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Abstract: In today’s era of rapid infrastructure development, ensuring the durability and envi-
ronmental sustainability of soil subgrades in road construction remains a critical concern. With
recent advancements in non-traditional soil stabilizing binders, including environmentally friendly
industrial waste materials such as fly ash and slag, there is growing recognition of the potential
for limestone powder (LSP), a low-carbon alternative soil stabilizing material, to replace traditional
calcium-based additives like ordinary Portland cement (OPC) and lime. However, the full extent of
LSP’s efficacy in soil treatment has yet to be fully explored. Therefore, this paper investigates the
partial substitution of cement with LSP for stabilizing sulfate-bearing saline sandy soil and assesses
its impact on the treated soil samples’ mechanical properties and durability parameters. For this
purpose, five stabilized mixes, including a control mix (no stabilizer), were designed, wherein LSP
partially replaced 8% of the OPC at 25%, 50%, and 75% substitution levels. A series of laboratory
tests were conducted to track the changes in the geochemical properties and the mineralogical com-
positions and evaluate the stabilized soil samples’ improved mechanical performance and durability
parameters. The experimental results show that adding LSP to the cement-treated sulfate-bearing
saline soil improved the soil’s mechanical properties and enhanced the soil’s durability parameters.
Specifically, it decreased the soil plasticity, improved the soil strength parameters, enhanced the soil
stability, and reduced the volumetric swelling and soil moisture susceptibility. In addition to its
technical advantages, using LSP, an industrial byproduct, in soil stabilization offers environmental
and economic benefits, highlighting its potential as a sustainable solution in engineering practices.

Keywords: soil stabilization; limestone powder; sulfate-bearing saline soil; durability; sustainability

1. Introduction

Many highways of paved roads (asphalt concrete and Portland cement concrete) are
suffering many distresses due to severe weather conditions and the poor stabilization of
the sublayers under surface courses in Kazakhstan. In road construction, soil often forms
the subgrade layer, playing a critical role in the pavement’s longevity and performance.
However, soil’s geotechnical properties vary depending on its origin, regional environmen-
tal conditions, and treatment processes. In the case of saline soils, for example, the presence
of salts can lead to the formation of salt whiskers, which create crystallization pressure and
result in localized stresses and non-uniform movement within the soil matrix. This can
ultimately lead to defects such as excessive heave and pavement deterioration [1–3]. Since
the soils in west Kazakhstan contain lots of salt and high sulfate, many heaving issues in
the pavement are common. To enhance the soil quality and meet the desired performance
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standards in pavement construction, weak and problematic soils are typically modified
through a chemical stabilization process involving chemical additives such as ordinary
Portland cement (OPC), lime, and fly ash, which are suggested as traditional calcium-based
stabilizers [4–6].

The cement stabilization of soil stands out as the most common and reliable tech-
nique for enhancing soil’s mechanical properties [7,8]. Upon mixing with water, the
soil–cement mixture undergoes immediate chemical reactions known as cation exchanges,
which induce the flocculation of soil particles and lead to instant improvement in the
soil’s plasticity and workability. Furthermore, the long-term mechanism of soil stabi-
lization using calcium-based materials involves sustained chemical reactions, specifi-
cally cement hydration and pozzolanic reactions. Cement hydration begins with the
reaction of water to cement particles, leading to the formation of calcium silicate hy-
drate (C-S-H) and calcium hydroxide (Ca(OH)2), which contribute to the initial set and
strength of the stabilized soil. Subsequently, pozzolanic reactions occur when the cal-
cium hydroxide released from cement hydration reacts with the dissolved silica (SiO2)
and alumina (Al2O3) present in the clay. This series of pozzolanic reactions further
produces additional calcium silicate hydrate (C-S-H) and calcium aluminate hydrate
(C-A-H), creating a hardened matrix. These cementing products fill the voids and bind
the soil particles together, as depicted in Figure 1, thereby enhancing the soil’s mechanical
properties and durability over time [4,9,10].
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Despite the effectiveness of cement, its widespread use in the construction industry has
posed challenges to environmental sustainability, including high CO2 emissions, increased
energy consumption, and elevated costs. In response, low-carbon non-traditional stabiliz-
ers, primarily industrial byproduct materials such as cement kiln dust, slag, and limestone
powder, have emerged as promising alternatives for soil stabilization. Like traditional
calcium-based stabilizing binders, using industrial waste materials like limestone powder
(LSP) involves cation exchange, resulting in soil particle agglomeration and pozzolanic
reactions, forming strength-bearing cementing gels. Previous findings have indicated that
LSP, when used to stabilize weak fine-grained soils, enhances soil strength and bearing
capacity, reduces soil plasticity, and improves soil durability parameters, including mois-
ture susceptibility and volumetric swelling [11–15]. Moreover, a couple of researchers
studied the effect of stone powder on coarse-grained soils. Al-Joulani [16] reported that
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incorporating stone powder with high calcium content into coarse-grained sandy soil (SP
and A-3) decreased the maximum dry density and the optimum moisture content. The ad-
dition of stone power increased the friction angles, reduced the cohesion in the direct shear,
and increased the California bearing ratio (CBR) values. Shat et al. [17] investigated the
effect of limestone powder on the geotechnical properties of soils with coarse particles (GP
and A-1). Like Al-Joulani’s test results, adding LSP to such soils decreased their optimum
moisture content (OMC), cohesion, and liquidity indices while increasing their CBR value,
unconfined compressive strength (USC), and internal friction angles. They concluded that
reactive calcium content in SLP might work as lime (stabilizer) and improve and modify
the properties of soils.

However, despite the promising results observed in earlier studies, the full extent
of LSP’s efficacy in soil treatment has yet to be fully explored. Further investigation is
suggested to comprehensively understand the mechanisms underlying LSP’s impact on
soil stabilization, including its long-term performance and durability aspects. Additionally,
ongoing research efforts are needed to optimize the utilization of LSP as a partial substitute
for traditional cement across different soil types and environmental conditions, specifically
sulfate-bearing saline sandy soils subjected to wetting and drying cycles. This allows
for the practical application of LSP as a sustainable solution for soil stabilization in the
construction industry.

The treatment of sulfate-bearing saline soils with calcium-based additives poses dis-
tinctive challenges, particularly concerning the formation of ettringite, a mineral compound
formed through a series of chemical reactions within the soil–binder–water system [18–20].
When sulfate-containing soil is mixed with cement and/or lime in the presence of water,
the pH of the system increases to above 12.0, promoting the dissolution of the soil phases
and the release of alumina and sulfate. These compounds react with the calcium released
from the stabilizer and the water supply as a source of soil stabilization and soil mixing. As
a result, the calcium–alumina–sulfate–water reaction produces ettringite minerals, which
can hold a large amount of water within their material, leading to their expansion [21–24].
Among the several methods to mitigate the swelling potential of sulfate-bearing saline soils,
stabilization with low-calcium additives such as fly ash, slag, and LSP is recommended
as an environmentally friendly and comparatively cheap approach [25–27]. LSP contains
calcium carbonate (CaCO3) containing reactive lime, which, when introduced into the
soil–binder–water system, can interact with sulfate ions to form less expansive compounds
compared to ettringite. Additionally, the incorporation of LSP can help buffer the pH of the
soil–binder–water system, reducing the alkalinity that promotes ettringite formation. Fur-
ther studies are required to comprehensively understand the effectiveness of low-calcium
additives such as LSP in mitigating ettringite formation and reducing the swelling potential
of sulfate-bearing saline soils.

2. Research Scope and Objectives

This study investigates low-calcium additives’ effectiveness and long-term perfor-
mance, specifically LSP, in stabilizing sulfate-bearing saline soils. While many previous
studies have successfully assessed stabilized soils’ physical and mechanical properties,
they often overlook durability parameters. To address this gap, a comprehensive series of
experimental tests, ranging from geochemical characterization to mechanical evaluation
and durability assessments, was designed to understand the stabilization mechanisms,
evaluate the long-term performance, and assess the durability aspects of incorporating LSP
into soil treatment. Moreover, this research aims to optimize the use of LSP in combination
with cement. For this purpose, limestone powder was employed as a partial substitute for
OPC, particularly at 25%, 50%, and 75% substitution levels. Through systematic investi-
gation, the present study evaluates the potential of LSP and its combination with cement
in mitigating salt crystallization, improving geotechnical properties, and enhancing the
long-term durability of sulfate-bearing saline soils.
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3. Materials and Methods
3.1. Materials
3.1.1. Soil

In this study, sulfate-bearing saline soil collected from West Kazakhstan was inves-
tigated. The soil’s gradation is shown in Figure 2. The basic geotechnical properties of
the tested soil, including the Unified Soil Classification System (USCS) and the American
Association of Highway and Transportation Officials (AASHTO) soil classifications, the
Atterberg limits, the optimum moisture content, and the maximum dry density, are sum-
marized in Table 1. The soil was classified into poorly graded sand with silt (SP-SM) based
on the USCS and silty or clayey gravel and sand (A-2-4) based on the AASHTO soil clas-
sification. The chemical properties, particularly the cation and anion analysis results and
the pH measurements, are also presented in Table 1. The mineralogical analysis revealed
that the soil mainly consisted of quartz, albite, calcite, and gypsum phases, as seen in the
XRD pattern provided in Figure 3. The gypsum and halite in the tested soil contributed to
high sulfate and chloride concentrations. This is expected to promote salt crystallization in
the stabilized soil matrix under unstable environmental conditions, potentially leading to
pavement failure due to sulfate-induced heave.
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Table 1. Basic soil characterization data.

Geotechnical Properties

USCS and AASHTO Classification
Atterberg Limits (%) Compaction Data

LL PL PI OMC (%) MDD (kg/m3)

SP-SM, A-2-4 19.16 16.67 2.49 10.80 1941.00

Chemical concentration

Concentration (ppm) pH
Sulfate Chloride

16,931.00 10,681.98 6.32

Chemical compositions

Oxide (wt.%)
CaO SiO2 Al2O3 Fe2O3 SO3 MgO Na2O K2O TiO2 Other LOI

39.78 20.22 4.55 11.68 10.6 1.66 0.84 4.16 1.61 4.36 0.54

Note: LL—liquid limit; PL—plastic limit; PI—plasticity index; OMC—optimum moisture content;
MDD—maximum dry density; LOI—loss of ignition.
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3.1.2. Chemical Stabilizers

OPC and its combination with LSP were used as stabilizing agents for this experi-
mental study. The LSP was obtained by crushing locally collected limestone using a jaw
crusher and then grinding the material with a ball mill. The particle size distributions of
the stabilizers are shown in Figure 4. The grain size distribution of the stabilizing agents,
particularly the predominant fine particles compared to the tested sand, allowed these
stabilizers to act as filling materials and contribute to the binding of the particles in the
stabilized soil matrix. This is expected to increase cohesion, reduce plasticity, and improve
strength at an early curing age. Table 2 presents the chemical oxide compositions of the
tested soil, and the chemical additives used in this study. The XRD patterns in Figure 5
suggest that the LSP had abundant quartz and calcite phases, while the OPC predomi-
nantly consisted of quartz, Portlandite, and alite phases, which contributed to forming
calcium aluminate silicate hydrate (C-A-S-H) or calcium silicate hydrate (C-S-H) upon their
dissolution and activation.
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Table 2. Chemical compositions of tested soil and chemical stabilizers.

Oxide OPC (wt.%) LSP (wt.%)

CaO 64.48 68.05

SiO2 21.05 11.16

Al2O3 3.79 3.62
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Table 2. Cont.

Oxide OPC (wt.%) LSP (wt.%)

Fe2O3 4.47 9.44

SO3 2.88 0.7

MgO 1.77 1

Na2O 0.11 0.6

K2O 0.32 2.58

TiO2 NA 1.23

Other 0.58 1.21

LOI 0.55 0.41
Note: OPC—ordinary Portland cement; LSP—limestone powder; LOI—loss of ignition, NA—not available.
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3.2. Mix Design, Sample Preparation, and Test Methods

The experimental program of this study can be categorized into the basic material
characterization of natural sandy soil and selected stabilizers, mix design and sample prepa-
ration, geochemical and mineralogical analysis, mechanical evaluation, and the assessment
of the durability parameters of the stabilized soil under simulated in situ conditions.

3.2.1. Mix Design and Sample Preparation

One untreated mix and four mixes were designed, where 8% of the OPC was partially
replaced by LSP at 25%, 50%, and 75% substitution levels, as summarized in Table 3. The
minimum LSP content was determined based on the Eades–Grim test method [28], which
calculates the recommended percentage of stabilizing agents to achieve a pH of 12.4 in the
soil–stabilizer mixture (Figure 6). The OPC dosage of 8% by dry weight of soil was selected
based on a review of the existing literature [27–30], findings from preliminary laboratory
tests, and practical considerations for field applications. Three different OPC-to-LSP ratios
were designed to evaluate the effect of partially substituting conventional OPC with the
non-traditional low-carbon stabilizer LSP. This approach aimed to determine the optimum
combination of OPC and LSP.

The soil was thoroughly mixed with different dosages of stabilizing additives in
the corresponding moisture contents to ensure the uniform distribution of the stabilizers.
After mixing, the samples were compacted into cylindrical shapes (4.0 inches (101.6 mm)
in diameter and 4.5 inches (114.3 mm) in height) using a standard Proctor compaction
procedure to achieve the desired densities presented in Table 3. The specimens with this
sample size were used for unconfined compressive strength and the three-dimensional
(3-D) volumetric swelling test. Later, the residual strength of the stabilized soil samples
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was determined after the durability experiment. The compacted samples were then cured
under sealed conditions for 7 and 28 days to allow the hydration and pozzolanic reactions
to develop the stabilized soil’s mechanical properties.

Table 3. Soil stabilizing mix design.

Mix No.
Dosage (%) Compaction Data Curing Period

(Days)OPC LSP Total OMC (%) MDD (kg/m3)

1 0 0 0 10.78 1941.00

7 and 28 days

2 8 - 8 12.78 1916.37

3 6 2 12.78 1925.65

4 4 4 12.78 1936.80

5 2 6 12.78 1935.56
Note: OPC—ordinary Portland cement; LSP—limestone powder; OMC—optimum moisture content;
MDD—maximum dry density.
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3.2.2. Determination of Durability Parameters of Stabilized Soil

A durability assessment was performed by measuring the three-dimensional (3-D)
volumetric swelling of both natural sandy soil (untreated) and stabilized soil mixes. The
3-D swelling test, conducted as per the Texas Transportation Institute’s guidelines [20],
aimed to evaluate the volumetric expansion due to ettringite formation when OPC- and
LSP-treated sulfate-bearing saline soil is exposed to prolonged capillary suction [21,22].
The 3-D swelling test, illustrated in Figure 7, involved the following procedure:

(1) The cylindrical soil sample (cured for 7 days) was covered with a rubber membrane;
(2) Filter paper and a porous stone were placed at the bottom, and filter paper, a plastic

sheet, and porous stones were placed on the top of the sample;
(3) The specimen was then placed in a container filled with deionized water, which

allowed the water to soak through the porous stone from the bottom of the sample for
a specified period.

The change in moisture content and the volumetric expansion of the sample were
measured periodically. After 28 days of continuous capillary suction, the samples were
subjected to wetting-and-drying (W/D) cycles. These cycles were performed by drying the
samples under ambient conditions for two days and then re-wetting them in the container
with water (capillary suction) for three days. This process was repeated for a total period
of 30 days, equivalent to 6 W/D cycles, to simulate real-world environmental conditions
with alternating moisture levels.
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3.2.3. Determination of Geochemical and Mineralogical Characteristics of Stabilized Soil

The geochemical properties and mineralogical compositions of both the natural sand
and stabilized soil mixes were evaluated before and after the durability experiments.

The geochemical characterization included pH measurement and ion analysis. A
liquid soil–stabilizer solution was prepared for pH testing by mixing one part of dry
stabilized soil with five parts of water. The pH measurements were taken within 15 min
after the sample preparation process, maintaining a constant temperature of 25 ± 1 ◦C.

Cation and anion quantification was conducted using the Dionex ICS-6000 Ion Chro-
matography System by Thermo Scientific (Waltham, MA, USA). For this analysis, the liquid
solution used for the pH measurement was further diluted with deionized water and
filtered to remove particulates. The clear solution was then used for ion chromatography
to determine the concentrations of various cations and anions.

The mineralogical compositions of the natural sand and stabilized soil mixes were
obtained through an X-ray diffraction (XRD) analysis. Samples were prepared by grinding
the soil samples (before and after durability testing) to a particle size of 0.075 mm using a
mortar and pestle. The Rigaku SmartLab XRD System (Osaka, Japan) was employed to
obtain the diffraction measurements. Raw XRD data were then processed, and Rietveld
refinement was conducted using Profex software (version 5.3.0) for phase identification
and quantification.

3.2.4. Determination of Mechanical Properties of Stabilized Soil

A mechanical evaluation of the effects of the designed stabilizing mixes was performed
through the unconfined compressive strength (UCS) test and the direct shear strength test.
The UCS test was performed using a Matest compression testing machine (Italy), in which
the soil samples were compressed at a constant strain rate of 0.5%/min under unconfined
conditions until failure. The shear strength of the soil was evaluated in the direct shear test
using the Matest SHEARLAB testing machine.

In addition to the samples cured for 7 days, the residual strength properties of the
stabilized soil samples were determined after the durability assessment. These residual
UCS and shear strength evaluations were performed on samples exposed to capillary
suction and moisture fluctuations to assess their moisture susceptibility and provide a
realistic approach to assessing the long-term durability of the soil under in situ conditions.

4. Results and Discussion
4.1. Plasticity

As seen with the Atterberg limits test results that are summarized in Figure 8, the
stabilization of sulfate-bearing saline soil with the designed stabilizing mixes reduces soil
plasticity, with a maximum 91% reduction achieved in the purely 8% OPC-treated soil
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sample. The reduced plasticity and improved workability of the stabilized sandy soil
samples can be attributed to the formation of flocculated and agglomerated soil–stabilizer
particles during mixing and compaction processes. A 25% OPC replacement (6% OPC + 2%
LSP) resulted in a comparable 86% decrease in the plasticity of the tested soil, implying
that the combined effect of OPC and LSP is almost as strong as the effect of OPC alone at
a higher percentage. However, partial OPC replacement with LSP at a 75% substitution
level (2% OPC + 6% LSP) was not effective in reducing the soil’s plasticity. The lower
percentage of the OPC might result in insufficient reactive calcium availability for effective
soil stabilization and the formation of flocculated structures. This highlights the need to
select a minimum recommended dosage of OPC to achieve an optimum combination with
LSP, ensuring proper soil stabilization.
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4.2. Swelling Characteristics

The changes in the moisture content and volume of the untreated and stabilized soil
samples were measured throughout the durability experiment and are summarized in
Figure 9. At an early stage of the capillary suction test, all the soil samples experienced
rapid water intake and associated volumetric swelling. This steep increase in volume
during the first 4 days of wetting can be attributed to the soil’s initial water absorption
capacity, leading to the quick hydration and swelling of the soil matrix. Following this initial
phase, all the stabilized soil samples observed a steady increase in their moisture content
and volumetric expansion at a slower rate. In contrast, the untreated soil sample quickly
obtained the moisture content and swelling behaviors and remained at an almost constant
moisture content of 7.1% and a constant volumetric swelling of about 5.7%, higher than
the chemically stabilized samples. This behavior can be explained by the lack of binding
agents in the untreated soil, which results in a limited capacity to absorb water further
and expand. On the other hand, the stabilized soil samples exhibited continued expansion
due to ongoing hydration, pozzolanic reactions, and ettringite formation facilitated by
stabilizing agents and continuous moisture uptake.

In general, OPC and LSP treatments lowered the volumetric expansion of sulfate-
bearing saline soil. The best-performing mixes were the purely 8% OPC and a combination
of 6% OPC and 2% LSP. This indicates that the partial substitution of OPC with LSP
can be effective and exhibit comparable results to pure OPC treatment. In the Ca-based
treatment of the sulfate-bearing soil, ettringite formation played a crucial and complex role
in soil stabilization: ettringite, comprising needle-like crystals, is a hydrated mineral that
incorporates water molecules into its structure. As ettringite forms, it expands and causes
initial swelling in the soil. This phenomenon is accelerated by high sulfate content and
moisture availability conditions. However, ettringite may reduce swelling in sandy soil by
involving several interconnected mechanisms. First, ettringite crystals fill the pores within
the sandy soil structure and grow there. As a result, they physically block the voids that
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would allow water to enter and cause swelling. Also, as ettringite continues to hydrate, it
can consume excess water. Secondly, ettringite may act as a binding agent, which cements
soil particles and induces a more cohesive structure. This increased cohesion in the sandy
soil can lower the permeability of the soil and make it less susceptible to water infiltration,
subsequently reducing swelling. Moreover, ettringite formation in the soil can disrupt
natural soil particle arrangement, potentially producing more stable structures that are
less prone to swelling. Finally, ettringite may chemically interact with other minerals in
the sandy soil, leading to ion exchanges and influencing the soil’s pH. These chemical
interactions can affect the soil’s swelling behaviors and contribute to reducing soil swelling.
Therefore, ettringite can help the soil matrix’s solidification and reduce soil swelling by
filling pores, cementing soil particles, modifying soil structure, and chemically interacting
with other minerals [29–38].
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Wetting–drying cycles were implemented to evaluate the long-term performances of
stabilizing binders under realistic field conditions by alternating wetting and drying of the
soil samples. These cycles also help achieve an equilibrium state for water content in the
stabilized soil samples under capillary soak conditions. Indeed, after the rapid increase
within the first 4 days followed by a steady increase up to 28 days, the moisture content of
the designed mixtures reached equilibrium during the 30 days of wetting–drying cycles, as
shown in Figure 9a. A side-view and top-view of a stabilized soil sample after durability
testing, provided in Figure 10, shows a layer of salt crystallization and efflorescence on the
surface, which occurs due to moisture fluctuations during the wetting–drying cycles. As
the soil dries, dissolved salts are brought to the surface by capillary action, precipitating
and forming visible crystals. This process highlights the impact of cyclic moisture changes
on the soil’s surface properties and indicates the ongoing movement of water and salts
within the soil matrix. These internal movements can lead to the strength degradation of
the soil–stabilizer matrix due to its exposure to repeated moisture fluctuations [39,40].

Regarding volumetric expansion exhibited during wetting–drying cycles, varying
trends were observed for the different stabilizer contents (Figure 9b). Overall, as the
moisture content achieved its equilibrium state during the alternating wetting and drying
of the samples, the volumetric expansion of most of the treated soil mixes decreased,
except for the mix treated with 2% OPC + 6% LSP. This indicates that higher levels of LSP
substitution might not provide sufficient stabilization, resulting in continued swelling even
after repeated wetting and drying. This finding matches previous research that shows that
there is an optimum LSP content to control and reduce the swell potential [15,41].

Again, partial OPC replacement with LSP at a 75% substitution level (2% OPC + 6%
LSP) was the least effective treatment for the sulfate-bearing soil studied. This underscores
the importance of selecting a minimum recommended dosage of OPC to ensure effective
stabilization and minimize swelling. Ensuring adequate calcium availability is crucial for
forming stable soil structures and reducing the soil’s moisture susceptibility.
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4.3. Geochemical Properties

Upon chemical treatment, the originally acidic soil with a pH value of 6.32 transformed
into an alkaline material with a pH value nearly twice the original, as seen in Figure 11.
pH values above 12.0 in the 7-day cured samples were sufficient to promote pozzolanic
reactions in the stabilized mixes and improve long-term strength. However, the pH values
of the samples exposed to the 58-day durability assessment under capillary suction were
slightly lower than those of the 7-day cured samples. This pH reduction can be attributed to
C-A-S-H leaching due to moisture intrusion and the potential carbonation of the OPC- and
LSP-treated soil samples when they reacted with CO2 in the room during drying periods in
the W/D cycles. Similar to other material properties described in previous subsections, the
mix stabilized with 2% OPC and 6% LSP showed the least improvement in its pH levels.
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According to the cation and anion analysis results summarized in Figure 12, OPC-
and LSP-stabilization reduced the sulfate and chloride concentrations in the soil, which is
naturally rich in these salts. This reduction was due to the chemical interactions between
the stabilizers and the soil minerals, which immobilized the sulfate and chloride ions,
preventing them from remaining in the solution. After exposure to the durability experi-
ment with the W/D cycles, there was a slight increase in the sulfate concentration and a
significant decrease in the chloride concentration. Moisture intrusion during prolonged
capillary suction and moisture fluctuations during W/D cycles can lead to the leaching of
chloride ions, reducing their concentration in the soil. On the other hand, sulfate ions might
become more concentrated due to the dissolution of sulfate minerals during the wetting
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phases and their partial precipitation during the drying phases. This dynamic process may
cause an increase in sulfate concentration while reducing chloride levels [42,43].
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4.4. Mineralogical Compositions

The XRD patterns of the stabilized soils subjected to the durability experiment
(Figure 13) reveal that the stabilization reaction products formed in the soil matrix were
primarily C-S-H and ettringite. Gypsum peaks diminished upon introducing LSP, which
can be attributed to the LSP reacting with the sulfate ions to form ettringite, thus consuming
the available gypsum. The calcite peaks became stronger and sharper with the addition of
LSP, indicating an increased presence of calcium carbonate. LSP was initially abundant in
calcite, contributing to the observed higher calcite content. The halite peaks diminished
due to the purely OPC treatment, likely because the OPC bound the chloride ions, reducing
halite precipitation. However, when the OPC was partially replaced with LSP, halite peaks
reappeared, suggesting that the binding capacity for the chloride ions was reduced.
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Quantitative phase analysis (Figure 14) showed the contents of the major stabilization
products, C-S-H and ettringite. The most significant amount of C-S-H was formed in the
sample treated with purely 8% OPC. This was because the OPC provided a high amount
of calcium, which reacted with the silicates and aluminates in the soil to form C-S-H. As
the OPC was partially replaced with LSP, the formed C-S-H amount decreased, likely
due to the reduced availability of the reactive calcium that participates in the hydration
process. Simultaneously, the amount of precipitated ettringite increased with the addition
of LSP, as the presence of sulfate and aluminates from the soil and stabilizers promoted
ettringite formation.
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It is important to note that the durability experiment also influenced the contents
of the significant stabilization products. Moisture intrusion through prolonged capillary
suction and moisture fluctuations due to W/D cycles can affect the stability and distribution
of these products. Prolonged capillary suction can lead to the leaching of some reaction
products, particularly those that are soluble, while W/D cycles can cause the repeated
dissolution and precipitation of minerals, potentially redistributing and concentrating
certain phases like ettringite and calcite.

4.5. Mechanical Properties

As shown in Figure 15, the stabilized mixes exhibit significantly higher UCS than
the untreated soil symbolized with the dotted line, demonstrating the effectiveness of the
designed stabilizing mixes. The highest increase in UCS, approximately 71%, was observed
in the purely 8% OPC-treated soil sample (28 days cured). This substantial improvement can
be attributed to OPC’s high calcium content and reactivity, which promotes the formation of
solid binding phases like C-S-H. As the LSP partially replaced the OPC, the UCS decreases,
with the least effective mix being 2% OPC + 6% LSP. This trend reflected the lower reactive
calcium availability and reduced reactivity when LSP, which has a higher content of fine
particles and less reactive components, is used in higher proportions.
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The residual strength of the stabilized soil samples was evaluated after the durability
experiment, providing a realistic assessment of the long-term performance. The UCS of the
stabilized soil samples exposed to moisture fluctuations (W/D cycles) was compared to
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the UCS of the 7-day cured samples. It was found that the residual strength values of all
the designed mixtures exceeded the threshold value of 80%, which is the commonly rec-
ommended minimum for maintaining adequate structural integrity in stabilized soils [44].
Remarkably, the strength of the samples increased after undergoing capillary suction and
W/D cycles. This increase can be attributed to continued pozzolanic reactions and further
stabilization processes that occur during the moisture fluctuations, leading to a denser and
more durable soil matrix.

The direct shear test results, summarized in Figure 16, indicated a significant increase
in the shear strength due to OPC and LSP treatment. The best-performing mix was, again,
the purely 8% OPC-treated soil. A 25% replacement of OPC with LSP (6% OPC + 2% LSP)
also proved efficient in enhancing the shear properties of the tested soil. This improve-
ment can be attributed to the increased cohesion and binding between the soil particles,
facilitated by forming C-S-H and other stabilization products. The sample treated with
2% OPC + 6% LSP was the least effective, showing a less significant increase in the shear
strength. This is likely due to the insufficient reactive calcium content and reactivity when
a higher proportion of LSP is used, leading to weaker bonding and cohesion between
the particles.
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The effect of moisture fluctuations on shear strength did not indicate a significant
change. This stability can be attributed to the soil’s enhanced resistance to moisture-induced
degradation, achieved through stabilization. Even under varying moisture conditions, the
stabilized soil matrix maintained its integrity and cohesion, preventing substantial loss
in the shear strength. This demonstrates the durability and reliability of the stabilization
methods used in this study.

5. Conclusions

This study investigated the effectiveness of conventional OPC and its partial replace-
ment with a non-traditional low-carbon alternative like LSP as a stabilizing agent for
sulfate-bearing saline soil. This comprehensive experimental program was designed to
identify and understand the impact of the designed stabilizing mixes on soil plasticity,
swelling characteristics, geochemical properties, mineralogical compositions, and mechani-
cal properties. The key findings of this study are as follows:

• The stabilization of the sulfate-bearing saline soil with OPC and LSP reduced soil plas-
ticity. The maximum reduction of 91% was achieved with purely 8% OPC treatment,
while a 25% OPC replacement with LSP (6% OPC + 2% LSP) resulted in a compara-
ble 86% reduction. However, higher levels of LSP substitution were less effective in
reducing plasticity;
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• The stabilized soil samples exhibited lower volumetric expansion compared to the
untreated soil. The best-performing mix was a combination of 6% OPC and 2% LSP.
Wetting–drying cycles demonstrated that the stabilized soil samples maintained their
volumetric stability better than the untreated samples, with partial OPC replacement
with LSP still proving effective;

• Chemical treatment transformed the initially acidic soil into an alkaline material,
promoting pozzolanic reactions. The reduction in the pH over the prolonged exposure
to capillary suction and wetting–drying cycles highlighted the importance of selecting
an optimal stabilizer dosage. The analysis also showed a significant reduction in the
sulfate and chloride concentrations, with LSP contributing to a notable increase in
calcite content due to its initial abundance;

• Stabilized mixes demonstrated considerably higher UCS and shear strength compared
to untreated soil. The partial substitution of OPC with LSP resulted in decreased
UCS, but still provided significant strength improvement. The durability experiments
confirmed that the residual strength of the stabilized samples exceeded the recom-
mended thresholds, indicating the designed mixes’ long-term stability, resilience,
and durability.

This study highlights the potential of partially replacing OPC with LSP to achieve
sustainable soil stabilization with reduced environmental impact. The findings suggest
that appropriate proportions of OPC and LSP can effectively improve the geotechnical
properties of sulfate-bearing saline soils. Notably, the mixes stabilized with 6% OPC and
2% LSP showed comparable results to purely 8% OPC-treated soil samples, indicating that
the partial replacement of OPC with LSP is particularly efficient at a substitution level of
25%. This offers a viable alternative for sustainable construction practices. However, future
research should focus on investigating the sensitivity of the proposed stabilization method
across various soil types to enhance its applicability and ensure consistent performance
under different conditions.
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