Assessing the Damage to Environmental Pollution: Discerning the Impact of Environmental Technology, Energy Efficiency, Green Energy and Natural Resources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Data
2.2. Theoretical Background and Econometric Model
2.3. Econometric Methodology
3. Results and Discussion
4. Conclusions and Policy Implications
4.1. Policy Implications
4.2. Limitations and Future Research Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; He, Y.; Wu, R. Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries. Energies 2024, 17, 455. [Google Scholar] [CrossRef]
- Kocak, E.; Alnour, M. Energy R&D Expenditure, Bioethanol Consumption, and Greenhouse Gas Emissions in the United States: Non-Linear Analysis and Political Implications. J. Clean. Prod. 2022, 374, 133887. [Google Scholar] [CrossRef]
- Perone, G. The Relationship between Renewable Energy Production and CO2 Emissions in 27 OECD Countries: A Panel Cointegration and Granger Non-Causality Approach. J. Clean. Prod. 2024, 434, 139655. [Google Scholar] [CrossRef]
- Ren, S.; Du, M.; Bu, W.; Lin, T. Assessing the Impact of Economic Growth Target Constraints on Environmental Pollution: Does Environmental Decentralization Matter? J. Environ. Manag. 2023, 336, 117618. [Google Scholar] [CrossRef] [PubMed]
- Kassouri, Y. Monitoring the Spatial Spillover Effects of Urbanization on Water, Built-up Land and Ecological Footprints in Sub-Saharan Africa. J. Environ. Manag. 2021, 300, 113690. [Google Scholar] [CrossRef]
- Dechezleprêtre, A.; Rivers, N.; Stadler, B. The Economic Cost of Air Pollution: Evidence from Europe. In OECD Economics Department Working Papers; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Feng, T.; Chen, X.; Ma, J.; Sun, Y.; Du, H.; Yao, Y.; Chen, Z.; Wang, S.; Mi, Z. Air Pollution Control or Economic Development? Empirical Evidence from Enterprises with Production Restrictions. J. Environ. Manag. 2023, 336, 117611. [Google Scholar] [CrossRef]
- Mongo, M.; Belaïd, F.; Ramdani, B. The Effects of Environmental Innovations on CO2 Emissions: Empirical Evidence from Europe. Environ. Sci. Policy 2021, 118, 1–9. [Google Scholar] [CrossRef]
- Tolliver, C.; Keeley, A.R.; Managi, S. Policy Targets behind Green Bonds for Renewable Energy: Do Climate Commitments Matter? Technol. Forecast. Soc. Change 2020, 157, 120051. [Google Scholar] [CrossRef]
- Caglar, A.; Zafar, M.; Bekun, F.; Mert, M. Determinants of CO2 Emissions in the BRICS Economies: The Role of Partnerships Investment in Energy and Economic Complexity. Sustain. Energy Technol. Assess. 2022, 51, 101907. [Google Scholar] [CrossRef]
- Huang, Y.; Xue, L.; Khan, Z. What Abates Carbon Emissions in China: Examining the Impact of Renewable Energy and Green Investment. Sustain. Dev. 2021, 29, 823–834. [Google Scholar] [CrossRef]
- Kuldasheva, Z.; Salahodjaev, R. Renewable Energy and CO2 Emissions: Evidence from Rapidly Urbanizing Countries. J. Knowl. Econ. 2023, 14, 1077–1090. [Google Scholar] [CrossRef]
- Jahanger, A.; Usman, M.; Balsalobre-Lorente, D. Linking Institutional Quality to Environmental Sustainability. Sustain. Dev. 2022, 30, 1749–1765. [Google Scholar] [CrossRef]
- Obobisa, E.S. Achieving 1.5 °C and Net-Zero Emissions Target: The Role of Renewable Energy and Financial Development. Renew. Energy 2022, 188, 967–985. [Google Scholar] [CrossRef]
- Tan, F.; Yang, S.; Niu, Z. The Impact of Urbanization on Carbon Emissions: Both from Heterogeneity and Mechanism Test. Environ. Dev. Sustain. 2023, 25, 4813–4829. [Google Scholar] [CrossRef]
- Chi, F.; Meng, Z. The Effects of ICT and FDI on CO2 Emissions in China. Environ. Sci. Pollut. Res. 2023, 30, 3133–3145. [Google Scholar] [CrossRef]
- Abid, A.; Mehmood, U.; Tariq, S.; Haq, Z.U. The Effect of Technological Innovation, FDI, and Financial Development on CO2 Emission: Evidence from the G8 Countries. Environ. Sci. Pollut. Res. 2022, 29, 11654–11662. [Google Scholar] [CrossRef]
- Nakhli, M.S.; Shahbaz, M.; Ben Jebli, M.; Wang, S. Nexus between Economic Policy Uncertainty, Renewable & Non-Renewable Energy and Carbon Emissions: Contextual Evidence in Carbon Neutrality Dream of USA. Renew. Energy 2022, 185, 75–85. [Google Scholar] [CrossRef]
- Xu, X.; Huang, S.; An, H. Identification and Causal Analysis of the Influence Channels of Financial Development on CO2 Emissions. Energy Policy 2021, 153, 112277. [Google Scholar] [CrossRef]
- Malik, M.; Latif, K.; Khan, Z.; Butt, H.; Hussain, M. Symmetric and Asymmetric Impact of Oil Price, FDI and Economic Growth on Carbon Emission in Pakistan: Evidence from ARDL and Non-Linear ARDL Approach. Sci. Total Environ. 2020, 726, 138421. [Google Scholar] [CrossRef]
- Tufail, M.; Song, L.; Adebayo, T.S.; Kirikkaleli, D.; Khan, S. Do Fiscal Decentralization and Natural Resources Rent Curb Carbon Emissions? Evidence from Developed Countries. Environ. Sci. Pollut. Res. 2021, 28, 49179–49190. [Google Scholar] [CrossRef]
- Fu, R.; Jin, G.; Chen, J. The Effects of Poverty Alleviation Investment on Carbon Emissions in China Based on the Multiregional Input–Output Model. Technol. Forecast. Soc. Change 2021, 162, 120344. [Google Scholar] [CrossRef]
- Raihan, A.; Begum, R.; Nizam, M.; Said, M.; Pereira, J. Dynamic Impacts of Energy Use, Agricultural Land Expansion, and Deforestation on CO2 Emissions in Malaysia. Environ. Ecol. Stat. 2022, 29, 477–507. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. CO₂ and Greenhouse Gas Emissions. Our World in Data 2020. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 15 July 2024).
- Awan, A.; Abbasi, R.; Rej, S.; Bandyopadhyay, A.; Lv, K. The Impact of Renewable Energy, Internet Use and Foreign Direct Investment on Carbon Dioxide Emissions: A Method of Moments Quantile Analysis. Renew. Energy 2022, 189, 454–466. [Google Scholar] [CrossRef]
- Bekun, F.V. Race to Carbon Neutrality in South Africa: What Role Does Environmental Technological Innovation Play? Appl. Energy 2024, 354, 122212. [Google Scholar] [CrossRef]
- Zakari, A.; Khan, I. The Impact of Environmental Technology Innovation and Energy Credit Rebate on Carbon Emissions: A Comparative Analysis. J. Int. Dev. 2023, 35, 2609–2625. [Google Scholar] [CrossRef]
- Zhang, J.; Lawell, C. The Macroeconomic Rebound Effect in China. Energy Econ. 2017, 67, 202–212. [Google Scholar] [CrossRef]
- Ulucak, R.; Danish; Kassouri, Y. An Assessment of the Environmental Sustainability Corridor: Investigating the Non-Linear Effects of Environmental Taxation on CO2 Emissions. Sustain. Dev. 2020, 28, 1010–1018. [Google Scholar] [CrossRef]
- Kuznets, S. Economic Growth and Income Inequality. Am. Econ. Rev. 1995, 45, 25–37. [Google Scholar]
- Rahman, M.M.; Nepal, R.; Alam, K. Impacts of Human Capital, Exports, Economic Growth and Energy Consumption on CO2 Emissions of a Cross-Sectionally Dependent Panel: Evidence from the Newly Industrialized Countries (NICs). Environ. Sci. Policy 2021, 121, 24–36. [Google Scholar] [CrossRef]
- Peng, Z.; Wu, Q.; Li, M. Spatial Characteristics and Influencing Factors of Carbon Emissions from Energy Consumption in China’s Transport Sector: An Empirical Analysis Based on Provincial Panel Data. Pol. J. Environ. Stud. 2020, 29, 217–232. [Google Scholar] [CrossRef]
- Shahbaz, M.; Haouas, I.; Hoang, T.H. Van Economic Growth and Environmental Degradation in Vietnam: Is the Environmental Kuznets Curve a Complete Picture? Emerg. Mark. Rev. 2019, 38, 197–218. [Google Scholar] [CrossRef]
- Sterpu, M.; Soava, G.; Mehedintu, A. Impact of Economic Growth and Energy Consumption on Greenhouse Gas Emissions: Testing Environmental Curves Hypotheses on EU Countries. Sustainability 2018, 10, 3327. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N.; Shahbaz, M. Can Biomass Energy Curtail Environmental Pollution? A Quantum Model Approach to Germany. J. Environ. Manage 2021, 287, 112293. [Google Scholar] [CrossRef] [PubMed]
- Javed, S.; Zhu, B.; Liu, S. Forecast of Biofuel Production and Consumption in Top CO2 Emitting Countries Using a Novel Grey Model. J. Clean. Prod. 2020, 276, 123997. [Google Scholar] [CrossRef]
- Lau, E.; Tan, C.C.; Tang, C.F. Dynamic Linkages among Hydroelectricity Consumption, Economic Growth, and Carbon Dioxide Emission in Malaysia. Energy Sources Part B Econ. Plan. Policy 2016, 11, 1042–1049. [Google Scholar] [CrossRef]
- Pata, U.K.; Aydin, M. Testing the EKC Hypothesis for the Top Six Hydropower Energy-Consuming Countries: Evidence from Fourier Bootstrap ARDL Procedure. J. Clean. Prod. 2020, 264, 121699. [Google Scholar] [CrossRef]
- Alnour, M.; Ali, M.; Abdalla, A.; Abdelrahman, R.; Khalil, H. How Do Urban Population Growth, Hydropower Consumption and Natural Resources Rent Shape Environmental Quality in Sudan? World Dev. Sustain. 2022, 1, 100029. [Google Scholar] [CrossRef]
- Achuo, E.D.; Miamo, C.W.; Kouhomou, C.Z. Resource Rents and Environmental Pollution in Developing Countries: Does the Quality of Institutions Matter? Rev. Dev. Econ. 2024, 28, 360–387. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, X.; Khan, Y.; Khan, M.; Naz, S.; Hassan, T.; Wu, C.; Rahman, T. The Impact of Energy Intensity, Energy Productivity and Natural Resource Rents on Carbon Emissions in Morocco. Sustainability 2023, 15, 6720. [Google Scholar] [CrossRef]
- Shen, Y.; Su, Z.; Malik, M.; Umar, M.; Khan, Z. Does Green Investment, Financial Development and Natural Resources Rent Limit Carbon Emissions? A Provincial Panel Analysis of China. Sci. Total Environ. 2021, 755, 142538. [Google Scholar] [CrossRef]
- Iram, R.; Zhang, J.; Erdogan, S.; Abbas, Q. Economics of Energy and Environmental Efficiency: Evidence from OECD Countries. Environmental Sci. Pollut. Res. 2020, 27, 3858–3870. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, Y. International Comparison of Industrial CO2 Emission Trends and the Energy Efficiency Paradox Utilizing Production-Based Decomposition. Energy Econ. 2012, 34, 1724–1741. [Google Scholar] [CrossRef]
- Liddle, B.; Sadorsky, P. Energy Efficiency in OECD and Non-OECD Countries: Estimates and Convergence. Energy Effic. 2021, 14, 72. [Google Scholar] [CrossRef]
- Tajudeen, I.A.; Wossink, A.; Banerjee, P. How Significant Is Energy Efficiency to Mitigate CO2 Emissions? Evidence from OECD Countries. Energy Econ. 2018, 72, 200–221. [Google Scholar] [CrossRef]
- Fan, M.; Grainger, C. The Impact of Air Pollution on Labor Supply in China. Sustainability 2023, 15, 13082. [Google Scholar] [CrossRef]
- Wu, B.; Yan, T.; Elahi, E. The Impact of Environmental Pollution on Labor Supply: Empirical Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 25764–25772. [Google Scholar] [CrossRef] [PubMed]
- Orellano, P.; Reynoso, J.; Quaranta, N. Effects of Air Pollution on Restricted Activity Days: Systematic Review and Meta-Analysis. Environ. Health 2023, 22, 31. [Google Scholar] [CrossRef]
- Chen, F.; Chen, Z. Cost of Economic Growth: Air Pollution and Health Expenditure. Sci. Total Environ. 2021, 755, 142543. [Google Scholar] [CrossRef]
- Meisner, C.; Gjorgjev, D.; Tozija, F. Estimating Health Impacts and Economic Costs of Air Pollution in the Republic of Macedonia. South East. Eur. J. Public Health 2023. [Google Scholar] [CrossRef]
- Pandey, A.; Brauer, M.; Cropper, M.L.; Balakrishnan, K.; Mathur, P.; Dey, S.; Turkgulu, B.; Kumar, G.A.; Khare, M.; Beig, G.; et al. Health and Economic Impact of Air Pollution in the States of India: The Global Burden of Disease Study 2019. Lancet Planet Health 2021, 5, e25–e38. [Google Scholar] [CrossRef]
- Font-Ribera, L.; Rico, M.; Marí-Dell’Olmo, M. Estimating Ambient Air Pollution Mortality and Disease Burden and Its Economic Cost in Barcelona. Environ. Res. 2023, 216, 114485. [Google Scholar] [CrossRef] [PubMed]
- Ugochukwu, U.C.; Chukwuone, N.; Jidere, C.; Ezeudu, B.; Ikpo, C.; Ozor, J. Heavy Metal Contamination of Soil, Sediment and Water Due to Galena Mining in Ebonyi State Nigeria: Economic Costs of Pollution Based on Exposure Health Risks. J. Environ. Manage 2022, 321, 115864. [Google Scholar] [CrossRef] [PubMed]
- Awan, A.; Alnour, M.; Jahanger, A.; Onwe, J.C. Do Technological Innovation and Urbanization Mitigate Carbon Dioxide Emissions from the Transport Sector? Technol. Soc. 2022, 71, 102128. [Google Scholar] [CrossRef]
- Akram, R.; Majeed, M.T.; Fareed, Z.; Khalid, F.; Ye, C. Asymmetric Effects of Energy Efficiency and Renewable Energy on Carbon Emissions of BRICS Economies: Evidence from Nonlinear Panel Autoregressive Distributed Lag Model. Environ. Sci. Pollut. Res. 2020, 27, 18254–18268. [Google Scholar] [CrossRef] [PubMed]
- Suki, N.M.; Suki, N.M.; Sharif, A.; Afshan, S.; Jermsittiparsert, K. The Role of Technology Innovation and Renewable Energy in Reducing Environmental Degradation in Malaysia: A Step towards Sustainable Environment. Renew. Energy 2022, 182, 245–253. [Google Scholar] [CrossRef]
- Russo, M.A.; Carvalho, D.; Martins, N.; Monteiro, A. Forecasting the Inevitable: A Review on the Impacts of Climate Change on Renewable Energy Resources. Sustain. Energy Technol. Assess. 2022, 52, 102283. [Google Scholar] [CrossRef]
- Ferreira, J.; Fernandes, C.; Ferreira, F. Technology Transfer, Climate Change Mitigation, and Environmental Patent Impact on Sustainability and Economic Growth: A Comparison of European Countries. Technol. Forecast. Soc. Change 2020, 150, 11970. [Google Scholar] [CrossRef]
- Pesaran, M. A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Pesaran, M.; Yamagata, T. Testing Slope Homogeneity in Large Panels. J. Econom. 2008, 142, 50–93. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels. Economics 2004, 1240, 1. [Google Scholar] [CrossRef]
- Westerlund, J. New Simple Tests for Panel Cointegration. Econom. Rev. 2005, 24, 297–316. [Google Scholar] [CrossRef]
- Pedroni, P. Fully Modified OLS for Heterogeneous Cointegrated Panels. In Advances in Econometrics; JAI Press: Stamford, CT, USA, 2001; Volume 15, pp. 93–130. ISBN 0762306882. [Google Scholar]
- Kao, C. Spurious Regression and Residual-Based Tests for Cointegration in Panel Data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Machado, J.A.F.; Santos Silva, J.M.C. Quantiles via Moments. J. Econom. 2019, 213, 145–173. [Google Scholar] [CrossRef]
- Cheng, C.; Ren, X.; Dong, K.; Dong, X.; Wang, Z. How Does Technological Innovation Mitigate CO2 Emissions in OECD Countries? Heterogeneous Analysis Using Panel Quantile Regression. J. Environ. Manage 2021, 280, 111818. [Google Scholar] [CrossRef] [PubMed]
- Galvao, A. Quantile Regression for Dynamic Panel Data with Fixed Effects. J. Econom. 2011, 164, 142–157. [Google Scholar] [CrossRef]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. In Festschrift in Honor of Peter Schmidt: Econometric Methods and Application; Springer: New York, NY, USA, 2014; pp. 281–314. [Google Scholar]
- Gyamfi, B.; Adebayo, T. Do Natural Resource Volatilities and Renewable Energy Contribute to the Environment and Economic Performance? Empirical Evidence from E7 Economies. Environ. Sci. Pollut. Res. 2023, 30, 19380–19392. [Google Scholar] [CrossRef]
- Cheng, C.; Ren, X.; Wang, Z. The Impact of Renewable Energy and Innovation on Carbon Emission: An Empirical Analysis for OECD Countries. Energy Procedia 2019, 158, 3506–3512. [Google Scholar] [CrossRef]
- Ibrahim, R.; Ajide, K. The Dynamic Heterogeneous Impacts of Nonrenewable Energy, Trade Openness, Total Natural Resource Rents, Financial Development and Regulatory Quality. Resour. Policy 2021, 74, 102251. [Google Scholar] [CrossRef]
- Wenlong, Z.; Tien, N.; Sibghatullah, A.; Asih, D. Impact of Energy Efficiency, Technology Innovation, Institutional Quality, and Trade Openness on Greenhouse Gas Emissions in Ten Asian Economies. Environ. Sci. Pollut. Res. 2023, 30, 43024–43039. [Google Scholar] [CrossRef]
- Wang, H.; Wei, W. Coordinating Technological Progress and Environmental Regulation in CO2 Mitigation: The Optimal Levels for OECD Countries & Emerging Economies. Energy Econ. 2020, 87, 104510. [Google Scholar]
- Phillips, P.; Hansen, B. Statistical Inference in Instrumental Variables Regression with I(1) Processes. Rev. Econ. Stud. 1990, 57, 99–125. [Google Scholar] [CrossRef]
- Stock, J.; Watson, M. A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems. Econometrica 1993, 61, 783–820. [Google Scholar] [CrossRef]
- Driscoll, J.; Kraay, A. Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data. Rev. Econ. Stat. 1998, 80, 549–560. [Google Scholar] [CrossRef]
- Hoechle, D. Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence. Stata J. 2007, 7, 281–312. [Google Scholar] [CrossRef]
- De Hoyos, R.E.; Sarafidis, V. Testing for Cross-Sectional Dependence in Panel-Data Models. Stata J. 2006, 6, 482–496. [Google Scholar] [CrossRef]
Series | Notation | Unit of Measurement | Source |
---|---|---|---|
Carbon dioxide damage | CO2D | Adjusted savings: carbon dioxide damage—current USD | Trading Economics (https://tradingeconomics.com/indicators, accessed on 15 July 2024) |
Environmental technology | EVT | Number of patents for technologies used in environmental control | OECD (https://data.oecd.org/environment.htm, accessed on 15 July 2024) |
Energy efficiency | EFX | Low carbon power use (TWh) | Our World in Data (https://ourworldindata.org/, accessed on 15 July 2024) |
Use of renewable energy | RWE | Percentage of final energy used | WDI (https://databank.worldbank.org/source/world-development-indicators, accessed on 15 July 2024) |
Economic growth | GDP | Per capita GDP (USD 2015 constant) | WDI (https://databank.worldbank.org/source/world-development-indicators, accessed on 15 July 2024) |
Natural resource rent | NRT | Proportion of GDP | WDI (https://databank.worldbank.org/source/world-development-indicators, accessed on 15 July 2024) |
Stat. | CO2D | EVT | RWE | GDP | NRT | EFX |
---|---|---|---|---|---|---|
Mean | 16.111 | 10.490 | 19.162 | 10.149 | 1.459 | 21.701 |
Median | 0.847 | 9.770 | 14.093 | 10.297 | 0.383 | 17.075 |
Maximum | 701.200 | 72.730 | 78.214 | 11.724 | 21.418 | 82.835 |
Minimum | 0.000 | 0.970 | 0.692 | 7.733 | 0.016 | 0.024 |
Std. Dev. | 92.815 | 5.663 | 15.962 | 0.789 | 2.880 | 18.798 |
Skewness | 6.042 | 3.689 | 1.295 | −0.584 | 3.480 | 1.215 |
Kurtosis | 38.034 | 34.366 | 4.568 | 2.839 | 17.302 | 4.028 |
Jarque–Bera | 4566.740 | 34522.100 | 304.971 | 46.163 | 8412.637 | 231.348 |
Probability | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Correlation Matrix | ||||||
CO2D | 1.00 | |||||
EVT | −0.12 | 1.00 | ||||
RWE | −0.14 | 0.04 | 1.00 | |||
GDP | 0.02 | −0.09 | 0.02 | 1.00 | ||
NRT | −0.07 | 0.19 | 0.26 | −0.14 | 1.00 | |
EFX | −0.19 | −0.08 | 0.71 | 0.30 | 0.09 | 1.00 |
Variable | CD-Test | p-Value | Corr. | Abs (Corr.) |
---|---|---|---|---|
CO2D | 55.617 | 0.000 | 0.46 | 0.58 |
EVT | 45.293 | 0.000 | 0.37 | 0.47 |
RWE | 57.859 | 0.000 | 0.48 | 0.72 |
GDP | 103.182 | 0.000 | 0.85 | 0.85 |
NRT | 35.196 | 0.000 | 0.29 | 0.44 |
EFX | 37.556 | 0.000 | 0.31 | 0.55 |
Model: CO2D = f (EVT, RWE, GDP, NRT, EFX) | Coeff. | p-Value | |
---|---|---|---|
Static model | Δ | −10.655 | 0.000 |
Δ adj. | −14.367 | 0.000 | |
HAC model | Δ | −11.380 | 0.000 |
Δ adj. | −16.535 | 0.000 |
Variables | CIPS | CIPS 1st Difference | CADF | CADF 1st Difference |
---|---|---|---|---|
CO2D | −2.216 ** | −4.192 *** | −1.878 | −2.313 *** |
EVT | −3.130 *** | −4.833 *** | −2.952 *** | −3.551 *** |
RWE | −2.176 ** | −4.700 *** | −1.463 | −3.615 *** |
GDP | −1.937 | −3.472 *** | −1.776 | −2.546 *** |
NRT | −2.206 ** | −4.186 *** | −2.066 ** | −3.679 *** |
EFX | −2.219 ** | −4.237 *** | −2.127 ** | −3.196 *** |
Cointegration Tests | Statistic | p-Value |
---|---|---|
Westerlund (2005) test | ||
Variance Ratio | 2.7617 | 0.000 |
Pedroni (2001) test | ||
Modified Phillips–Perron t | 7.3779 | 0.000 |
Phillips–Perron t | −7.6916 | 0.000 |
Augmented Dickey–Fuller t | −6.5773 | 0.000 |
Kao (1999) test | ||
Modified Dickey–Fuller t | −4.5827 | 0.000 |
Dickey–Fuller t | −7.6754 | 0.000 |
Augmented Dickey–Fuller t | −8.8865 | 0.000 |
Unadjusted modified Dickey–Fuller t | −7.1161 | 0.000 |
Unadjusted Dickey–Fuller t” | −8.6517 | 0.000 |
Variable | Location | Scale | Quantiles | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.05 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | 0.95 | |||
EVT | −2.847 (2.384) | −1.474 ** (0.753) | −1.417 *** (0.341) | −1.596 *** (0.195) | −1.802 *** (0.448) | −1.995 ** (0.774) | −2.226 * (1.177) | −2.524 *** (0.703) | −2.886 *** (0.345) | −3.330 ** (1.436) | −4.157 * (2.630) | −6.955 *** (2.658) | −7.225 *** (2.328) |
RWE | −0.230 *** (0.076) | −0.314 *** (0.004) | 0.175 ** (0.080) | 0.137 *** (0.023) | −0.288 *** (0.007) | −0.498 *** (0.048) | −0.098 * (0.058) | −0.161 * (0.097) | −0.238 ** (0.110) | −0.333 *** (0.019) | −0.510 *** (0.069) | −1.107 *** (0.185) | −2.444 *** (0.429) |
GDP | 21.246 *** (2.258) | 7.407 *** (2.701) | 4.058 *** (3.264) | 4.959 *** (1.845) | 5.996 *** (1.310) | 6.968 *** (2.460) | 8.127 *** (1.349) | 8.625 *** (1.429) | 9.443 *** (2.621) | 9.677 *** (3.247) | 9.832 ** (4.509) | 9.900 *** (2.736) | 10.415 *** (3.943) |
NRT | 1.859 (4.211) | 1.294 (4.863) | 0.604 (0.618) | 0.764 (0.649) | 0.942 (0.816) | 1.112 (1.413) | 1.315 (2.150) | 1.576 (3.112) | 1.894 (1.285) | 2.284 (1.730) | 3.010 (2.430) | 3.468 (2.564) | 3.973 (3.226) |
EFX | −1.027 *** (0.190) | −0.476 (1.375) | −0.565 *** (0.174) | −0.623 *** (0.099) | −0.689 *** (0.230) | −0.752 * (0.398) | −1.826 ** (0.605) | −1.922 ** (0.876) | −1.039 *** (0.207) | −2.183 * (1.114) | −2.450 *** (0.375) | −2.354 ** (1.048) | −3.380 * (1.790) |
_cons | 223.722 *** (14.034) | 101.626 *** (47.138) | 125.103 *** (31.207) | 137.467 *** (17.703) | 151.70 *** (41.137) | 165.030 ** (71.191) | 180.935 * (108.282) | 201.488 * (106.731) | 226.432 * (115.787) | 257.085 * (158.538) | 314.082 ** (124.945) | 307.092 ** (185.506) | 339.473 ** (193.584) |
Variable | FMOLS | DOLS | Driscol–Kraay |
---|---|---|---|
EVT | −0.164 * | −1.018 * | −2.847 *** |
RWE | −0.299 ** | −0.257 * | −0.229 ** |
GDP | 1.572 *** | 1.991 *** | 3.246 *** |
NRT | 0.014 | 0.602 | 1.859 * |
EFX | −0.129 ** | −0.715 * | −1.027 *** |
Relation | F-Statistic | Prob. |
---|---|---|
EVT → CO2D | 2.593 | 0.076 |
CO2D → EVT | 0.338 | 0.713 |
RWE → CO2D | 7.160 | 0.001 |
CO2D → RWE | 1.761 | 0.173 |
GDP → CO2D | 2.383 | 0.082 |
CO2D → GDP | 0.158 | 0.854 |
NRT → CO2D | 2.560 | 0.076 |
CO2D → NRT | 0.036 | 0.965 |
EFX → CO2D | 2.771 | 0.073 |
CO2D → EFX | 0.159 | 0.853 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, S.; Hossain, M.E.; Alnour, M.; Kanwal, S.; Rehman, M.Z.; Esquivias, M.A. Assessing the Damage to Environmental Pollution: Discerning the Impact of Environmental Technology, Energy Efficiency, Green Energy and Natural Resources. Sustainability 2024, 16, 9307. https://doi.org/10.3390/su16219307
Fatima S, Hossain ME, Alnour M, Kanwal S, Rehman MZ, Esquivias MA. Assessing the Damage to Environmental Pollution: Discerning the Impact of Environmental Technology, Energy Efficiency, Green Energy and Natural Resources. Sustainability. 2024; 16(21):9307. https://doi.org/10.3390/su16219307
Chicago/Turabian StyleFatima, Sana, Md. Emran Hossain, Mohammed Alnour, Shamsa Kanwal, Mohd Ziaur Rehman, and Miguel Angel Esquivias. 2024. "Assessing the Damage to Environmental Pollution: Discerning the Impact of Environmental Technology, Energy Efficiency, Green Energy and Natural Resources" Sustainability 16, no. 21: 9307. https://doi.org/10.3390/su16219307
APA StyleFatima, S., Hossain, M. E., Alnour, M., Kanwal, S., Rehman, M. Z., & Esquivias, M. A. (2024). Assessing the Damage to Environmental Pollution: Discerning the Impact of Environmental Technology, Energy Efficiency, Green Energy and Natural Resources. Sustainability, 16(21), 9307. https://doi.org/10.3390/su16219307