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Abstract: Configuring energy storage systems (ESSs) in distribution networks is an effective way
to alleviate issues induced by intermittent distributed generation such as transformer overloading
and line congestion. However, flexibility has not been fully taken into account when placing ESSs.
This paper proposes a novel ESS placement method for flexible interconnected distribution networks
considering flexibility constraints. An ESS siting and sizing model is formulated aiming to minimize
the life-cycle cost of ESSs along with the annual network loss cost, electricity purchasing cost from
the upper-level power grid, photovoltaic (PV) curtailment cost, and ESS scheduling cost while
fulfilling various security constraints. Flexible ramp-up/-down constraints of the system are added
to improve the ability to adapt to random changes in both power supply and demand sides, while a
fluctuation rate of net load constraints is also added for each bus to reduce the net load fluctuation.
The nonconvex model is then converted into a second-order cone programming formulation, which
can be solved in an efficient manner. The proposed method is evaluated on a modified 33-bus flexible
distribution network. The simulation results show that better flexibility can be achieved with slightly
increased ESS investment costs. However, a large ESS capacity is needed to reduce the net load
fluctuation to low levels, especially when the PV capacity is large.

Keywords: energy storage system; optimal placement; flexible distribution network; flexibility
constraint; flexible ramp-up/-down; fluctuation rate of net load

1. Introduction

Distributed renewable energy resources (RESs) have continuously been installed
into power distribution networks all over the world in recent years, mainly to reduce
carbon emissions. Up to 2023, the cumulative installed capacity of distributed photovoltaic
(PV) generation in China reached 254.438 GW. The integration of so much intermittent
distributed generation brings serious issues for the secure operation of the distribution
networks, such as transformer overloading and line congestion, but configuring energy
storage systems (ESSs) is an effective way to alleviate these issues.

Considerable efforts have been devoted in the literature to ESS placement in dis-
tribution networks. In [1], the sizing and placement of the distribution grid connected
battery systems is achieved using a second-order cone-convex relaxation of the power
flow equations. In [2], a hierarchical planning model is proposed for battery ESS (BESS)
configurations, including three interacting levels: determination of the optimal BESS num-
ber, selection of the most effective locations for a given BESS number based on voltage
sensitivity analysis, and sizing the BESS capacity to minimize the investment cost, resid-
ual value of BESS, and system operation cost. In [3], a multi-objective BESS placement
model is proposed for unbalanced distribution networks to minimize the costs of primary
investment and operation/maintenance while maximizing the savings by loss reduction
and load shifting. A sequential BESS placement strategy is presented based on a loss
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sensitivity index. In [4], an ESS planning method is proposed for distribution grids to see if
curtailing PV generation might be more economical than installing an ESS. The problem
minimizes the net investment costs of the ESSs and the imported and exported electricity
costs while modeling the power grid constraints by linearized power flow equations to
keep the problem formulation tractable.

Scenario-based stochastic programming is usually used to handle variations in RESs
and loads. In [5], a trilevel ESS planning formulation with min–max risk constraints
is developed considering that the siting choice of individual RES owners could conflict
with the system operation targets of hosting capacity improvement. The stochastic model
is solved using a customized column-and-constraint generation algorithm. In [6], an
ESS siting and sizing method is proposed for distribution networks embedding seasonal
network reconfiguration. The model aims to minimize voltage magnitude deviations,
feeder/line congestion, cost of supplying loads, and investment costs related to the ESSs,
using a conditionally exact convex optimal power flow. Benders’ decomposition algorithm
is used to solve the stochastic model. In [7], a distributed BESS planning method is
presented leveraging model predictive control strategies [8,9] using Benders’ decomposition
technique. The objective is to maximize PV utilization and minimize battery degradation
while satisfying all grid constraints. In [10], an ESS siting and sizing method is presented
to minimize the dispatch error at the connecting point to the upper-layer grid, using
Benders’ decomposition technique and an augmented relaxed optimal power flow model,
which is proven to provide a global optimal and exact solution in the case of radial power
grids. In [11], the optimal allocation of BESS is proposed to minimize the investment and
maintenance costs of the BESS, the operation cost of the whole system, and the loss cost of
the whole system. The BESS location is first determined based on the calculated adjusted
voltage violation risk, and then the capacity of the BESS is obtained via a supervised
learning-based power flow. In [12], a two-stage mixed-integer linear programming problem
is formulated that determines the capacity, number of discharge cycles of batteries in the
first stage, and lifetime of the battery based on the partial depth of discharge in the second
stage. The uncertainty of PV and demand are taken into account through probabilistic
analysis and time-period clustering.

Robust optimization is another way to handle uncertain parameters. In [13], an
adaptive robust optimization model with integer recourse variables is proposed for BESS
allocation to reduce the power imbalance and alleviate the voltage increase, regarding
future PV installations determined by customers as uncertainties. The model is solved
using a modified column-and-constraint generation algorithm. In [14], a robust distributed
BESS planning model is expressed by minimizing the difference among the BESS planning,
degradation, operation costs, and the revenue of BESS from selling its stored energy. An
equivalent linear programming model is proposed using the first-order expansion of
Taylor’s series for linearization of power flow equations and a polygon for linearization of
circular inequalities. The bounded uncertainty set is used to model the uncertain parameters
including forecasted loads, charging/discharging prices, and output power of RESs.

Various factors other than security constraints are also considered for ESS placement
including reliability and resilience, power quality, and operation flexibility. From the
perspective of reliability and resilience, in [15], a planning framework is introduced for
ascertaining the most cost-effective siting and sizing of ESSs that maximize their benefits
in distribution networks. Contingency planning decisions, in the form of load points to
be shed during contingencies, are identified. In [16], a multistage stochastic model is
developed to determine the optimal sizing, timing, and placement of distributed generators
in coordination with ESSs and reactive power sources. The problem is formulated as a
mixed-integer linear programming optimization using a linearized AC network model to
minimize the total costs corresponding to investment, maintenance, operation, reliability,
and emission. In [17], a BESS placement method in radial distribution networks is proposed
and is mainly intended for improving the reliability. The method uses utility historical
load, outage, and project-cost data and relies on a mixed-integer linear programming
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optimization tool. In [18], a mixed-integer linear programming model is developed to
optimally determine the size and site of a BESS connected to the distribution network for
peak shaving and reliability improvement, under both normal and outage scenarios. In [19],
RESs, stationary BESSs, and power electric vehicle parking lots are co-planned under
normal and resilient operation to restore prioritized loads while meeting topological and
operational constraints. Demand response programs and interruptible loads are introduced
to enhance the resilience of distribution systems. From the perspective of power quality,
in [20], an optimal allocation strategy is proposed for distributed ESSs in distribution
networks to simultaneously minimize voltage deviation, flickers, power losses, and line
loading. In [21], the co-planning of wind turbines and ESSs is formulated to minimize
flicker emission and voltage deviation produced by wind turbines in addition to power
losses and ESS costs. From the perspective of operation flexibility, in [22], a two-stage model
is developed to site and size a BESS in a distribution network to provide local flexibility
services for the distribution system operator and frequency containment reserve for the
transmission system operator. The first stage allocates the battery to managing congestions
or interruptions of supply and ensures reliable electricity supply in the local distribution
network. The second stage optimally sizes the BESS to boost the profit by providing a
frequency containment reserve for normal operation.

In summary, ESS placement has been studied from various perspectives. Recently,
maintaining the operational flexibility of distribution systems has become an important
focus primarily because of the increased levels of grid-connected, variable renewable energy,
as well as changing customer behaviors on the distribution side. However, flexibility has
not been fully taken into account when placing ESSs. This paper proposes a novel flexibility-
constrained ESS placement method for flexible interconnected distribution networks. The
contributions are summarized as follows:

(1) A novel ESS siting and sizing model is formulated aiming to minimize the life-cycle
cost of ESSs along with the annual network loss cost, electricity purchasing cost
from the upper-level power grid, PV curtailment cost, and ESS scheduling cost while
fulfilling security constraints.

(2) Flexible ramp-up/-down constraints of the system are added to improve the ability
to adapt to random changes in both power supply and demand sides, while the
fluctuation rate of net load constraints is also added for all buses to reduce the net load
fluctuation.

(3) The nonconvex model is transformed into a second-order cone programming formula-
tion, enabling it to be solved efficiently. The proposed method is thoroughly evaluated
on a modified 33-bus flexible distribution network. Various sensitivity analyses are
conducted under different user preferences on flexibility degrees.

The remainder of this paper is organized as follows: Section 2 presents the models of
flexibility resources. Section 3 presents the proposed flexibility-constrained ESS placement
method. Section 4 describes the simulation results, and conclusions are drawn in Section 5.

2. Modeling of Flexibility Resources and Flexibility Evaluation
2.1. Modeling of Flexible Resources in Distribution Systems

Generally speaking, all types of controllable resources can be treated as flexible re-
sources, including ESSs, distributed generation (DG) inverters, reactive power compensa-
tion devices, flexible distribution switches (FDSs), network reconfiguration, on-load tap
changers, electric vehicles, and interruptible loads due to their ability to control power
flow. As we mainly focus on the real power balance problem, reactive power compensation
devices are not considered. Network reconfiguration and on-load tap changers cannot be
frequently regulated and are also not discussed in this paper. FDSs, ESSs, and DG inverters
are considered as flexible resources in the formulation of ESS placement.
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2.1.1. Steady-State Operation Model of FDSs

A typical multi-terminal FDS consists of multiple back-to-back voltage source con-
verters (VSCs), as shown in Figure 1. In normal operation mode, the control variables
of an FDS consist of the real and reactive power delivered by each VSC. Assuming the
power injection into the grid to be the positive direction and neglecting power losses, the
following constraints should be fulfilled for each FDS:

∑
i∈Ωb(v)

Pi,t,FDS = 0 (1)

√
(Pi,t,FDS)

2 + (Qi,t,FDS)
2 ≤ Smax,FDS, ∀i ∈ Ωb(v) (2)

Figure 1. Illustration of the back-to-back multi-terminal FDS.

Constraint (1) is let the sum of real power injection from all VSCs be zero. Constraint (2)
is let the apparent power flow through each VSC be less than each VSC’s capacity.

2.1.2. Steady-State Operation Model of ESSs

The following constraints should be fulfilled for each ESS:

µ+
i,t + µ−

i,t ≤ 1 (3)

0 ≤ P+
i,t,ESS ≤ µ+

i,tPRi,ESS (4)

0 ≤ P−
i,t,ESS ≤ µ−

i,tPRi,ESS (5)

Ei,t = Ei,t−1 + ηc
i P+

i,t,ESS∆t − (1/ηd
i )P−

i,t,ESS∆t (6)

ERi,ESSSOCmin ≤ Ei,t ≤ ERi,ESS · SOCmax (7)

Ei,0 = Ei,T (8)

∑
t∈ΩT

Ploss
i,t,ESS = ∑

t∈ΩT

(P+
i,t,ESS − P−

i,t,ESS) (9)

Constraint (3) is avoid ESSs simultaneously charging and discharging. Constraints (4) and (5)
are let the charging/discharging power be less than the ESS’s capacity. Constraint (6) is
let the ESS’s energy satisfy the continuity constraint. Constraint (7) is avoid overcharging
and overdischarging for ESSs. Constraint (8) is let the final energy at the end of the whole
period be equal to the initial energy. Constraint (9) is describe the energy losses of each ESS.

To mitigate the model complexity induced by the binary variables, the losses of the
ESSs are not discussed in this paper, and the ESS constraints become the following:

0 ≤ Pi,t,ESS ≤ PRi,ESS (10)

ERi,ESSSOCmin ≤ Ei,t ≤ ERi,ESS · SOCmax (11)
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Ei,0 = Ei,T (12)

Ei,t = Ei,t−1 − Pi,t,ESS∆t (13)

In constraints (10) and (13), the approximate discharging power Pi,t,ESS is introduced
such that a positive value indicates the ESS is discharging and a negative value indicates
the ESS is charging.

2.1.3. Steady-State Operation Model of DG Inverters

While most of the time DG inverters work in the mode of maximum power point
tracking, superfluous real power can be curtailed to mitigate the overvoltage issues
as follows:

0 ≤ Pcut
i,t,DG ≤ Pi,t,DG (14)

2.2. Flexibility Definition and Indices
2.2.1. Flexibility Definition

Power system flexibility can be defined as the ability to adapt to random changes in
both power supply and demand sides within a time period by coordinating various flexible
resources. In this paper, the flexibility is modeled through the calculation of flexible ramp
requirements of each bus in each dispatch interval, as shown in Figure 2 [23], which is
assumed to be the net load curve of a distribution substation bus.

Figure 2. Ramp requirements considering net load variability and uncertainty.

(1) At time t0, the current net load is L0. The forecasted value and the upper and lower
bounds of the net load at time t1 are L1, u1, and d1, respectively. As d1 > L0, we
inferred that there is only a flexible ramp-up (FRU) requirement without a flexible
ramp-down (FRD) requirement. The FRU requirement FRU0 is equal to u1-L0, taking
the forecasting uncertainty into account.

(2) At time t1, the current net load is L1. The forecasted value and the upper and lower
bounds of the net load at time t2 are L2, u2, and d2, respectively. As d2 < L1 < u2, we
inferred that there is both an FRU requirement and an FRD requirement. FRU1 is
equal to u2-L1, and FRD1 is equal to L1-d2, taking the forecasting uncertainty into
account.

(3) Similarly, at time t2, the current net load is L2. The forecasted value and the upper and
lower bounds of net load at time t3 are L3, u3, and d3, respectively. As d3 < L2 < u3,
there is both an FRU requirement and an FRD requirement. FRU2 is equal to u3-L2,
and FRD2 is equal to L2-d3.
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2.2.2. Flexibility Capability

Flexible ramp-up and flexible ramp-down indices of an ESS are defined as follows:

FRUi,t,ESS = min
{

PRi,ESS − Pi,t,ESS,
Ei,t − ERi,ESSSOCmin

∆t

}
(15)

FRDi,t,ESS = min
{

Pi,t,ESS + PRi,ESS,
ERi,ESS · SOCmax − Ei,t

∆t

}
(16)

Flexible ramp-up and flexible ramp-down indices of a DG inverter are defined as
follows:

FRUi,t,DG = Pcut
i,t,DG (17)

FRDi,t,DG = Pi,t,DG − Pcut
i,t,DG (18)

Flexible ramp-up and flexible ramp-down indices of the whole system are defined as
follows:

FRUt = ∑
i∈ΩESS

FRUi,t,ESS + ∑
i∈ΩDG

FRUi,t,DG (19)

FRDt = ∑
i∈ΩESS

FRDi,t,ESS + ∑
i∈ΩDG

FRDi,t,DG (20)

2.2.3. Flexibility Requirement

Neglecting the forecasting uncertainties in Figure 2 for our ESS planning task, flexible
ramp-up/-down requirements of the whole system are defined as follows:

URRi,t = max{Pi,t+1,NET − Pi,t,NET, 0} (21)

DRRi,t = max{Pi,t,NET − Pi,t+1,NET, 0} (22)

Flexible ramp-up/-down requirements of the whole system are defined as follows:

URRt = ∑
i∈Ωb\{root}

URRi,t (23)

DRRt = ∑
i∈Ωb\{root}

DRRi,t (24)

2.2.4. Fluctuation Rate of Net Load

Another index that is used for flexibility evaluation is the fluctuation rate of net load
(FRNL), which is defined as the ratio of the real net power’s standard deviation with respect
to the distribution transformer’s capacity:

FRNLi =
σi

STi
× 100% (25)

σi =

√√√√ ∑
t∈ΩT

(Pi,t − Pi)
2

T
(26)

Pi =
1
T ∑

t∈ΩT

Pi,t (27)
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3. Flexibility-Constrained ESS Placement
3.1. Fundamental Formulation
3.1.1. Objective Function

The objective is to minimize the annual total cost, including the equivalent annual
investment cost of ESSs and the annual operation and maintenance costs of the system.

min CTotal = CEAI + 365∗COM (28)

The equivalent annual investment cost of ESSs is

CEAI = ∑
i∈ΩESS

r(1 + r)y

(1 + r)y − 1
(ceERi,ESS + cpPRi,ESS) (29)

The annual operation and maintenance costs of the system is

COM = CNLC + CPRC + CPC + CFRSC (30)

CNLC, CPRC, CPC, and CFRSC are calculated as

CNLC = closs ∑
t∈ΩT

∑
i∈Ωb

Pi,t∆t (31)

CPRC = cg ∑
t∈ΩT

Pg
t ∆t (32)

CPC = cap ∑
t∈ΩT

∑
k∈ΩDG

Pap
k,t ∆t (33)

CFRSC = cess ∑
t∈ΩT

∑
i∈ΩESS

|Pi,t,ESS|∆t (34)

3.1.2. FDS Constraints

Constraints (1) and (2) should be added as constraints for FDSs.

3.1.3. ESS Constraints

In addition to ESS constraints, the following constraint is added to limit the maximum
continuous working time of each ESS to 2 h:

ERi,ESS = 2PRi,ESS (35)

3.1.4. DG Inverter Constraint

Constraints (14) should be added as constraints for DG Inverters.

3.1.5. Flexibility Constraints

Three flexibility constraints are added as follows:

FRUt ≥ URRt, t ∈ {1, · · · , T − 1} (36)

FRDt ≥ DRRt, t ∈ {1, · · · , T − 1} (37)

FRNLi ≤ FRNLset, i ∈ Ωb (38)

Constraint (36) is let the FRU capability be larger than the FRU requirement for all
time intervals. Constraint (37) is let the FRD capability be larger than the FRD requirement
for all time intervals. Constraint (38) is let the FRNL index of all buses be less than a pre-set
threshold FRNLset.



Sustainability 2024, 16, 9129 8 of 17

3.1.6. Power Flow Constraints

According to the DistFlow model, the power flow constraints are as follows:

Pi,t = Pi,t,DG − Pcut
i,t,DG − Pi,t,L + Pi,t,FDS + Pi,t,ESS (39)

Qi,t = −Qi,t,L + Qi,t,FDS (40)

∑
(k,i)∈Ωl

(Pki,t − I2
ki,trki)− ∑

(i,j)∈Ωl

Pij,t = −Pi,t (41)

∑
(k,i)∈Ωl

(Qki,t − I2
ki,txki)− ∑

(i,j)∈Ωl

Qij,t = −Qi,t (42)

V2
j,t = V2

i,t − 2(Pij,trij + Qij,txij) + (r2
ij + x2

ij)I2
ij,t (43)

P2
ij,t + Q2

ij,t = V2
i,t I2

ij,t (44)

Constraints (39) and (40) describe the real and reactive power injection of each
bus. Constraints (41) and (42) let each non-slack bus satisfy the power balance equation.
Constraint (43) is the voltage drop constraint for each line. Quadratic constraint (44)
describes the relation among real, reactive power flow current magnitude, and voltage
magnitude at the start bus, which should be satisfied for each line.

3.1.7. Security Constraints

The voltage magnitude of each bus should be within the secure bounds:

Vmin ≤ Vi,t ≤ Vmax (45)

The current magnitude of each line should not exceed the line’s thermal limit:

0 ≤ Iij,t ≤ Iij,max (46)

3.2. Model Reformulation

Due to the nonconvexity of power flow constraints, the fundamental formulation is a
nonconvex problem which is generally NP-hard. In this section, the problem is converted
into a second-order cone programming problem, which can be efficiently solved using
existing mature solvers.

3.2.1. Second-Order Cone Relaxation

We defined auxiliary variables ui,t, wij,t to replace V2
i,t, I2

ij,t, and using the second-order
relaxation, the power flow constraints (41)–(43) are reformulated as follows:

∑
(k,i)∈Ωl

(Pki,t − wki,trki)− ∑
(i,j)∈Ωl

Pij,t = −Pi,t (47)

∑
(k,i)∈Ωl

(Qki,t − wki,txki)− ∑
(i,j)∈Ωl

Qij,t = −Qi,t (48)

uj,t = ui,t − 2(Pij,trij + Qij,txij) + (r2
ij + x2

ij)wij,t (49)

Constraint (44) is reformulated as the following second-order cone constraint:∥∥∥ [ 2Pij,t 2Qij,t wij,t − ui,t]
T
∥∥∥

2
≤ wij,t + ui,t (50)

Accordingly, constraints (45) and (46) become the following:

(Vmin)
2 ≤ ui,t ≤ (Vmax)

2 (51)
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0 ≤ wij,t ≤ (Iij,max)
2 (52)

3.2.2. Variance Replacement

The variance format in (25)–(27) and the corresponding flexibility constraint are refor-
mulated as the following linear constraints:

Pi,t − Pi ≤ σi, i ∈ Ωb (53)

−Pi,t + Pi ≤ σi, i ∈ Ωb (54)

σi
STi

≤ FRNLset, i ∈ Ωb (55)

Constraints (53) and (54) limit the deviation of real power injection during each time
interval from the average value of all time periods. Constraint (55) limits the fluctuation
rate of the net load at each bus.

4. Simulation Results

In this section, the proposed method is evaluated on the modified flexible inter-
connected 33-bus distribution network, as shown in Figure 3. A three-terminal FDS is
configured to connect buses 18, 22, and 33. Ten PVs are placed at buses 3, 6, 9, 12, 15, 18, 21,
24, 27, and 30. The parameters needed for ESS placement are listed in Table 1.

Figure 3. The 33-bus distribution network.

Table 1. Parameter values.

Parameter Value Parameter Value

ce 1270 CNY/kWh cg 0.6 CNY/kWh

cp 1650 CNY/kWh cap 0.6 CNY/kWh

y 10 years cess 0.08 CNY/kWh

r 0.1 ST1 6.3 MVA

closs 0.6 CNY/kWh ST2~33 800 kVA

Actual real, reactive loads from 26 distribution substations are used. The data are
measured every 15 min for three consecutive months (May, June, and July, 2019), resulting
in 8732 data points for each distribution substation. By selecting one typical day with
the heaviest load burden, 32 96-point load curves are extracted, normalized to 0~1, and
randomly allocated to buses of the 33-bus network. Similarly, actual 96-point PV generation
data points of one typical day are normalized to 0~1 and allocated to the 10 PVs. The load
coefficient curves of 32 buses and the PV coefficient curve used for simulation are shown in
Figure 4.
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Figure 4. The load coefficient curves of 32 buses and the PV coefficient curve.

The installation capacities of 10 PVs are set the same as 100 kW, 200 kW, 300 kW,
400 kW, and 500 kW, resulting in a whole PV capacity of 1~5 MW. The proposed ESS
placement formulation is tested under different FRNLset constraints and PV capacities.
Two scenarios are compared as follows, and the results are analyzed in the following
sections:

(1) Scenario 1: ESS placement without the FRU/FRD constraints in (15);
(2) Scenario 2: Flexibility-constrained ESS placement with the FRU/FRD constraints in

(15) (termed “FC” hereinafter).

In order to reflect the impact of the collaborative effect of flexible resources in distri-
bution networks on ESS configuration, cutting PV power generation through inverters
is allowed as a reasonable manner for PV stations to participate in grid regulation, such
that voltage/current violations can be eliminated. We can focus on the economic costs
corresponding to the curtailed power generation.

4.1. Cost Analysis

The CEAI, COM, and CTotal curves under different FRNLsets and PV capacities are shown
in Figure 5. It can be seen that the annual investment cost and the total annual cost increases
as we tighten the FRNLset constraint, and a sudden increasement can be observed as the
FRNLset decreases below a threshold. For example, when 300 kW PV generation is installed
at the 10 PV buses, the total cost suddenly increases as the FRNLset decreases to 50%. These
turning points provide effective references for PV planning: (1) when the PV installation
capacity is low (100 kW, for example), the net load fluctuation level is also very low such
that no extra investment of ESS is needed; (2) when the PV installation capacity increases
(500 kW for example), huge investment costs of ESS are needed to suppress net load
fluctuation to an acceptable level. Therefore, installing more than 5 MW of PV generation
seems not economic for this system as the investment cost to avoid transformer overloading
will be very large. In addition, the investment costs and operation/maintenance costs
increase slightly when flexibility is added.

The CNLC, CPRC, CPC, and CFRSC curves under different FRNLsets and PV capacities
are shown in Figure 6. It can be seen that as we tighten the FRNLset constraint, the annual
network loss cost first increases and then decreases when flexibility is dropped. For example,
when the PV installation capacity is 200 kW, the peak of CNLC appears at FRNLset = 70%.
This is because as FRNLset starts decreasing, no extra ESSs are placed (which can be observed
from Figure 5a), but more PV generation is curtailed, resulting in more power delivered
from the upper-level power grid and thus more network loss. During this stage, curtailing
PV generation is more economic than installing ESSs. After the peak of CNLC, installing
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ESSs becomes more economic than curtailing PV generation, resulting in more consumption
of PV generation, less power delivered from the upper-level power grid, and thus less
network loss. This explanation can be supported by Figure 5c, where PV curtailment
costs first increase and then decrease. On the other side, when we add the FRU/FRD
constraints, this phenomenon disappears; i.e., both network loss costs and PV curtailment
costs decrease as we tighten the FRNLset constraint. This is because with the FRU/FRD
constraints, there are always ESSs installed and the local consumption of PV generation
first remains unchanged and then increases monotonically, resulting in fewer network loss
costs and PV curtailment costs. In addition, the scheduling costs of ESSs increase rapidly as
we tighten the FRNLset constraint, which indicates that the ESSs are much more frequently
scheduled to reduce the net load fluctuation.

Figure 5. CEAI, COM, and CTotal curves under different FRNLsets and PV capacities. (a) CEAI curves;
(b) COM curves; (c) CTotal curves.
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Figure 6. CNLC, CPRC, CPC, and CFRSC curves under different FRNLsets and PV capacities. (a) CNLC

curves; (b) CPRC curves; (c) CPC curves; (d) CFRSC curves.

4.2. Flexibility Analysis

The FRU/FRD capabilities and requirements when PPV = 200 kW and FRNLset = 60%
are shown in Figure 7. It can be seen that when the FRU/FRD constraints are dropped,
the flexible FRU/FRD requirements cannot be fulfilled during some time intervals. At the
same time, with the FRU/FRD constraints added, the FRU/FRD requirements can always
be fulfilled during the whole day.

The real power injection curves under different FRNLsets and PV capacities are shown
in Figure 8. The results when the FRU/FRD constraints are dropped are displayed in the
illustration. It can be seen that as we tighten the FRNLset constraint, the net load becomes
increasingly flatter, which shows the capability of placing ESSs to dramatically reduce net
load volatility and delay expansion investment of larger-capacity transformers.

4.3. ESS Capacity Analysis

The total ESS installation capacities under different FRNLsets and PV capacities are
shown in Figure 9, and the detailed ESS configurations of all buses are displayed in
Figure 10. It can be seen that most of the ESSs are installed at buses where PVs are installed
except bus 18, which is interconnected with other laterals through a three-terminal FDS.
As expected, the ESS capacity increases quickly as we tightened the FRNLset constraint,
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indicating that a large ESS capacity is needed to reduce the net load fluctuation to low levels,
especially when the PV capacity is large. Another observation is that ESSs are not placed
at the substation bus 1, indicating that the idea of hierarchically placing ESSs through
a centralized ESS at the substation and other distributed local ESSs is not economically
preferable.

Figure 7. FRU/FRD capabilities and requirements (PPV = 200 kW and FRNLset = 60%).

Figure 8. Real power injection curves under different FRNLsets and PV capacities. (a) The root bus
and (b) PV bus 15.

Figure 9. Total ESS installation capacities under different FRNLsets and PV capacities.
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Figure 10. Detailed ESS configurations of all buses under different FRNLsets and PV capacities.
(a) PPV = 100 kW for each PV bus; (b) PPV = 200 kW for each PV bus; (c) PPV = 300 kW for each PV
bus; (d) PPV = 400 kW for each PV bus. (e) PPV=500kW for each PV bus.

4.4. Limitations

Although acceptable simulation results are obtained in a very efficient manner, two lim-
itations are summarized as follows:

(1) The ESS constraints are simplified by neglecting the different losses during charging
and discharging, which may introduce bias from realistic situation.

(2) Only one typical scenario is selected for load and solar generation, which may make
the ESS siting and sizing decision incapable of handling various loading conditions
and solar generation scenarios.
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5. Conclusions

To alleviate issues induced by intermittent distributed generation, such as transformer
overloading and line congestion, a novel ESS placement method is proposed for flexible
interconnected distribution networks considering flexibility constraints. An ESS siting and
sizing model is formulated aiming to minimize the life-cycle cost of ESSs along with the annual
network loss cost, electricity purchasing cost from the upper-level power grid, PV curtailment
cost, and ESS scheduling cost, while fulfilling various security constraints. A fluctuation rate
of net load constraints is also added for all buses to reduce the net load fluctuation.

The proposed method is evaluated on a modified 33-bus flexible distribution network
with various sensitivity analysis, and the following conclusions are drawn:

(1) Inclusion of the fluctuation rate of net load constraint provides an intuitive reference
for planners to evaluate and improve the system’s PV hosting capacity;

(2) Better flexible ramp-up and ramp-down capabilities can be achieved with slightly
increased ESS investment costs;

(3) The idea of hierarchically placing ESSs through a centralized ESS at the substation and
other distributed local ESSs is not economically preferable.

Future work will be focused on robust ESS placement to handle various scenarios of
distributed generation and loads. On the other side, ESS placement will be formulated
as a constrained system in future with user preference constraints on flexibility degrees.
Furthermore, the approximate second-order cone relaxation is to be improved by the
original AC power flow model solved through advanced global algorithms.
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Nomenclature

A. Sets
Ωb(v) Set of all buses that are related to the vth FDS
ΩT Set of all time intervals, ΩT = {1, · · · , T}
ΩESS Set of all ESSs
ΩDG Set of all DGs
Ωb\{root} Set of all buses excluding the slack bus
Ωl Set of all lines
B. Parameters
cap Per kWh PV curtailment cost
cess Per kWh scheduling cost of ESSs
ce Per kWh investment cost of ESSs
cg Per kWh electricity purchasing cost
cp Per kW investment cost of ESSs
closs Per kWh network loss cost
DRRi,t Downward ramping requirement of bus i during the tth time interval
DRRt Downward ramping requirement of the whole system
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Iij,max Capacity if line i-j
ηc

i Charging efficiency of the ESS at bus i
ηd

i Discharging efficiency of the ESS at bus i
Pi,t,DG Real power generation of the DG at bus i
Pi,t,L Real load of bus i during the tth time interval
Pi,t,NET Real net load of bus i during the tth time interval, Pi,t,NET = Pi,t,L − Pi,t,DG.
Qi,t,L Reactive load of bus i during the tth time interval
rij Resistance of line i-j
r Discount rate of ESSs
Smax,FDS FDS’s capacity
SOCmin Minimum state of charge of ESSs
SOCmax Maximum state of charge of ESSs
STi Apparent capacity of the transformer at bus i
URRi,t Upward ramping requirement of bus i during the tth time interval
URRt Upward ramping requirement of the whole system
Vmax, Vmin Upper and lower bounds of Vi,t
xij Reactance of line i-j
y Life span of ESSs
∆t Duration (h) of each time interval
C. Variables
CEAI Equivalent annual investment cost
CFRSC Annual scheduling cost of ESSs
CNLC Annual network power loss cost of the system
CTotal Annual total cost
COM Equivalent annual operation and maintenance costs of ESSs
CPRC Annual electricity purchasing cost of the system from the upper-level power grid
CPC Annual punishment cost for curtailment of PV generation
ERi,ESS Rated energy capacity of the ESS at bus i
Ei,t Energy of the ESS at bus i during the tth time interval
Ei,0, Ei,T Initial and final energy of the ESS at bus i
FRDi,t,DG FRD capability of the DG at bus i during the tth time interval
FRDi,t,ESS FRD capability of the ESS at bus i during the tth time interval
FRDt FRD capability of the system at bus i during the tth time interval
FRNLi Fluctuation rate of real power injection at bus i
FRUi,t,DG FRU capability of the DG at bus i during the tth time interval
FRUi,t,ESS FRU capability of the ESS at bus i during the tth time interval
FRUt FRU capability of the system at bus i during the tth time interval
Iij,t Current magnitude of line i-j during the tth time interval
Pi,t,FDS Real power injection of the FDS to bus i during the tth time interval
P+

i,t,ESS Charging power of the ESS at bus i during the tth time interval
P−

i,t,ESS Discharging power of the ESS at bus i during the tth time interval
PRi,ESS Rated charging/discharging power of the ESS at bus i
Pi,t,ESS Discharging power of the ESS at bus i during the tth time interval
Ploss

i,t,ESS Real power loss of the ESS at bus i during the tth time interval
Pg

t Real power injected from the upper-level power grid to the system during the tth
time interval

Pap
k,t Curtailed solar power at bus k during the tth time interval

Pcut
i,t,DG Curtailed real power of the DG at bus i

Pi,t Real power injection of bus i during the tth time interval
Pi Average real power injection of bus i during the whole period
Pij,t Real power of line i-j during the tth time interval
Qi,t,FDS Reactive power injection of the FDS to bus i during the tth time interval
Qi,t Reactive power injection of bus i during the tth time interval
Qij,t Reactive power of line i-j during the tth time interval
µ+

i,t Binary variable indicating if the ESS at bus i is charging during the tth time interval
µ−

i,t Binary variable indicating if the ESS at bus i is discharging during the
tth time interval
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σi Standard deviation of real power injection at bus i
Vi,t Voltage magnitude of bus i during the tth time interval
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