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Abstract: Three-dimensional concrete printing (3DCP) technology with solid wastes has significant
potential for sustainable construction. However, the hardened mechanical properties of compo-
nents manufactured using 3DCP technology are affected by weak interlayer interfaces, limiting the
widespread application of 3DCP technology. To address the inherent limitations of 3DCP technology,
conventional improvement strategies, such as external reinforcement and the optimization of material
properties, lead to increased production costs, complex fabrication, and decreased automation. This
study proposes an innovative spatial path optimization method to enhance the mechanical perfor-
mance of 3D-printed, cement-based components. The novel S-path design introduces additional
printed layers in the weak interlayer regions of the printed samples. This design improves the spatial
distribution of fiber-reinforced filaments in continuous weak zones, thus enhancing the functional
efficiency of fibers. This approach improves the mechanical performance of the printed samples,
achieving compressive strengths close to those of cast samples and only a 20% reduction in average
flexural strength. Compared to using a conventional printing path, the average compressive strength
and flexural strength are improved by 30% and 55%, respectively, when the S-path layout is employed
in 3DCP. Additionally, this method significantly reduces the anisotropy in compressive and flexural
strengths to 26% and 28% of samples using conventional printing paths, respectively. Therefore, the
proposed method can improve the mechanical properties and stability of the material, reducing the
safety risks of printed structures.

Keywords: 3D concrete printing; path optimization; fiber reinforcement; anisotropy; solid wastes

1. Introduction

The carbon emissions of the construction industry account for nearly 40% of global
energy-related carbon emissions [1]. Therefore, the United Nations Framework Convention
on Climate Change (COP27) emphasizes the significance of adopting new technologies to
achieve sustainability in construction [2]. Digital fabrication, or 3DCP (3D concrete printing)
technology, is offered to resolve present challenges by introducing enhanced construction
automation, design flexibility, production green sustainability, cost saving, and removing
the use of framework [3,4]. The design flexibility of 3DCP enables the optimization of
material distribution and the minimization of unnecessary material usage [5–7]. Removing
the framework contributes to a reduction in tree consumption and carbon emissions.
Moreover, the utilization of industrial waste, such as fly ash (FA) and silica fume (SF),
to replace cement or aggregates in 3DCP reduces carbon emissions and promotes waste
recycling [8]. Consequently, 3DCP technology with solid wastes significantly enhances
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sustainability by optimizing material use, reducing framework use, and reducing cement,
thereby lowering carbon emissions. The application of 3DCP in practical engineering
fields, such as prefabricated structural components, building construction, and bridge
infrastructure, has been rapidly developed due to these advantages [9–11].

Construction using 3DCP technology is a process in which the nozzle of the printer
moves and continuously extrudes cementitious material along a pre-set path, thus requir-
ing a distinctive selection of raw materials and a mixed design compared to traditional
concrete [12,13]. To ensure the success of 3DCP, process-related material characteristics,
such as pumpable, extrudable, buildable, and mechanical performance, have attracted
more and more attention all over the world [14,15]. However, the procedure of depositing
layer-by-layer leads to weak interfaces between horizontally connected layers, which gen-
erates potential defects in the same orientation of printed components [16,17]. Meanwhile,
inconsistent deformation and the discontinuous mechanical properties of the structure gen-
erated by these defects can induce continuous structural damage due to the concentration
of stresses, weakening the overall load-bearing capacity and long-term durability of the
structure [18,19].

The bond strength of interlayer weak areas significantly influences the quality of the
printed structure [20,21]. For the samples printed using the conventional path, fibers are in-
corporated to enhance the mechanical properties. Nevertheless, this phenomenon of weak
areas between layers is accentuated as the fiber content increases [22,23]. Sanjayan et al. [24]
discovered that the water content between interlayers is determined by various parameters,
such as the printing process, evaporation rate, water permeability of the mixture, and the
water discharged to the surface during the extrusion process, therefore obviously influenc-
ing the interlayer bonding strength [25,26]. To reinforce weak interfaces by accelerating the
strength development of printed structures, some external reinforcement methods have
been applied. Van et al. [27] and Marchment et al. [28] explored the impact of surface
roughness and print-time intervals on the interlayer strength of extrusion-based 3D-printed
concrete, finding that the mechanical performance of the weaker middle areas between
filaments was significantly influenced by the printing parameters. Hence, identifying
effective strategies to boost and guarantee the interlayer bond strength within 3D-printed
concrete structures is key to enhance their overall quality and performance [29,30].

The inherent strength of the extruded material filament forms the basis for the over-
all structural integrity and stability of 3D-printed components [31,32]. Meanwhile, Tay
et al. [33] indicated that the mechanical properties of the unitary extrusion filament are
based on the inherent characteristics of the materials. Enhancing the mechanical prop-
erties of the unitary extrusion filament can be achieved by optimizing the mix ratio of
3D-printing materials or incorporating fibers into the mix [24,34,35]. Nonetheless, these
improvements might compromise the bond strength between layers, as previously high-
lighted. Nematollahi et al. [36] conducted a comparative study on 3D-printed samples,
respectively employing polyvinyl alcohol (PVA), polypropylene (PP), and polyphenylene
benzobisoxazole (PBO). Among these, the printed samples using PVA fibers resulted in the
lowest reduction in bond strength. The layer-by-layer installation of reinforcements and
the parallel integration of multiple-group yarn in the interfaces between interlayers can
boost the mechanical properties of the unitary extrusion filament, mitigating the reduction
in interlayer bond strength [37,38]. Despite these enhancements, the cost savings of materi-
als or the extrusion-forming capacity were sacrificed [39,40]. Besides, a unitary external
enhancement strategy may offer limited improvement to the mechanical properties in the
direction of interfaces between interlayers, or may introduce certain challenges, such as
feasibility and cost [41,42].

The printing path in 3D-printed concrete crucially influences the interlayer bond
strength, force distribution, internal material structure, and component anisotropy, which
determines the strength and stability of the final structure [43,44]. Jiang et al. [45] demon-
strated that employing an arched path significantly enhanced the flexural strength of the
specimens by modifying the force distribution. Battaglia et al. [46] discovered that an inter-
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laced printing path facilitated a more even and dense fill, diminishing the presence of voids
and discontinuities within the 3D-printed concrete. Moreover, optimizing the printing path
can reduce the negative impact of anisotropy, thereby enhancing the overall performance
and durability of the printed structure [47]. The printing path optimization provides an
effective approach to simultaneously improving interface bonding and unlocking the full
potential of printed concrete’s inherent properties [48,49]. However, it poses a challenge
to many previous methods because only a single material property can be improved by
them [50–52].

This study aims to investigate a new approach, which reduces the effects of weak
interfaces of interlayers through a spatial path layout, improving the mechanical properties
of the printed structure. To evaluate the validity of this path parameter optimization,
novel analytical models and parameters, including printability, mechanical properties in
the unitary extrusion filament, and middle weak areas’ mechanical performance between
filaments, are proposed. In addition, the influence of varying material mix designs, shapes
of the extrusion nozzle, equipment parameters, and programming of the printing path
on the compressive strength, flexural strength, and mechanical anisotropy of 3D-printed
concrete specimens are explored. Based on the proposed spatial layout of the printing path,
the impact mechanisms for the printability and mechanical performance of the printing
structure with various engineering parameters are investigated.

2. Materials and Methods

The unique control parameters of 3D-printed concrete primarily include the printing
path, printing model, printing environment, and equipment parameters [53]. These four
factors, respectively, affect the filling rate of printed specimens, the deposition time dif-
ference between layers, the open time of materials, and the morphology of the extruded
filaments. Consequently, the size and strength of weak interlayer areas are influenced,
which ultimately impacts the mechanical properties of the printed specimens.

Figure 1 illustrates the flow chart for the investigation of the proposed spatial path
layout. To evaluate the effectiveness of the newly proposed method, the initial step in-
volved constructing an analytical model during the printing process. Subsequently, the
printing design parameters were determined, including the environmental factors, curing
conditions, printing path interval, and layer height. Following the specifications of the de-
sign parameters for printing, both the optimized printing parameters and the coordinated
condition combination were effectively implemented. Ultimately, the apparent quality,
compressive strength, flexural strength, and anisotropy of printed specimens under various
material mix ratios, extruder nozzle shapes, and path layouts were explored.
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Figure 1. Flow chart of the investigation of the proposed spatial path layout.

2.1. Raw Materials

The primary raw materials utilized in the study included Portland cement (42.5R),
fly ash (FA) of class F, ground granulated blast furnace slag (GGBS), and silica fume (SF),
as depicted in Figure 2. FA, SF, and GGBS were employed for partial substitution of the
cement, aligning with sustainability principles. Table 1 describes the details of the physical
properties, chemical composition, and content of each material. In this study, the quartz
sand had a particle size distribution of 1.18–2.36 mm, 0.6–1.18 mm, and 0.3–0.6 mm, with
proportions of 55%, 24.8%, and 20.2%, respectively. The highly efficient polycarboxylic
acid type, as a water-reducing agent, was utilized in this experiment to increase the mortar
workability. The 4W-viscosity hydroxypropyl methylcellulose and polyethylene fiber
(corresponding parameters are presented in Table 2) were suggested to be used in the test.
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Table 1. Relevant physical and chemical parameters.

Precursors
Content (wt%) Specific Surface Area

(m2/kg)
Fineness of 45 µm Sieve

Residue (%)
Specific
GravitySiO2 Loss MgO SO3 K2O Na2O Cl- C CaO

Cement 19.4–21.5 4.1–4.9 2.8–2.9 61.9–64.2 1.9–2.0 1.1–1.2 3.0–3.2 0.6–0.7 0.1–0.2 350–400 - 3.0–3.1

FA 43–54 28–34 8–13 0.4–0.5 1.6–4.7 1.1–2.3 0.5–1.2 2–4 0.8–1.5 - 6.7 2.5–2.6

SF 93–97 - - 0.26–0.28 1.0–1.1 - - - - 20,000–27,000 2.2 2.1–2.2

GGBS 34.7–38.2 9.1–10.2 0.5–0.7 38.8–40.5 0.6–0.8 9.9–11.1 0.1–1.8 0.12–0.14 0.24–0.29 420–480 - 2.8–2.9

Table 2. Main properties of the PVA fibers.

Diameter
(µm)

Length
(mm)

Density
(kg/m3)

Elastic Modulus
(GPa)

Tensile Strength
(MPa)

Elongation
(%)

39 18 1.2 76.5 1950 6

2.2. Analytical Models

To explicitly analyze the differences in the shaping process of 3DPC, a reference
coordinate system was established. In this system, the horizontal printing platform is
defined as the LW plane, and the H direction is perpendicular to the horizontal printing
platform. Moreover, the L, W, and H directions represent the length, width, and height
of the component model, respectively Based on the coordinate system described above,
the XYZ sub-coordinate system was established, with its origin at the point where the
printing nozzle extrudes the filament. Additionally, X is the direction perpendicular to
the cross-section of the printing filament within the horizontal plane, Y is the direction
perpendicular to the side of the printing filament in the horizontal plane, and Z is the
direction perpendicular to the XY plane. Schematic diagrams of the LWH, XYZ analytical
coordinate system and the weak-area distribution of the printed component are presented
in Figure 3.
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Figure 3. (a) Theoretical diagram of weak area inside the extrusion filament (A area), weak area in
the middle of extrusion filaments (B, C, and D areas), and the LWH analytical coordinate system.
(b) XYZ analytical coordinate system.

The A area represents the inner region of the printable filament. Besides, its perfor-
mance is highly related to the inherent mechanical properties of the materials, representing
the mechanical properties in the unitary extrusion filament. The areas of B, C, and D
represent weak areas, which are in the middle of adjacent printable filaments. Further, their
performance is closely linked to the bond strength of interlayer weak areas, denoting the
mechanical performance of middle weak areas between filaments.

2.3. Optimized Spatial Path Programming Method

The 3D-printed components utilizing traditional path programming normally feature
consistent counts of extrusion filaments for each layer and uniform intervals between
adjacent extrusion filaments within the same layer, as shown in Figure 4a. This spatial path
planning is prone to the formation of continuous interlayer weak zones in horizontal and



Sustainability 2024, 16, 9388 6 of 25

vertical extrusion filament structures. To enhance the compactness of components, this
paper proposes a novel method for improving the mechanical performance of 3D-printed
components through path optimization. This approach employs spatial path arrangements
to fill construction defects caused by the printing process, thereby preventing the emergence
of continuous interlayer weak interfaces at the structural level, as illustrated in Figure 4b.
This partitioning is based on engineering parameters, such as component dimensions,
nozzle size, and the required curing performance.

Sustainability 2024, 16, x FOR PEER REVIEW 6 of 27 
 

Figure 3. (a) Theoretical diagram of weak area inside the extrusion filament (A area), weak area in 
the middle of extrusion filaments (B, C, and D areas), and the LWH analytical coordinate system. 
(b) XYZ analytical coordinate system. 

The A area represents the inner region of the printable filament. Besides, its perfor-
mance is highly related to the inherent mechanical properties of the materials, represent-
ing the mechanical properties in the unitary extrusion filament. The areas of B, C, and D 
represent weak areas, which are in the middle of adjacent printable filaments. Further, 
their performance is closely linked to the bond strength of interlayer weak areas, denoting 
the mechanical performance of middle weak areas between filaments. 

2.3. Optimized Spatial Path Programming Method 
The 3D-printed components utilizing traditional path programming normally fea-

ture consistent counts of extrusion filaments for each layer and uniform intervals between 
adjacent extrusion filaments within the same layer, as shown in Figure 4a. This spatial 
path planning is prone to the formation of continuous interlayer weak zones in horizontal 
and vertical extrusion filament structures. To enhance the compactness of components, 
this paper proposes a novel method for improving the mechanical performance of 3D-
printed components through path optimization. This approach employs spatial path ar-
rangements to fill construction defects caused by the printing process, thereby preventing 
the emergence of continuous interlayer weak interfaces at the structural level, as illus-
trated in Figure 4b. This partitioning is based on engineering parameters, such as compo-
nent dimensions, nozzle size, and the required curing performance. 

(a) (b) 

Figure 4. Comparison diagrammatic sketch of (a) the optimized spatial path programming method 
and (b) the traditional path programming method. 

The proposed method focuses on dividing the print model into N combinatorial lay-
ers. The basic mode of single combinatorial layers maintains consistent printed paths and 
interlayer structures, as depicted in Figure 2. The intermediate extrusion filament 2 is po-
sitioned between the adjacent basic layer extrusion filament 1. The intermediate extrusion 
filament 2 serves as a filling to bridge the gaps between the adjacent extrusion filaments 
of the basic layer. Besides, the basic layer extrusion filament 1 possesses the same size as 
the intermediate layer extrusion filament 2. The solid points in Figure 5 represent the cen-
ter cross-section of the printing path. 
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and (b) the traditional path programming method.

The proposed method focuses on dividing the print model into N combinatorial
layers. The basic mode of single combinatorial layers maintains consistent printed paths
and interlayer structures, as depicted in Figure 2. The intermediate extrusion filament
2 is positioned between the adjacent basic layer extrusion filament 1. The intermediate
extrusion filament 2 serves as a filling to bridge the gaps between the adjacent extrusion
filaments of the basic layer. Besides, the basic layer extrusion filament 1 possesses the same
size as the intermediate layer extrusion filament 2. The solid points in Figure 5 represent
the center cross-section of the printing path.
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2.4. Experiment Scheme Establishment

In this experiment, the proportion of cementitious materials was set at 100 weight
percent (wt%). Relative to the cementitious materials, the proportions of sand and water
were 130 wt% and 36 wt%, respectively. Moreover, the M1 and M2 mix proportions of
3D-printed cement were employed, as shown in Table 3. The compressive strength tests
complied with the Standard Test Method of Chinese Criterion GB/T 50081-2002 [54], and
the results are shown in Table 4. The compressive strength of the concrete samples using the
M1 and M2 mix designs, respectively, met the standards of C40 and C60, according to the
Chinese Standard GB 50010-2010 [55]. Moreover, the addition of PVA fibers, hydroxypropyl
methylcellulose (HPMC), and water reducer at dosages of 0.21 wt%, 0.016 wt%, and
0.23 wt%, respectively, enhanced the workability and water retention properties of the
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mortar. The length and content of fiber were selected based on experimental results and
market considerations, balancing crack control, workability, and cost-effectiveness.

Table 3. Control mix proportion of this test.

Components (wt%)

Cement FA SF GGBS Sand Water Water
Reducer PVA Fiber Hydroxypropyl

Methylcellulose
Calcium
Formate

M1 56 10 15 20 130 36 0.23 0.21 0.016 \
M2 56 20 15 20 130 36 0.23 0.21 0.016 3.75

Table 4. The mechanical properties of casting samples using M1 and M2 mix proportions.

Compressive Strength (MPa) Flexural Strength (MPa)

Test 1 Test 2 Test 3 Average SD Test 1 Test 2 Test 3 Average SD

M1cast 55.5 48.2 54.4 52.7 3.94 11.2 12.3 11.6 11.7 2.87
M2cast 68.9 70.4 74.6 71.3 0.56 13.9 12.6 13.4 13.3 2.87

For this experiment, the circular nozzle had a diameter of 28 mm, while the dimensions
of the rectangular nozzle were 15 mm × 40 mm, as shown in Figure 6. Multiple trials were
conducted to determine that the recommended interval between the adjacent horizontal
printed paths of the components employing a circular nozzle and rectangular nozzle should
be 30 mm and 38 mm, respectively.
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In the existing technology, the majority of 3D-printed components are fabricated using a
layer-by-layer deposit approach. For the extruded concrete filament of the lower and upper
layers, their central axes may have deviations. The continuous or discontinuous paths between
layers are set. In this experiment, the model dimensions for evaluating the apparent quality
and compressive strength were designed to be 400 mm × 150 mm × 150 mm. Additionally,
the model dimensions for flexural testing were designed to be 400 mm × 400 mm × 210 mm.
All of the printing paths were continuous in the above model design. Staggered paths, SW
and SL, were designed based on the spatial path planning concept in the proposed method,
apart from the conventional paths, NW and NL. Besides, the difference between SW and SL
lies in the direction of their path inflections, as shown in Figure 7. The layer height for the
model using path S and path N was 10 mm and 15 mm, respectively, as illustrated in Figure 5.
The specific path directions for the model using path S are shown in Figure 7c,d.
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staggered path, S.

The walking speed, material mixing quantity per batch, length of the pumping
pipeline, and diameter of the pumping pipeline were 10 cm/s, 100 kg, 10 m, and 25 mm.
Besides, the material flow rate of the per unit time was regulated by manipulating the
pumping speed. Based on multiple experiments, the pumping speed was set at 8 R/min
and 10 R/min, where R/min denotes the rotational speed of the pumping equipment. To
ensure the accuracy of the experimental data and results, the environmental conditions
during the printing process were maintained at 14.5 ± 1 ◦C and 75 ± 10% relative humid-
ity, respectively, as depicted in Figure 8. During the process, the apparent quality of the
printed components under different engineering parameters was compared. Specifically,
experimental groups 2 and 5–10, using M1 material (a total of 7 groups), were used for the
comparison of apparent quality. The compressive strength tests and flexural strength tests
were conducted in groups 1–7 and groups 1–4 and 6, respectively. The specific experimental
groups are presented in Table 5.
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Table 5. Printing parameters for different test groups.

Test Group Nozzle Shape Path Material Types Pump Speed

1 Circular SW M2 10 R/min
2 Circular SW M1 10 R/min
3 Circular SW M2 8 R/min
4 Circular NW M2 10 R/min
5 Circular SL M1 10 R/min
6 Rectangular NW M1 10 R/min
7 Circular NW M1 10 R/min
8 Circular SW M1 8 R/min
9 Circular SL M1 8 R/min

10 Circular NL M1 10 R/min

This experiment was conducted by changing one variable at a time and conducting
pairwise comparisons.

2.5. Mechanical Performance Test

The experimental design was conducted in strict accordance with the Chinese Standard
GB/T 50082-2009 [56] and the methodology proposed by Luo et al. [57]. The material
types and nozzle shapes of the printed materials are shown in Table 5 for the mechanical
performance test. The structure was extruded and deposited by 3DCP equipment based
on the designative printing path, as shown in Figure 9a. The printer nozzle movement
velocity was 12 cm/s, while the width and height of the shaped printing filament were
40 mm and 13 mm, respectively. Simultaneously, 5 successive roundtrip paths fabricated a
layer, and 20 longitudinal layers were deposited to manufacture a printed structure.

The compressive test samples (100 mm × 100 mm × 100 mm) and the flexural test
specimens (50 mm × 50 mm × 200 mm) were obtained by printed components when their
on-site curing time from the start to the cutting process is 8 h, as shown in Figure 9a–c.
Specifically, the cutting methods are illustrated in Figure 9f,g. The average curing tem-
perature and humidity were 20 ◦C and 70%, respectively. Subsequently, the uniaxial
compressive strength of X, Y, and Z directions was determined by compression tests, in
which each group contained three cube specimens, respectively. The equipment employed
for the compressive strength test is shown in Figure 9d. Furthermore, the flexural strength
of the 3D-printed specimens was evaluated using a three-point bending test conducted
on a universal testing machine, with the loading rate set at 0.05 MPa/s until failure. Each
group of flexural and tensile capacity tests contained six prismatic specimens to be tested
under flexural and tensile loads of XY, XZ, YX, YZ, ZX, and ZY directions, respectively, as
shown in Figure 10.
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2.6. Anisotropy Assessment

This study applied an anisotropy coefficient to represent the influence of the printing
process on the mechanical behavior of materials, as described in Equations (1) and (2) [58]:

favg =
∑i

n=1 fxn + ∑i
n=1 fyn + ∑i

n=1 fzn

3i
(1)

Ia =

√(
fx1 − favg

)2
+ .. +

(
fxi − favg

)2
+

(
fy1 − favg

)2
+ .. +

(
fyi − favg

)2
+

(
fz1 − favg

)2
+ .. +

(
fzi − favg

)2

favg
(2)

where i means the number of load directions in the direction of the main load, fxi , fyi , and
fzi , respectively, represent the average strength of the i-th load direction in the X, Y, and Z
directions, favg demonstrates the average strength of all loads, and Ia denotes the anisotropy
coefficient.

The value of Ia had a positive correlation with the anisotropy of the printed material.
A smaller value of Ia ought to be employed to improve the feasibility of printed struc-
tures when the requirements for directions of mechanical properties of the structures are
not determined.

3. Results and Discussion
3.1. Apparent Quality Analysis

To specifically assess the factors influencing the apparent quality, pairwise compar-
isons were conducted using M1 as the control mix design of the material. For pairwise
comparisons of 3D-printed samples designed with path N (groups 6, 7, and 10), the effects
of different corner angles and nozzle shapes on apparent quality were evaluated. For
3D-printed samples designed with the S-path (groups 5, 9, 2, and 8), pairwise comparisons
focused on the effects of varying pumping speeds and corner directions on the apparent
quality of the 3D-printed samples.

The apparent quality of groups 6, 7, and 10 for the N-path is shown in Figure 11. The
components printed with a rectangular nozzle exhibited obvious edges, stable material ex-
trusion, and compact interlayer bonding in the comparison of groups 6 and 7 with different
extrusion nozzle shapes. Using the rectangular-shaped nozzle, the disturbance between
layers after extrusion was removed because the upper-layer filament was compressed and
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spread evenly onto the lower-layer filament. Therefore, the overall product printed by the
rectangular nozzle achieved high-quality formation.
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and (c) group10 employed the N-path design.

Comparing group 7 and group 10 designed with the N-path and different corner
directions, group 7 demonstrated a superior apparent quality in the X direction. On the
other hand, the model’s repeatability in the Z direction was higher in group 10. Group 7 and
group 10 both exhibited varying degrees of inhomogeneous squeezing in the Y direction
because the shape of the circular nozzle had no mechanical improvement to stabilize the
lateral expansion. Additionally, the rheological properties with different curing times or the
nonhomogeneous features of the material contributed to significant dispersion in squeezing
between lateral filaments, material compactness, and squeezing between vertical filament
interlayers. The models using the corner direction W were superior to the models using the
corner direction L.

Compared with groups 5, 9, 2, and 8 designed with the S-path and different pumping
speeds, the apparent quality improved significantly at the pumping speed of 8 R/min.
When the pumping speed was set to 10 R/min, excessive material extrusion caused signifi-
cant compression between the layers and notable deviation from the intended dimensions
of the printed components. Additionally, the components exhibited irregular protrusions at
the center of the printed layers in the Y direction due to excessive material accumulation, as
illustrated in Figure 13. In conclusion, the components using a pumping speed of 8 R/min
demonstrated superior apparent quality compared to those using a pumping speed of
10 R/min.
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3.2. Compressive Performance Analysis

The groups selected for analysis of compressive performance were designated as
groups 1–7, as shown in Table 6. In the compressive strength experiments, pairwise
comparisons were conducted among groups 1, 4, 2, and 7 to evaluate the optimization
effects of different printing paths and materials in the 3D-printed samples. The pairwise
comparisons among groups 1 and 3, groups 2 and 5, and groups 6 and 7 were used to assess
the optimization effects of different pump speeds, corner directions, and nozzle shapes on
the compressive strength of the 3D-printed samples, respectively.

Table 6. Compressive test data from different groups and directions based on the XYZ coordinate system.

Test
Groups

Xi Yi Zi

C1 C2 C3 Average C1 C2 C3 Average C1 C2 C3 Average

1 72.8 68.4 70.4 70.53 67.4 67.6 68.4 67.80 78.4 78.8 74.4 77.20
2 56.7 57.5 64.5 59.57 50.2 58.5 60.2 56.30 65.4 64.2 62.6 64.07
3 69.6 70.9 68.9 69.80 75.5 64.3 63.6 67.80 73.9 82.7 70.9 75.83
4 50.0 61.2 50.9 54.03 53.5 67.5 60.9 60.63 52.8 46.9 52.8 50.83
5 64.2 58.1 56.1 59.47 61.6 56.9 54.5 57.67 62.0 69.0 66.6 65.87
6 52.3 48.3 43.7 48.10 56.7 50.4 61.8 56.30 39.4 33.2 33.3 35.30
7 42.6 40.5 40.2 41.10 51.1 52.0 45.7 49.60 44.3 42.6 50.5 45.80

Cast 1 55.5 48.2 54.4
Cast 2 68.9 70.4 74.6

Note. Here, C stands for cube.

The compressive strength test results for the different test groups in each direction are
presented in Table 6. For the samples that were designed with the same printing path, the
mechanical properties in different directions followed a consistent ranking. The order of
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mechanical properties for specimens using the S-path (groups 1, 2, 3, and 5) and N-path
(groups 4, 6, and 7) was Z > X > Y and Y > X > Z, respectively. The samples of S experienced
significant weight from the extrusion filament and mechanical compression, resulting in a
higher density compared to the samples of N in the Z direction. The test results comparing
the mechanical performance of specimens printed by different parameters with the average
values of cast specimens are illustrated in Figures 14 and 15. For the printed components
that were designed with the N-path (groups 4, 6, and 7) and S-path (groups 1, 2, 3, and
5), the proportions of mechanical properties between the printed samples and the cast
specimens were 0.77, 0.88, and 0.86, and 1.01, 1.14, 0.99, and 1.16, respectively. The printing
pattern using the S-path produced a denser spatial distribution of printed filaments.
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Figures 14 and 15 shows the proportion relationships between the average compressive
strength in varying directions of the printed specimens and the compressive strength of the
cast sample. For the M1 material (groups 2, 5, 6, and 7), the proportions were 1.14, 1.16,
0.88, and 0.86, respectively. For the M2 material (groups 1, 3, and 4), the proportions were
1.01, 0.99, and 0.77, respectively. The proportion comparison between printed samples and
casting specimens indicated that the compressive strength of the printed specimen that
had a higher casting compressive strength was reduced more. The increased mechanical
property in the unitary extrusion filament led to denser material in the middle weak areas
between filaments.

M2’s sand-to-binder ratio was 1.17, which is lower than M1 (1.3). The augmented FA
content replaced missing particle sizes, filling the voids among cement particles for denser
extruded filaments. Simultaneously, the FA exhibited a morphological effect, allowing
the extrusion filaments to obtain lateral expansion under the material’s weight, compen-
sating for the weaker mobility of the material due to the lower water–binder ratio. The
lateral expansion of extrusion filaments contributed to the enhancement of macro-level
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density in the printed components. The process enhanced middle weak areas’ mechanical
performance between filaments to diminish the effect of the printing path optimization.
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In the compressive strength tests, the mechanical performance of groups 1 and 4 was
generally stronger compared to groups 2 and 7 in varying directions, as shown in Table 6.
The mechanical performance of the printed components became stronger as the mechanical
property in the unitary extrusion filament increased with the same printing parameters,
apart from the printing path.

Comparing group 1 and group 3, which were designed with different pumping speeds,
a minor difference existed between the components’ performance of group 1 and group
3 in each direction. The specimens were manufactured at a pumping speed of 10 R/min,
obtaining slightly poorer apparent quality compared to the components printed at 8 R/min.
The density of the printed components printed at different pumping speeds exhibited
slight variation due to mutual internal compression. Hence, the increase in the pumping
speed did not enhance the middle weak areas’ mechanical performance between filaments.
Consequently, a pumping speed of 8 R/min emerged as the optimal selection.

Comparing groups 2 and 5, which have different path corner directions, the mechan-
ical performance of the same printed model was changed with X-direction movement.
Thereby, this preferred direction movement can be selected, resulting in the optimal me-
chanical properties.

Components in group 6 and group 7 were printed using a rectangular squeezing
nozzle and a circular squeezing nozzle, respectively. The mechanical performances in
different directions of group 6 and group 7 were arranged as Y > X > Z and X > Z > Y,
respectively. A circular squeezing nozzle should be employed when the compression
strength in the Z or X direction is required for the project.

To explore the influence on middle weak areas’ mechanical performance between fila-
ments printed by the S-path, the behaviors under various loading directions using material
M2 were tested. The cracks in various directions for groups 1 and 4 are demonstrated in
Figure 16a. At the load threshold, group 4 exhibited distinct fracture behaviors: Multiple
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sections fractured along the weaker regions between Y extrusion strands in the X direction,
failure progressed through the interlayer collapse in the Y direction, and the fractures
segmented into three parts along the horizontal strands’ weak zones in the Z direction.
Cracks began in the weak zones between filaments, extending horizontally or vertically to
the point of failure. This pattern was most evident in the X direction. In contrast, group 1
did not exhibit this pattern because the core of the material was undamaged, apart from
the fragmentation and delamination of its exterior. The reinforcing and toughening char-
acteristics of the fibers were effectively developed due to the continuous and alternating
arrangement of fibers along the path. Furthermore, as shown in Figure 16b, the failure
surfaces in different directions for groups 1 and 4 are presented. The core concrete in group
1 designed using the S-path was effectively constrained, enhancing its ultimate bearing
capacity. Meanwhile, the failure surfaces of group 4 exhibited a clear layered division along
its weak zones. This contrast indicated that the optimized S-path improved the internal co-
hesion of the printed specimens, mitigating the mechanical performance reduction caused
by weak regions between the filaments. The S-path design incorporated additional printing
layers in the weak interlayer regions of 3D-printed samples and introduced fiber-reinforced
filaments in continuous-interlayer weak zones, thereby enhancing the spatial distribution
of fibers within the printed specimens.
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Figure 16. The (a) failure cracks and (b) the failure surface for printed samples from groups 1 and 4
in varying directions.

Figure 17 shows that the bearing states of the printed specimens at different stages were
recorded throughout the entire failure cycle. T1 is the entire failure cycle for group 1 and T4
is for group 4. Notably, a fine crack was observed solely at 0.6 T1 for the components of
group 1. Moreover, the crack started to slightly expand inward at 0.8T1 without impacting
the load-bearing capacity of the core concrete. The specimen did not completely lose its
bearing capacity until T1. In contrast, the samples of group 4 exhibited micro-cracks in
a diagonal 45◦ direction at 0.2 T4. Due to the increased load, the micro-cracks became
increasingly obvious at 0.6T4 to 0.8T4. The extension of cracks led to complete failure
of the specimen at T4, losing load-bearing capacity. The fibers in components designed
with the N-path primarily influenced the interior area of extruded filaments without
enhancing the middle weak areas’ mechanical performance between filaments. Therefore,
the fibers in components designed with the S-path exhibited a pronounced strengthening
and toughening effect on the printed specimen.
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3.3. Flexural Strength Analysis

The analysis of compressive strength above indicated that different corner orientations
during the printed process affected the mechanical performance in various directions.
Consequently, the flexural strength of the printed samples was tested based on the XYZ
coordinate system to evaluate the influence of corner orientations. Based on a significant
number of experiments, the groups for flexural performance analysis were designated as
groups 1–4 and 6. The flexural strength tests focused on evaluating the optimization effects
of different materials (groups 1 and 2) and pump speeds (groups 1 and 3) for 3D-printed
samples designed with the S-path. Additionally, the same nozzle shape (groups 1 and 4)
and different shapes (groups 2 and 6) of 3D-printed samples employing different path
designs were compared. The flexural strength analysis was conducted on the results of the
groups, as presented in Tables 7 and 8.

Table 7. Flexural test data of varying test groups in directions of XZ, XY, and YX.

Test Groups XZi XYi YXi
P1 P2 Average P1 P2 Average P1 P2 Average

1 10.61 8.59 9.60 7.97 8.18 8.08 7.49 8.17 7.83
2 9.36 9.82 9.59 7.83 7.76 7.80 7.20 7.85 7.53
3 10.23 10.79 10.51 8.75 8.03 8.39 8.37 8.07 8.22
4 4.45 4.12 4.29 5.06 5.45 5.26 6.34 6.17 6.26
6 5.44 5.82 5.63 9.51 9.63 9.57 6.27 5.99 6.13

Table 8. Flexural test data of varying test groups in directions of YZ, ZX, and ZY.

Test Groups YZi ZXi ZYi
P1 P2 Average P1 P2 Average P1 P2 Average

1 8.87 9.39 9.13 7.55 8.67 8.11 11.11 11.50 11.31
2 7.66 8.64 8.15 9.65 9.49 9.57 7.49 7.25 7.37
3 13.97 13.58 13.78 9.38 10.87 10.13 12.46 13.84 13.15
4 10.42 10.62 10.52 4.29 4.52 4.41 10.15 11.24 10.70
6 12.58 12.86 12.72 8.76 9.18 8.97 12.13 12.27 12.20

Note. Here, P stands for prism.

The average flexural strengths for the printed specimens in groups 1, 2, 3, 4, and 6
were 9.01, 8.33, 10.67, 6.90, and 9.20, respectively. The flexural strengths of the printed
components were in proportion to the cast specimens. These proportions were 0.68, 0.71,
0.80, 0.52, and 0.79, respectively. The lowest average strength loss existed in specimens
printed with an S-path design using a circular nozzle, at only 20%. The printed specimens
designed with the N-path using the rectangular nozzle displayed a strength reduction of
21%. Figures 18 and 19 illustrates that the flexural strength in the ZY and YZ directions
was higher compared to other directions. In the ZX and XZ directions, the printed sam-
ples designed with the N-path acquired 32.26–33.16% of the flexural strength of the cast
specimens. Besides, 58.87–66.67% flexural strength of the cast specimens was obtained by
printed samples designed with the S-path in the XY and YX directions. Using the N-path
design, 48.12–52.39% flexural strength in the XZ and YX directions of the cast sample
was gained by the printed specimens. This result illustrates that both the S-path and the
rectangular nozzle contributed to optimizing middle weak areas’ mechanical performance
between filaments.

Using the circular printing nozzle, the average flexural strength of samples in group 3
with the S-path design increased by 1.55 times compared to group 4 samples with the N-
path design. Meanwhile, the printed samples of group 3 exhibited improvements of 145.27%
and 129.85% in the XZ and ZX directions, respectively. The average flexural strength of
components also had significant optimizations in other directions. Their increased values
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were 56.42%, 31.41%, 30.94%, and 22.95% in the XY, YX, YZ, and ZY directions, respectively,
as shown in Figure 20.

Sustainability 2024, 16, x FOR PEER REVIEW 20 of 27 
 

(a) (b) 

 
(c) 

Figure 17. The comparison of the flexural strength between printed specimens of (a) group 1 and (b) 
group 3 using the S-path design and those of (c) group 4 employing the N-path design and cast 
specimens in varying directions based on the M2 mix proportion. 

(a) (b) 

Figure 18. The comparison of the flexural strength between printed specimens of (a) group 2 using 
the S-path design and those of (b) group 6 employing the N-path design and cast specimens in 
varying directions based on the M1 mix proportion. 

Using the circular printing nozzle, the average flexural strength of samples in group 
3 with the S-path design increased by 1.55 times compared to group 4 samples with the 
N-path design. Meanwhile, the printed samples of group 3 exhibited improvements of 
145.27% and 129.85% in the XZ and ZX directions, respectively. The average flexural 
strength of components also had significant optimizations in other directions. Their in-
creased values were 56.42%, 31.41%, 30.94%, and 22.95% in the XY, YX, YZ, and ZY direc-
tions, respectively, as shown in Figure 19. 

Figure 18. The comparison of the flexural strength between printed specimens of (a) group 1 and
(b) group 3 using the S-path design and those of (c) group 4 employing the N-path design and cast
specimens in varying directions based on the M2 mix proportion.

Sustainability 2024, 16, x FOR PEER REVIEW 20 of 27 
 

(a) (b) 

 
(c) 

Figure 17. The comparison of the flexural strength between printed specimens of (a) group 1 and (b) 
group 3 using the S-path design and those of (c) group 4 employing the N-path design and cast 
specimens in varying directions based on the M2 mix proportion. 

(a) (b) 

Figure 18. The comparison of the flexural strength between printed specimens of (a) group 2 using 
the S-path design and those of (b) group 6 employing the N-path design and cast specimens in 
varying directions based on the M1 mix proportion. 

Using the circular printing nozzle, the average flexural strength of samples in group 
3 with the S-path design increased by 1.55 times compared to group 4 samples with the 
N-path design. Meanwhile, the printed samples of group 3 exhibited improvements of 
145.27% and 129.85% in the XZ and ZX directions, respectively. The average flexural 
strength of components also had significant optimizations in other directions. Their in-
creased values were 56.42%, 31.41%, 30.94%, and 22.95% in the XY, YX, YZ, and ZY direc-
tions, respectively, as shown in Figure 19. 

Figure 19. The comparison of the flexural strength between printed specimens of (a) group 2 using the
S-path design and those of (b) group 6 employing the N-path design and cast specimens in varying
directions based on the M1 mix proportion.

Sustainability 2024, 16, x FOR PEER REVIEW 21 of 27 
 

 
Figure 19. The average flexural strength comparison of the printed specimens designed with the S-
path and N-path using M2 material. 

From the comparison between the specimens using M2 (groups 1, 3, and 4) and M1 
(groups 2 and 6), the influence of material intrinsic strength on the flexural strength of 
printed specimens was diminished. Despite this, the flexural strength of cast samples us-
ing M1 was 0.88 times that of specimens using M2. The average strength of the printed 
specimens using M1 was 0.93 times that of M2. The observations of the cut printed speci-
men, as depicted in Figure 20, indicated that the visibility of macroscopic defects in the 
printed specimens increased in the following order: groups 1 and 2, group 6, and group 
4. In contrast to the compressive strength test results, the average flexural strength of the 
printed specimens was affected by such factors, which included the printing path, nozzle 
design, and pump speed. 

 
Figure 20. Printed specimens of groups 1, 2, 4, and 6 after cutting. 

The comparison of group 1 and group 4 demonstrated that an S-path design strategy 
can enhance the flexural strength of specimens. Specifically, it significantly mitigated the 
impact of weak regions between filaments, leading to strength improvements in the XY, 
YX, XZ, and ZX orientations by 53.61%, 25.08%, 123.78%, and 83.90%, respectively. The 
continuous and staggered distribution of fibers along the S-path between layers contrib-
uted to this improvement by effectively preventing the oriented distribution of fibers 
within a single layer. Furthermore, the application of appropriate extrusion pressure sig-
nificantly enhanced the bonding performance between adjacent extrusion filaments. The 
S-path design partially optimized the failure mode of printed components in the XZ di-
rection. In the XZ direction of group 4, the failure occurred at approximately one-third of 
the specimen’s height, displaying a brittle fracture. In group 1’s XZ direction, the failure 
crack propagated through the middle of the specimen, while the fibers prevented com-
plete fracture, as depicted in Figure 21. The fracture surface of group 4, as depicted in 
Figure 21b, showed clear printing deposition marks, flaws during the printing process, 
and several areas of fiber failure. The load-bearing area within the specimen was smaller 
than its cross-section, with fibers playing a minimal role in bearing the load. 

Figure 20. The average flexural strength comparison of the printed specimens designed with the
S-path and N-path using M2 material.



Sustainability 2024, 16, 9388 19 of 25

From the comparison between the specimens using M2 (groups 1, 3, and 4) and M1
(groups 2 and 6), the influence of material intrinsic strength on the flexural strength of
printed specimens was diminished. Despite this, the flexural strength of cast samples
using M1 was 0.88 times that of specimens using M2. The average strength of the printed
specimens using M1 was 0.93 times that of M2. The observations of the cut printed
specimen, as depicted in Figure 21, indicated that the visibility of macroscopic defects in
the printed specimens increased in the following order: groups 1 and 2, group 6, and group
4. In contrast to the compressive strength test results, the average flexural strength of the
printed specimens was affected by such factors, which included the printing path, nozzle
design, and pump speed.
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Figure 21. Printed specimens of groups 1, 2, 4, and 6 after cutting.

The comparison of group 1 and group 4 demonstrated that an S-path design strategy
can enhance the flexural strength of specimens. Specifically, it significantly mitigated the
impact of weak regions between filaments, leading to strength improvements in the XY,
YX, XZ, and ZX orientations by 53.61%, 25.08%, 123.78%, and 83.90%, respectively. The
continuous and staggered distribution of fibers along the S-path between layers contributed
to this improvement by effectively preventing the oriented distribution of fibers within a
single layer. Furthermore, the application of appropriate extrusion pressure significantly
enhanced the bonding performance between adjacent extrusion filaments. The S-path
design partially optimized the failure mode of printed components in the XZ direction.
In the XZ direction of group 4, the failure occurred at approximately one-third of the
specimen’s height, displaying a brittle fracture. In group 1’s XZ direction, the failure
crack propagated through the middle of the specimen, while the fibers prevented complete
fracture, as depicted in Figure 22. The fracture surface of group 4, as depicted in Figure 22b,
showed clear printing deposition marks, flaws during the printing process, and several
areas of fiber failure. The load-bearing area within the specimen was smaller than its
cross-section, with fibers playing a minimal role in bearing the load.
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Using the N-path design, the average strength of the printed specimens using the M1
material and a rectangular nozzle was 1.33 times that of samples using the M2 material
and a circular nozzle by comparing groups 4 and 6. During the printing process using the
rectangular nozzle and the N-path design, ten samples (2000 mm × 160 mm × 104 mm rect-
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angular prism) were observed, as shown in Figure 23. Mechanical compaction by the nozzle
ensured uniformity in the cross-sections of the extruded filaments, leading to consistent
printing materials’ layer heights and stable spacing between the extruded filaments. The
process had minimal impact on the adjacent extrusion filaments. Consequently, employing
the rectangular nozzle could improve the tensile properties of the weak zones between the
extrusion filaments, enhancing the flexural strength of the printed specimens.
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Figure 23. Stable extrusion filaments of a rectangular nozzle in the N-path.

Group 1 and group 3 were printed with a pumping speed of 10 R/min and 8 R/min,
respectively. The differences in flexural strengths from their average values in XZ, XY,
YX, YZ, ZX, and ZY directions were 6.57%, 10.36%, 13.08%, 1.35%, 9.97%, and 25.49%,
respectively. The flexural strength of group 1’s printed samples exhibited a decrease of 0.12
compared to that of cast specimens. Among them, the flexural strengths in the YZ direction
obtained the biggest loss of 4.65 MPa when the components were printed at a pumping
speed of 10 R/min and a single-layer height of 10 mm. Excessive material extrusion per
unit of time led to greater compaction within the printed specimen. Additionally, using
the circular nozzle, which extruded the material without physical guidance, the extrusion
filaments and material stretching after extrusion exhibited significant fluctuations, as
illustrated in Figure 24, reducing the flexural strength in the YZ direction. Thereby, the
S-path printing design and rectangular nozzle could improve the flexural strength of the
printed components.
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3.4. Anisotropy Analysis

The test results of compressive and flexural performance were input into anisotropy
assessment formulas, obtaining the anisotropy values of compressive and flexural capacity
for various groups, as shown in Table 9 and Figure 25.

Components designed with the N-path and a rectangular nozzle demonstrated a
maximum anisotropy of 32.14% compressive strength. Due to the absence of physical
compression between layers and the horizontal filament interaction, the rectangular nozzle
exhibited greater anisotropy. In contrast, the components of groups 1, 2, 3, and 5, which
were designed with the S-path, exhibited a similar anisotropy (approximately 10%). Among
them, the optimal anisotropy was found in group 3 (8.31%). The samples designed with the
N-path exhibited anisotropy that was at least 2.82% higher than the components designed
with the S-path. Despite various material designs and pumping speeds, compressive
strength anisotropy remained stable in specimens printed with the circular nozzle and
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S-path. The maximum anisotropy of flexural strength was 95.66% when the specimens
were printed using the N-path design and a circular nozzle. The printing process using
a circular nozzle had unstable spacing between the extruded filament, leading to larger
defects. Group 2 achieved the lowest anisotropy of 26.83% when the flexural strengths of
three groups designed with the S-path were compared. The higher water–cement ratio of
the M1 than the M2 material contributed to the optimal anisotropy because the flowability
and the density of materials obtained an increase using the S-path design. The anisotropy of
flexural strength in the printed specimens was influenced by the mechanical properties in
the unitary extrusion filament, printing path, extrusion nozzle shape, and pumping speed.
Therefore, the S-path can play a crucial role in achieving mechanical isotropy of printed
specimens. Moreover, the spatial arrangement employing the S-path design effectively
prevented the emergence of continuous-interlayer weak interfaces. However, the interlayer
weak regions still existed, particularly apparent in the flexural strength data. The tensile
anisotropy of the printed specimens was further intensified by the inconsistent interlayer
spatial arrangement, defect distribution, and inherent tensile property disparities in the
concrete material.

Table 9. Values of compressive and flexural anisotropy of various groups.

Test Group CS FS

1 9.52% 32.77%
2 9.20% 26.83%
3 8.31% 48.88%
4 12.81% 95.66%
5 9.99% \
6 32.14% 71.87%
7 13.23% \

Note. Here, CS denotes the compressive strength, and FS denotes the flexural strength.
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4. Conclusions

This study proposed an innovative printing path layout to improve the mechanical per-
formance of components using the 3DCP technology. Six factors influencing the performance
of printing components were proposed to control the printed materials’ quality. Meanwhile,
an engineering parameter-matching model was constructed to facilitate the effectiveness and
accuracy of the experiments. The conclusions were as follows:

(1) Using a comprehensive evaluation, which considered the nozzle shape, printed path,
material properties, and pump speed, the S-path printing design was confirmed to
reduce the loss of mechanical properties in the unitary extrusion filament caused by the
printing technique.

(2) The S-path design introduced additional printing layers in the weak interlayer regions
of the 3D-printed samples and incorporated fiber-reinforced filaments in continuous
weak zones. This method optimized the spatial distribution of fibers within the printed
samples, enhancing the mechanical performance and reducing anisotropy.
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(3) The S-path design improved the compressive strength of the printed samples, achiev-
ing an average compressive strength of 72.01 MPa and reducing the anisotropy to
8.31%. Additionally, the S-path design enhanced the internal cohesion of the printed
samples, thereby improving the failure mode of the printed specimens.

(4) The S-path design improved the flexural strength of the printed samples, creating an
average flexural strength of 10.71 MPa and reducing the anisotropy to 26.83%, which
was higher than the control printing group. Besides, the failure mode was improved
from the brittle fracture to the partial fracture.

(5) The rectangular nozzle was used to improve the tensile properties of the weak zones be-
tween the extrusion filaments, enhancing the flexural strength of the printed specimens.

5. Future Research

Based on this research, the research limitations and future research were identified:

1. This study demonstrated that the application of the S-path design reduced the occur-
rence of weak interlayer regions in 3D-printed concrete. Quantitative analysis at the
micro-level is an area for future work to further investigate the optimization degree of
interlayer weak regions and fiber spatial arrangement in 3D-printed samples under
the S-path design through CT scanning and interlayer bonding strength tests.

2. The mechanical tests indicated that 3D-printed samples using the S-path exhibited
improved mechanical performance across various directions, materials, and equip-
ment parameters. The Poisson effect in the printed specimens was not considered
in this study. Therefore, comprehensive further research is required to explore the
Poisson effect in varying directions employing a conventional triaxial testing machine
equipped with circumferential LVDT sensors.

3. The mutual extrusion of interlayer materials can lead to irregular lateral expansion of
the printed products. Theoretically, materials exhibit varying degrees of yield during
the printing process. This study did not utilize experimental methods for real-time
detection of static and dynamic yield stress. It is essential to conduct a real-time
quantitative analysis of the material yield state during the printing process through
specific testing methods and detection patterns.
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