Land Use Change in a Typical Transect in Northern China and Its Impact on the Ecological Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction to the Research Area
2.2. Data Sources
2.3. Methods
2.3.1. Land Use Transfer Matrix
2.3.2. Dynamic Change in Land Use
2.3.3. Analysis of the Transect
2.3.4. Evaluation of EQ of Land Use
- (1)
- Eco-environmental Quality Index (EQI)
- (2)
- Ecological contribution rate of land use change
3. Results
3.1. Spatial–Temporal Characteristics of Land Use Change
3.1.1. Characteristics of Temporal Evolution
- (1)
- Dynamic changes in land use
- (2)
- Transformation of land use types
3.1.2. Spatial Characteristics of LUC
3.2. Ecological Impact Analysis of Land Use Change
3.2.1. Comprehensive Analysis of the Eco-Environmental Quality
- (1)
- Eco-environmental Quality Index
- (2)
- Spatial pattern of EQ
3.2.2. Analysis of the Contribution of LUC to the Eco-Environment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Liu, Y.; Baig, M.H.A. Biophysical effect of conversion from croplands to grasslands in water-limited temperate regions of China. Sci. Total Environ. 2019, 648, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Mandal, M. Impact of land use and land cover changes on temperature trends over India. Land Use Policy 2019, 89, 104238. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.; Lang, Y.; Feng, X.; Yuan, Q.; Wang, J. Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality. Land Use Policy 2020, 99, 104957. [Google Scholar] [CrossRef]
- Wang, Q. Global Change Terrestrial Sample Zones Study and its Progress. Adv. Earth Sci. 1997, 12, 44–51. [Google Scholar]
- Zhou, G.; He, Q. Terrestrial Transect Study on the Responses of Ecosystems to Global Change. Adv. Earth Sci. 2012, 27, 563–572. [Google Scholar]
- Zhang, Y.; Zhou, G. Terrestrial transect study on driving mechanism of vegetation changes. Sci. China Ser. D Earth Sci. 2008, 51, 984–991. [Google Scholar] [CrossRef]
- Cong, Z.; Li, Q.; Mo, K.; Zhang, L.; Shen, H. Ecohydrological optimality in the Northeast China Transect. Hydrol. Earth Syst. Sci. 2017, 21, 2449–2462. [Google Scholar] [CrossRef]
- Vonk, J.E.; Sánchez-García, L.; Semiletov, I.; Dudarev, O.; Eglinton, T.; Andersson, A.; Gustafsson, Ö. Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea. Biogeosciences 2010, 7, 3153–3166. [Google Scholar] [CrossRef]
- Chen, X. Monitoring multispecies interactions A case study of 16 main tree species along the northeast China transect. Appl. Ecol. Environ. Res. 2009, 7, 1–12. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Y.; Xu, Z.; Zhou, L.; Jiang, Y. Progress of Carbon Cycle Research in the Northeast China Sample Zone. Prog. Nat. Sci. 2003, 13, 23–28. [Google Scholar]
- Wang, S.; Zhou, G.; Lv, Y.; Zou, J. Distribution of soil Carbon, Nitrogen and Phosphorus Along Northeast China Transect (NECT) and Their Relationship with climatic factors. Chin. J. Plant Ecol. 2002, 26, 513–517. [Google Scholar]
- Liu, Y.; Yu, Z.; Du, S. Summary and outlook of the Major Project “Transect Study on the Response and Acclimation of Chinese Typical Terrestrial Ecosystems to Global Change”. Bull. Natl. Nat. Sci. Found. China 2012, 26, 136–141. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Roy Chowdhury, R.; de Bremond, A.; Ellis, E.C.; Erb, K.H.; Filatova, T.; Garrett, R.D.; Grove, J.M.; Heinimann, A.; Kuemmerle, T.; et al. Middle-range theories of land system change. Glob. Environ. Chang. 2018, 53, 52–67. [Google Scholar] [CrossRef]
- Jiang, X. Quantitative Study on the Effects of Drought and Land Use Change on Vegetation Net Primary Productivity in the Loess Plateau. Ph.D. Thesis, Shannxi Normal Univercity, Xi’an, China, 2021. [Google Scholar]
- Yang, Q.; Duan, X.; Wang, L.; Jin, Z. Land Use Transformation Based on Ecological-production-living Spaces and Associated Eco-environment Effects: A Case Study in the Yangtze River Delta. Geogr. Sci. 2018, 38, 97–106. [Google Scholar] [CrossRef]
- Yang, K.; Wang, Y.; Huang, C.; Wang, Z.; He, X. Effect of land use change on carbon emission in Dongting lake region. Ecol. Sci. 2023, 42, 193–201. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, F.; Wan, D. Multi-scenario simulation of the impact of regional land use change on carbon sink effect. China Environ. Sci. 2023, 1–20. [Google Scholar] [CrossRef]
- Sha-muxi, A.; Er-ken, G.; Shi, S.Y. Carbon emission change of land use landscape pattern evolution in Karamay city. Southwest China J. Agric. Sci. 2024, 37, 852–859. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Ma, K. The Effect of Land Use Change on The Regional Environment in The Yangjuangou Catchment in The Loess Plateau of China. Acta Geogr. Sin. 1999, 54, 51–56. [Google Scholar]
- Kou, X. Review of Land Use/Cover Change (LUCC) Impact on the Ecological Environment. Energy Energy Conserv. 2017, 1, 92–93+188. [Google Scholar] [CrossRef]
- Geng, B.; Cao, Y.; Su, R.; Liu, S.; Feng, Z. Influence of land-use change on ecosystem services in the Chaobai River region of Beijing-Tianjin- Hebei. J. Agric. Resour. Environ. 2020, 37, 583–593. [Google Scholar] [CrossRef]
- Xie, H.; Li, R.; Ren, Z.; Yang, Q. Quantitative Assessment of the Effect on the Eco-environment from LUCC in a Region Scale-A Case in the City Proper and the Suburbs of Tongchuan. J. Nat. Resour. 2008, 23, 458–466. [Google Scholar]
- Peng, B.; Chen, D. A Review of Land Use/Cover Change Studies on Landscape Scale. Chin. Agric. Sci. Bull. 2011, 27, 1–5. [Google Scholar]
- Chen, M.; Qin, X.; Wang, Y.; Li, Q.; Zhu, Z.; Chen, Q.; Zhang, K.; Zhao, C. Spatial and Temporal Changes of Landscape Pattern in Xinzhou City Based on Land Use and Land Cover. Environ. Monit. China 2024, 40, 141–151. [Google Scholar]
- Li, X.; Fang, J.; Piao, S. Landuse Changes and Its Implication to the Ecological Consequences in Lower Yangtze Region. Acta Geogr. Sin. 2003, 58, 659–667. [Google Scholar]
- Li, P.; Yang, Y.; Wang, T.; Zhao, G.; Yang, M. Land Use Changes and Its Impact on Ecological Environment Quality in Xinjiang. North. Hortic. 2022, 8, 67–75. [Google Scholar]
- Guo, X.; Chen, L.; Fu, B. Effects of land use/land cover changes on regional ecological environment. Chin. J. Environ. Eng. 1999, 7, 66–75. [Google Scholar]
- Wang, X.; Pan, P. Land use change and its ecological and environmental effects in Hebei Province. Jiangsu Agric. Sci. 2019, 47, 297–303. [Google Scholar]
- Li, C.; Wu, K.; Wu, J. Urban land use change and its socio-economic driving forces in China: A case study in Beijing, Tianjin and Hebei region. Environ. Dev. Sustain. 2017, 20, 1405–1419. [Google Scholar] [CrossRef]
- Wen, B.; Pan, Y.; Zhang, Y.; Liu, J.; Xia, M. Does the Exhaustion of Resources Drive Land Use Changes? Evidence from the Influence of Coal Resources-Exhaustion on Coal Resources–Based Industry Land Use Changes. Sustainability 2018, 10, 2698. [Google Scholar] [CrossRef]
- Horel, Á.; Tóth, E.; Gelybó, G.; Kása, I.; Bakacsi, Z.; Farkas, C. Effects of Land Use and Management on SoilHydraulic Properties. Open Geosci. 2015, 7, 20150053. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Anputhas, M.; Janmaat, J.A.; Nichol, C.F.; Wei, X. Modelling spatial association in pattern based land use simulation models. J. Environ. Manag. 2016, 181, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Stürck, J.; Levers, C.; van der Zanden, E.H.; Schulp, C.J.E.; Verkerk, P.J.; Kuemmerle, T.; Helming, J.; Lotze-Campen, H.; Tabeau, A.; Popp, A.; et al. Simulating and delineating future land change trajectories across Europe. Regional Environ. Chang. 2015, 18, 733–749. [Google Scholar] [CrossRef]
- Jia, S.; Yang, C.; Wang, M.; Failler, P. Heterogeneous Impact of Land-Use on Climate Change: Study from a Spatial Perspective. Front. Environ. Sci. 2022, 10, 840603. [Google Scholar] [CrossRef]
- Hu, P.; Li, F.; Sun, X.; Liu, Y.; Chen, X.; Hu, D. Assessment of Land-Use/Cover Changes and Its Ecological Effect in Rapidly Urbanized Areas—Taking Pearl River Delta Urban Agglomeration as a Case. Sustainability 2021, 13, 5075. [Google Scholar] [CrossRef]
- Damanik-Ambarita, M.N.; Boets, P.; Nguyen Thi, H.T.; Forio, M.A.E.; Everaert, G.; Lock, K.; Musonge, P.L.S.; Suhareva, N.; Bennetsen, E.; Gobeyn, S.; et al. Impact assessment of local land use on ecological water quality of the Guayas river basin (Ecuador). Ecol. Inform. 2018, 48, 226–237. [Google Scholar] [CrossRef]
- Long, H.; Li, X. Land Use Pattern in Transect of the Yangtse River and Its Influential Factors. Acta Geogr. Sin. 2001, 56, 417–425. [Google Scholar]
- Xiong, H.; Hou, H.; Jiang, Y.; Hou, K. Change in Land Use/Cover and Its Driving Force in Zhalute. Rural. Eco-Environ. 2002, 18, 5–10. [Google Scholar]
- Wang, X.; Bao, Y. Exploration of research methods for dynamic changes in land use. Prog. Geogr. Sci. 1999, 18, 81–87. [Google Scholar]
- Guo, Y.; Guo, W. Analysis of land use change and ecological effect in loess hilly area of west Jin. People’s Yellow River 2021, 43, 106–111. [Google Scholar]
- Zhang, S.; Jiang, H.; Wang, L.; Chen, G.; Yu, H. Analysis of land use change and ecological effects in Shenyang City from 2000 to 2020. Radio Eng. 2022, 12, 2222–2228. [Google Scholar]
- Li, X.; Fang, C.; Huang, J.; Mao, H. Urban land use change and its regional ecological and environmental effects in the Northwest Arid Zone--Taking Gansu Hexi area as an example. Quat. Res. 2003, 23, 280–290+348–349. [Google Scholar]
- Liu, Y.; Yang, R. The Spatial Characteristics and Formation Mechanism of the County Urbanization in China. Acta Geogr. Sin. 2012, 67, 1011–1020. [Google Scholar]
- Li, J.Z.; Di, S.Y. Classification and sturctural analysis of land types in typical sample zones of Hebei Province. For. Ecol. Sci. 2020, 35, 25–36. [Google Scholar]
- Qin, S. Land Use Change and Its Ecological Environment Effects in Urban Fringe Areas. Master’s Thesis, Northwest University, Xi’an, China, 2005. [Google Scholar]
- Gulibositan, B.; Ding, J.; Li, Y. Land Use/Land Cover Change and Its Environmental Effects in Ugan-Kuga River Delta Oasis. Acta Agrestia Sin. 2018, 26, 53–61. [Google Scholar]
- Chen, K.; Hu, Z. Analysis on the changes of land use and its ecological environmental effects in Xinyi city. J. Shangqiu Norm. Univ. 2017, 33, 47–54. [Google Scholar]
- Cui, J.; Zang, S. Regional disparities of land use changes and their eco-environmental effects in Harbin-Daqing-Qiqihar Industrial Corridor. Geogr. Res. 2013, 32, 848–856. [Google Scholar]
- Fu, Y.; Zhang, J.; Chen, Y.; Zhang, R. LUCC and its environmental effects on the typical oases in the middle reaches of Heihe river basin: Case of Linze and Gaotai oases in Ganzhou. J. Arid. Land Resour. Environ. 2014, 28, 104–109. [Google Scholar] [CrossRef]
- Shi, L.; He, Q.; Xiao, X. Study on the Eeo-environmemtal EIect of Land Use Change in Main Urban Areas of Hengyang Cily. Anhui Agric. Sci. Bull. 2019, 25, 119–124. [Google Scholar] [CrossRef]
- Wu, Y. Study of land use change and ecological environmental effects in Qinhuangdao City. J. Sci. Teach. Coll. Univ. 2018, 38, 41–50. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z. Variations of Vegetation Rehabilitation of 10-Year Returning Farmland to Forest of Northern Shaanxi. Soil Water Conserv. China 2013, 2, 54–56. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Xing, Y.Z.; Pu, L.J.; Peng, B.Z. Study on the Eco-environmental Effect of Land Use Change in Suzhou. Res. Soil Water Conserv. 2009, 16, 98–103. [Google Scholar]
- Zhang, Y.; Liu, Y.; Gu, J.; Ding, Q. Land Use/Land Cover Change and Its Environmental Effects in Wuhan City. Sci. Geogr. Sin. 2011, 31, 1280–1285. [Google Scholar] [CrossRef]
- Wang, J.; Liang, L.; Huang, T.; Luo, X.; Lin, H. Land Use Change and Ecological Effects in Downtown Xuzhou City. Bull. Soil Water Conserv. 2018, 38, 113–126. [Google Scholar]
- Hou, L.; Peng, W.; Liu, P.; Chen, Q.; Qu, X.; Dong, F. Land use change and its ecological environmental effect in the upstream of Yongding River. J. China Inst. Water Resour. Hydropower Res. 2017, 15, 430–438. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, Z.; Meng, Y.; Zhang, J.; He, S. Land Use Change and Ecological Environment Effects of Resources-based Cities-A Case Study of Baiyin City in Gansu Province. Res. Soil Water Conserv. 2013, 20, 251–255. [Google Scholar]
- Nan, S.; Wei, W.; Liu, C.F.; Zhou, J. Eco-environmental effects and spatiotemporal evolution characteristics of land use change:A case study of Hexi Corridor, Northwest China. Chin. J. Appl. Ecol. 2022, 33, 3055–3064. [Google Scholar]
- Yang, S.; Yan, H.; Guo, L. The Land Use Change and Its Eco-environmental Effects in Transitional Agro-pastoral Region-A Case Study of Yulin City in Northern Shaanxi Province. Prog. Geogr. 2004, 23, 49–55. [Google Scholar]
- Wu, X.; Dai, W.; Huang, Z.; Liu, Z. Study on changes of land use/land cover and environmental effects in Minging county. J. Sci. Teach. Coll. Univ. 2014, 34, 86–90. [Google Scholar] [CrossRef]
- Liu, D.; Li, L. Evolution of spatial and temporal land use patterns and driving factors in the northern border sample zone of China from 1995 to 2015. Resour. Sci. 2021, 57, 1208–1221. [Google Scholar] [CrossRef]
- Kong, D.; Chen, H.; Wu, K. The evolution of “Production-Living-Ecological” space, eco-environmental effects and its influencing factors in China. J. Nat. Resour. 2021, 36, 20210503. [Google Scholar] [CrossRef]
- Chen, L. Characteristics and Driving Forces of Land Use Transformation in Jiangsu Province Based on Dominant Functions. Econ. Geogr. 2015, 35, 155–162. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, S. The spatiotemporal differentiation and driving factors of cultivated land in the agricultural pastoral transitional zone of northern China. Geogr. Arid. Areas 2022, 45, 153–163. [Google Scholar] [CrossRef]
- Long, H. Explanation of Land Use Transitions. China Land Sci. 2022, 36, 201317. [Google Scholar] [CrossRef]
- Liao, L.; Ma, E.; Long, H.; Peng, X. Land Use Transition and Its Ecosystem Resilience Response in China during 1990–2020. Land 2022, 12, 141. [Google Scholar] [CrossRef]
- Sun, M. The Spatio-Temporal Variation, Matching Relationship, and Regulation of Food-Land Use-Water Nexus on Perspective of Supply and Demand Balance. Master’s Thesis, Northwest A&F University, Xianyang, China, 2022. [Google Scholar]
- Lai, S. Exploration of the sustainable development of grassland agricultural systems and agriculture in agro-pastoral intertwined areas. Mod. Agric. Sci. Technol. 2009, 3, 241–244. [Google Scholar]
- Li, X. On the Internal Mechanism, Value Implication and Development Path of the Ecological View of Chinese Path to Modernization. J. Beijing For. Univ. (Soc. Sci.) 2024, 23, 2024040. [Google Scholar] [CrossRef]
Author | Ref. | Cropland | Orchard Land | Forest Land | Grassland | Urban and Industrial Land | Water | Unutilized Land |
---|---|---|---|---|---|---|---|---|
Qin Sigang | [46] | 0.325 | 0.75 | 0.558 | 0.4 | 0.17 | 0.42 | 0.11 |
Gulipostan Batu et al. | [47] | 0.275 | - | 0.6125 | 0.47 | - | 0.575 | 0.315 |
Chen Kunpeng et al. | [48] | 0.317 | 0.65 | 0.675 | 0.3 | 0.2 | 0.456 | 0.15 |
Cui Jia et al. | [49] | 0.275 | - | 0.6125 | 0.467 | 0.183 | 0.625 | 0.13 |
Fu Yingxiu et al. | [50] | 0.275 | - | 0.6125 | 0.467 | 0.183 | 0.625 | 0.13 |
Shi Ling et al. | [51] | 0.275 | 0.46 | 0.633 | - | 0.06 | 0.5125 | 0.353 |
Wu Yuhong et al. | [52] | 0.275 | - | 0.6125 | 0.467 | 0.183 | 0.625 | 0.13 |
Yang Yajuan et al. | [53] | 0.28 | - | 0.67 | 0.47 | 0.19 | 0.64 | 0.13 |
Zhang Fangyi et al. | [54] | 0.295 | - | 0.68 | 0.488 | 0.022 | 0.645 | 0.015 |
Zhang Yang et al. | [55] | 0.275 | - | 0.6125 | 0.467 | 0.183 | 0.57 | 0.18 |
Wang Jiahui et al. | [56] | 0.25 | - | 0.95 | 0.75 | 0.2 | 0.65 | 0.1 |
Hou Lei et al. | [57] | 0.275 | - | 0.6125 | 0.467 | 0.183 | 0.625 | 0.13 |
Zhang Wanping et al. | [58] | 0.275 | - | 0.6125 | 0.467 | 0.183 | 0.625 | 0.13 |
Guo Yanjun et al. | [41] | 0.275 | - | 0.6125 | 0.467 | 0.183 | 0.583 | 0.05 |
Zhang Shuhan et al. | [42] | 0.27 | - | 0.76 | 0.7 | 0.18 | 0.54 | 0.11 |
Li Xiaowen et al. | [43] | 0.275 | - | 0.6125 | 0.467 | 0.183 | 0.625 | 0.13 |
Nan Shengxiang et al. | [59] | 0.25 | - | 0.65 | 0.45 | 0.2 | 0.55 | 0.01 |
Yang Shuhe et al. | [60] | 0.275 | - | 0.6125 | 0.467 | 0.183 | 0.625 | 0.13 |
Wu Xinhai et al. | [61] | 0.275 | - | 0.6125 | 0.2 | 0.183 | 0.575 | 0.05 |
average value | 0.28 | - | 0.65 | 0.48 | 0.19 | 0.59 | 0.14 |
Land Use Type | Eco-Environmental Quality Index Value of Each Land Type |
---|---|
cropland | 0.28 |
forest land | 0.65 |
grassland | 0.48 |
waters | 0.59 |
built-up land | 0.1833 |
unutilized land | 0.14 |
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 | Dynamic Change | |
---|---|---|---|---|---|---|---|---|
grassland | 82,371.17 | 81,765.84 | 81,750.37 | 80,885.81 | 81,109.01 | 79,077.67 | 79,022.42 | −4.24% |
cropland | 94,825.56 | 89,045.62 | 92,984.77 | 91,730.78 | 91,100.16 | 88,528.94 | 87,839.38 | −7.95% |
built-up land | 13,094.69 | 14,718.54 | 14,984.37 | 16,361.00 | 17,025.71 | 21,960.16 | 22,693.72 | 42.30% |
forest land | 19,960.39 | 24,504.68 | 20,149.27 | 20,174.90 | 20,132.48 | 20,550.72 | 20,521.81 | 2.74% |
waters | 5318.91 | 5008.90 | 5549.09 | 5512.54 | 5509.04 | 5196.04 | 5253.47 | −1.25% |
unutilized land | 7534.96 | 8062.10 | 7750.86 | 8504.91 | 8216.11 | 7909.67 | 7892.39 | 4.53% |
1990 | 2020 | Total | Transformation | |||||
---|---|---|---|---|---|---|---|---|
Grassland | Cropland | Built-Up Land | Forest Land | Waters | Unutilized Land | |||
grassland | 74,311.93 | 3559.09 | 828.91 | 1426.25 | 255.09 | 1968.53 | 82,349.79 | 8037.87 |
cropland | 2015.41 | 78,261.47 | 11,776.62 | 1482.56 | 1211.10 | 64.71 | 94,811.87 | 16,550.40 |
built-up land | 127.00 | 3447.93 | 9253.02 | 71.51 | 182.28 | 9.82 | 13,091.57 | 3838.55 |
forest land | 849.67 | 1173.03 | 417.25 | 17,413.88 | 76.17 | 16.87 | 19,946.86 | 2532.98 |
waters | 335.61 | 970.59 | 305.64 | 102.11 | 3448.05 | 158.36 | 5320.36 | 1872.31 |
unutilized land | 1341.15 | 368.71 | 88.15 | 11.15 | 57.25 | 5667.40 | 7533.80 | 1866.40 |
total | 78,980.77 | 87,780.82 | 22,669.58 | 20,507.45 | 5229.94 | 7885.69 | 223,054.24 | -- |
transform-to | 4668.84 | 9519.35 | 13,416.56 | 3093.57 | 1781.89 | 2218.29 | -- | -- |
Year | Eco-Environmental Quality Index | Change Compared to the Previous Node |
---|---|---|
1990 | 0.3839 | -- |
1995 | 0.3895 | 0.0055 |
2000 | 0.3830 | −0.0064 |
2005 | 0.3812 | −0.0019 |
2010 | 0.3812 | 0.0001 |
2015 | 0.3777 | −0.0036 |
2020 | 0.3773 | −0.0003 |
Land Use Transformation Leading to Ecological Environment Improvement | Land Use Transformation Leading to Ecological Deterioration | ||||||
---|---|---|---|---|---|---|---|
Land Use Change | Area (km2) | Contribution Rate | Proportion | Land Use Change | Area (km2) | Contribution Rate | Proportion |
CR-F | 1482.56 | 0.00246 | 20.90% | CR-CO | 11,776.62 | −0.05059 | 27.81% |
CR-G | 2015.41 | 0.00181 | 15.35% | F-CR | 1173.03 | −0.01928 | 10.60% |
CR-W | 1211.10 | 0.00168 | 14.30% | F-G | 849.67 | −0.00642 | 3.53% |
G-F | 1426.25 | 0.00109 | 9.24% | G-CR | 3559.09 | −0.03162 | 17.38% |
G-W | 255.09 | 0.00013 | 1.07% | G-CO | 828.91 | −0.01093 | 6.01% |
U-CR | 368.71 | 0.00023 | 1.97% | G-U | 1968.53 | −0.02973 | 16.34% |
U-G | 1341.15 | 0.00204 | 17.37% | F-CO | 417.25 | −0.00865 | 4.76% |
CO-G | 127.00 | 0.00017 | 1.44% | W-CR | 970.59 | −0.01337 | 7.35% |
U-W | 57.25 | 0.00012 | 0.98% | W-G | 335.61 | −0.00164 | 0.90% |
CO-CR | 3447.93 | 0.00149 | 12.70% | W-CO | 305.64 | −0.00552 | 3.04% |
CO-F | 71.51 | 0.00015 | 1.27% | W-U | 157.18 | −0.00314 | 1.73% |
CO-W | 182.28 | 0.00033 | 2.82% | CR-U | 64.71 | −0.00040 | 0.22% |
U-F | 11.15 | 0.00003 | 0.22% | F-W | 76.17 | −0.00020 | 0.11% |
U-CO | 88.15 | 0.00002 | 0.15% | F-U | 16.87 | −0.00038 | 0.21% |
W-F | 102.11 | 0.00003 | 0.23% | W-U | 1.18 | −0.00002 | 0.01% |
total | 12,187.65 | 0.01177 | 1 | CO-U | 9.82 | −0.00002 | 0.01% |
-- | -- | -- | total | 22,510.86 | −0.18192 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Ma, E.; Liao, L.; Wu, M. Land Use Change in a Typical Transect in Northern China and Its Impact on the Ecological Environment. Sustainability 2024, 16, 9291. https://doi.org/10.3390/su16219291
Yang Y, Ma E, Liao L, Wu M. Land Use Change in a Typical Transect in Northern China and Its Impact on the Ecological Environment. Sustainability. 2024; 16(21):9291. https://doi.org/10.3390/su16219291
Chicago/Turabian StyleYang, Yanru, Enpu Ma, Liuwen Liao, and Man Wu. 2024. "Land Use Change in a Typical Transect in Northern China and Its Impact on the Ecological Environment" Sustainability 16, no. 21: 9291. https://doi.org/10.3390/su16219291
APA StyleYang, Y., Ma, E., Liao, L., & Wu, M. (2024). Land Use Change in a Typical Transect in Northern China and Its Impact on the Ecological Environment. Sustainability, 16(21), 9291. https://doi.org/10.3390/su16219291