Iribarren number
provides an important role in the wave breaking process, affecting turbulent kinetic energy
and momentum transfer, both of which are crucial factors in wave overtopping at coastal
defence structures.

In addition to slope, several wave period-related parameters also significantly influ-
ence wave overtopping. The ‘Peak wave period at toe’, Tp,toe, contributes 15.75%, while
the ‘off-shore peak wave period in the deep water’, Tp,deep, and ‘off-shore spectral wave
period’, Tm−1,deep, contribute 5.53% and 7.63% of total variance contribution toward the
output’s variance, respectively. These findings are consistent with existing theories as wave
periods directly impact the frequency and intensity of wave impacts on coastal structures.

Furthermore, parameters such as ‘Roughness/permeability factor for the structure
(γ f )’, ’Width of the structure crest (Gs)’, and ‘Armour crest freeboard (Gs))’ contribute
relatively little to the overall variance in the wave overtopping model (see Table 2). These
parameters, with their relatively insignificant contributions to variance, suggest that they
are not critical for predicting the wave overtopping discharge. Notably, 99% of the variabil-
ity in the output is attributed to MEs, which further underscores the suitability of using
GPR in this analysis.
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Figure 8. Correlation plot between the most sensitive input parameters and the wave overtop-
ping discharge. Red Stars indicate significance lvl.

Figure 9 illustrates the estimated MEs, E(q|Xi), where Xi, defined in the general case
in Equation (18), is an input parameter (detailed in Table 1). These MEs are approximated
using the Gaussian process (GP) model as described in Section 4.2.2. This approach allows
us to evaluate the sensitivity of the wave overtopping parameter with respect to individual
input variables while maintaining computational efficiency and flexibility. To compute the
SA measures reported in Table 2 and the MEs for each input parameter, the GP model was
trained using only 330 high-reliability data points after cleaning the dataset, as described in
Section 5.1.

The SA measures proposed in this study are computed by developing a custom code
in R. To facilitate computations, the input variables and the output (wave overtopping
discharge) were standardised prior to fitting the GP emulator. Standardising the data not
only helps to avoid numerical issues but also makes the computations more consistent
across different models. Once the GP model was trained, the results were then transformed
back to their original scale to make them interpretable and applicable to real-world scenar-
ios. This process, as supported by [42], showcases the advantages of using standardised
data, particularly when working with complex models like the GP emulator. This en-
sures numerical stability while maintaining flexibility across a wide range of computational
implementations. The final model results can then be transformed back to the original scale.

Figure 9 shows the estimated MEs of the overtopping parameter in response to changes
in various input parameters. The figure highlights that the overtopping parameter is most
sensitive to uncertainties in terms of cot αexcl , Tp,toe, Hm,deep, Tm,toe, Hm,toe, Tm−1,deep, and
Tp,deep, respectively. The width of the uncertainty bands depicted in Figure 9 represents
the uncertainty of the GP emulator linked to each input. This uncertainty quantification
provides insight into the reliability of predictions for each parameter. For instance, when
Hm,deep is fixed at a value of 0.5, the corresponding point on the graph represents the
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expected value of the overtopping discharge parameter, q, derived by averaging across the
remaining input parameters.

Figure 9. The estimated main effects of the overtopping parameter with respect to the changes in
other input parameters using the emulator-based SA method. The seven parameters contributing the
greatest variance are in blue.

The emulator-based SA method allows for systematic exploration by varying small
groups of input variables, while others are held fixed at their default values. This approach
enables the examination of the sensitivity of the output (overtopping parameter, q) to
particular input variables while controlling for other factors. When comparing the thick-
ness of the ME plots, it becomes clear that there is less uncertainty associated with certain
key variables, such as cot αexcl , Tp,toe, Hm,deep, Tm,toe, Hm,toe, Tm−1,deep, and Tp,deep, which are
illustrated in blue, than the rest of the input parameters. The thickness of the ME plots is the
result of simulating multiple (in this case, 200) realisations from the posterior distribution
of the output (overtopping parameter q). These realisations are computed at a regularly
spaced grid of input points, as described in Section 4.2.1. The thicker ME bands indicate
more uncertainty, while thinner bands suggest a higher degree of confidence in the model’s
predictions for those variables. The variability in the spread of ME lines illustrates the com-
bined uncertainty present in both the model and input parameters. Thus, these sensitivity
measures themselves are subject to uncertainty, and generating multiple realisations helps
to reflect that uncertainty in a probabilistic framework.

To enhance the clarity of the visualisations of the ME plots illustrated in Figure 9, we
now focus on the ME plots of the most sensitive input parameters, namely cot αexcl , Tp,toe,
Hm,deep, Tm,toe, Hm,toe, Tm−1,deep, and Tp,deep. The improved visualisations are presented in
Figure 10, which provides a more detailed focus on the most influential parameters. In each
ME plot, the blue solid line represents the posterior mean of the ME, calculated as described
in Section 4.2.2. This line indicates the central tendency of the model’s prediction for the
effect of each input parameter on the output given the available data. The red dotted lines
show the 95% confidence interval around the ME (see Section 4.2.2 for details).

This confidence interval is derived from the posterior distribution of the emulator
and illustrates the uncertainty in the estimated ME. It is worth noting that this confidence
interval offers an alternative method for assessing uncertainty compared with the approach
of using multiple realisations simulated from the posterior distribution of the overtopping
parameter, q. Both methods provide insight into the uncertainty surrounding the estimated
ME, though they approach the analysis from slightly different perspectives.
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Figure 10. The main effects (blue lines) and their 95% confidence intervals (red lines) for the most
sensitive input parameters, as illustrated by the blue images in Figure 9.

One final point to note about the proposed method in this study is that the ma-
chine learning Gaussian process (GP) sensitivity analysis results for the wave overtopping
discharge parameter are consistent with the findings derived from the variance-based
sensitivity analysis (SA) measures, as reported in Table 2. This agreement reinforces the
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robustness of the GP-based approach, indicating that it effectively captures the influen-
tial input parameters and their contributions to the variability of the wave overtopping
discharge parameter. The concordance between the two approaches—one probabilistic
(GP-based) and the other variance-based—validates the applicability of the GP method for
complex, non-linear systems like the one studied here. It suggests that the GP emulator
can be reliably used as a computationally efficient alternative to traditional variance-based
methods for sensitivity analysis, especially in cases where the underlying functional re-
lationships between inputs and outputs are highly non-linear or difficult to model with
simpler techniques.

6. Conclusions

This study outlines a novel probabilistic machine learning approach for sensitiv-
ity analysis of complex, non-linear, multi-variable datasets on wave overtopping from
coastal defences. The overtopping data used in this study are based on 163 two- and
three-dimensional physical modelling tests as well as full-scale field-based (prototype)
measurements reported in the CLASH dataset. The homogeneous database of this study in-
cludes measurements for all common types of hard-engineered coastal protection structures
and captures data on the hydrodynamics, geomorphological and structural parameters
influencing wave overtopping discharge.

The analysis revealed that the overtopping process is highly complex, driven by non-
linear interactions between wave kinematics, geomorphological features, and structural
parameters. For the first time, this paper proposes a mathematically robust and computa-
tionally efficient framework based on the GP emulator to perform a sensitivity analysis of
the multi-faceted wave overtopping problem. This framework analyses how variations in
key input variables influence the wave overtopping from coastal defences.

The GP model developed in this study was successfully tested and validated using
data from the CLASH database. The proposed method allows for an effective sensitivity
analysis with significantly fewer model runs compared with conventional SA approaches,
including MCMC-based methods [33].

The machine learning-based sensitivity analysis model presented in this paper is
crucial for predicting wave overtopping discharge from critical coastal infrastructures,
a key factor in forecasting coastal flooding. The results of the sensitivity analysis can be
directly applied to improve predictive models by highlighting the parameters with the most
significant impact on wave overtopping, thereby enhancing the accuracy of assessments.

Using the GP emulator, computationally expensive sensitivity measures, such as
variance-based analyses and main effects (MEs) of the overtopping parameters, were
efficiently computed. The study found that significant wave height features (Hm,deep, Hm,toe),
slope without berm contribution (cot αexcl), peak wave period at the toe (Tp,toe), offshore
peak wave period (Tp,deep), and offshore spectral wave period (Tm−1,deep) are the most
influential factors determining the intensity of wave overtopping discharge.

The results from the GP-based SA methods were leveraged to simplify and develop a
robust predictive model for wave overtopping and coastal flooding based on the CLASH
database. Figure 11 illustrates the initial results of predictive modelling for wave over-
topping discharges from vertical defence structures (e.g., seawalls). The GP-based model
demonstrates an efficient and reliable prediction of wave overtopping volumes, showing
potential to outperform existing methods, such as those based on artificial neural networks,
as reported in [38,39]. Additionally, due to the capability of GPs to make accurate predic-
tions with far fewer data points, compared with ANNs, the proposed method allows for
SA and modelling on smaller data subsets, enabling rigorous analyses, even with limited
data availability.

The mathematical framework presented in this paper, along with the machine learning
Gaussian process (GP)-based model developed, can significantly contribute to creating a
reliable decision support tool. This tool would empower coastal scientists and engineers
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to better evaluate and predict the performance of key coastal infrastructures under the
growing threats posed by climate change.

Figure 11. Overtopping predictions from the GP model versus observation data for a vertical seawall
with no berm.

This study provides a foundation for future work. While our method exhibits im-
pressive predictive power on the CLASH dataset, many real-world coastlines are under-
represented in these data. Future research should investigate the generalisability of this
approach, which would require an expanded data collection. This paper primarily focused
on topological and hydrological parameters, yet other sources of variability—such as wind
direction and speed—are known to affect overtopping. The proposed methodology could
be extended to explore these additional parameters, although collecting such data may be
expensive. This enhances the value of our data-efficient machine learning approach.

With the availability of more data, future work should explore methods to enhance
the computational efficiency of the GP model, particularly through approaches such as
sparse GPs [43].

Although we introduced a novel method and demonstrated its promising perfor-
mance relative to the current state of the art, future research should undertake a thorough
comparison with other existing methods. Such work could help clarify the specific use
cases where our approach excels, contributing to a deeper understanding of when and
where to apply various predictive techniques.

One particularly impactful area for future exploration is spatio-temporal forecasting.
Given sufficient data, GPs could be employed to predict the effects of climate change on
coastal regions, forecasting the likelihood of wave overtopping in the coming decades.
These predictive insights could help identify critical risks to vulnerable coastal areas well
in advance, enabling timely and effective preventive measures.
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