Integrative Benefits of Carbon Emission and Economic Cost for Self-Healing, Ultra-Thin Overlay Contained Steel Fiber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Scope and Objectives
2.2.2. System Boundary
2.2.3. Inventory Analysis
3. Results and Discussions
3.1. Comparative Assessments for Materials Extractions
3.2. Comparative Assessments for On-Site Construction
3.3. Comparative Assessments for Later Maintenance
3.4. Comparative Assessments for Demolition
3.5. Integrative Profits for Life-Cycle Carbon Emissions and Costs
4. Conclusions
- (1)
- In the six-year life cycle of overlay maintenance, applying self-healing, ultra-thin overlay could reduce 59.43% of carbon emissions and 73.15% of economic costs.
- (2)
- The material extraction phase generated over 50% of carbon emissions and economic costs in self-healing, ultra-thin overlay, while for traditional thin overlay, the later maintenance phase resulted in the over half of carbon emissions and costs.
- (3)
- The addition of steel fiber would rise the burdens in material extraction phase for self-healing, ultra-thin overlay, but the later maintenance by induction heating sharply decreased overall carbon emissions and economic costs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hoy, M.; Samrandee, V.; Samrandee, W.; Suddeepong, A.; Phummiphan, I.; Horpibulsuk, S.; Buritatum, A.; Arulrajah, A.; Yeanyong, C. Evaluation of asphalt pavement maintenance using recycled asphalt pavement with asphalt binders. Constr. Build. Mater. 2023, 406, 133425. [Google Scholar] [CrossRef]
- Yao, L.; Leng, Z.; Ni, F.; Lu, G.; Jiang, J. Adaptive maintenance strategies to mitigate climate change impacts on asphalt pavements. Transp. Res. Part D Transp. Environ. 2024, 126, 104026. [Google Scholar] [CrossRef]
- Stuart, K.D. Moisture Damage in Asphalt Mixtures—A State-of-the-Art Report; United States. Federal Highway Administration. Office of Engineering and Highway Operations R&D: McLean, VA, USA, 1990. [Google Scholar]
- Chinese Ministry of Transport. Statistical Bulletin on the Development of Transportation Industry in 2023; Chinese Ministry of Transport: Beijing, China, 2024. [Google Scholar]
- Liu, G.; Zhang, X.; Qian, Z.; Chen, L.; Bi, Y. Life cycle assessment of road network infrastructure maintenance phase while considering traffic operation and environmental impact. J. Clean. Prod. 2023, 422, 138607. [Google Scholar] [CrossRef]
- Underwood, B.S.; Guido, Z.; Gudipudi, P.; Feinberg, Y. Increased costs to US pavement infrastructure from future temperature rise. Nat. Clim. Change 2017, 7, 704–707. [Google Scholar] [CrossRef]
- Huang, M.; Dong, Q.; Ni, F.; Wang, L. LCA and LCCA based multi-objective optimization of pavement maintenance. J. Clean. Prod. 2021, 283, 124583. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Wu, H.; Zhou, M. Assessment and Suggestions on Impact of Product Oil Tax and Fee Reform on Road Transport Development. J. Highw. Transp. Res. Dev. 2023, 40, 234–239. [Google Scholar]
- Rupasinghe, B.; Wallace, M.; Gange, G.; Senthooran, I. Road pavement upgrade scheduling accounting for minimizing congestion. Sci. Rep. 2023, 13, 15386. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Wu, Z.; Hou, Q. Urban network noise control based on road grade optimization considering comprehensive traffic environment benefit. J. Environ. Manag. 2024, 364, 121451. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, L.; Dong, Z. Review on Materials and Technology of Multifunctional Maintenance of Asphalt Pavement. J. Munic. Technol. 2023, 41, 80–93. [Google Scholar]
- Hajj, R.; Filonzi, A.; Smit, A.; Bhasin, A. Design and Performance of Mixes for Use as Ultrathin Overlay. J. Transp. Eng. Part B Pavements 2019, 145, 04019026. [Google Scholar] [CrossRef]
- Hong, B.; Lu, G.; Gao, J.; Dong, S.; Wang, D. Green tunnel pavement: Polyurethane ultra-thin friction course and its performance characterization. J. Clean. Prod. 2021, 289, 125131. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, R.; Du, X.; Liu, P. A State-of-the-Art Review on the Functionality of Ultra-Thin Overlays Towards a Future Low Carbon Road Maintenance. Engineering 2024, 32, 82–98. [Google Scholar] [CrossRef]
- Yu, J.; Feng, Z.; Chen, Y.; Yu, H.; Korolev, E.; Obukhova, S.; Zou, G.; Zhang, Y. Investigation of cracking resistance of cold asphalt mixture designed for ultra-thin asphalt layer. Constr. Build. Mater. 2024, 414, 134941. [Google Scholar] [CrossRef]
- Song, W.; Zou, X.; Wu, H.; Zhou, L.; Zhou, Y. Fracture properties of ultra-thin friction course mixture containing reclaimed asphalt pavement and glass fiber under monotonic and cyclic loading. Theor. Appl. Fract. Mech. 2024, 133, 104595. [Google Scholar] [CrossRef]
- Chen, S.; Gong, F.; Ge, D.; You, Z.; Sousa, J.B. Use of reacted and activated rubber in ultra-thin hot mixture asphalt overlay for wet-freeze climates. J. Clean. Prod. 2019, 232, 369–378. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Song, G.; Luo, S.; Ge, D. Investigation on the comprehensive durability and interface properties of coloured ultra-thin pavement overlay. Case Stud. Constr. Mater. 2022, 17, e01341. [Google Scholar] [CrossRef]
- Usman, K.R.; Hainin, M.R.; Idham, M.K.; Warid, M.N.M.; Yaacob, H.; Hassan, N.A.; Azman, M.; Puan, O.C. Performance evaluation of asphalt micro surfacing—A review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 527, 012052. [Google Scholar] [CrossRef]
- Ding, L.; Wang, X.; Zhang, K.; Zhang, M.; Yang, J.; Chen, Z. Durability evaluation of easy compaction and high-durability ultra-thin overlay. Constr. Build. Mater. 2021, 302, 124407. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Luo, S.; Yang, X.; Li, Q. Asphalt mixture design for porous ultra-thin overlay. Constr. Build. Mater. 2019, 217, 251–264. [Google Scholar] [CrossRef]
- Yu, J.; Chen, F.; Deng, W.; Ma, Y.; Yu, H. Design and performance of high-toughness ultra-thin friction course in south China. Constr. Build. Mater. 2020, 246, 118508. [Google Scholar] [CrossRef]
- Bazin, P.; Saunier, J. Deformability, Fatigue and healing properties of asphalt mixes. In Proceedings of the International Conference on the Structural Design of Asphalt Pavements, Ann Arbor, MI, USA, 7–11 August 1967; pp. 438–451. [Google Scholar]
- Xu, S.; García, A.; Su, J.; Liu, Q.; Tabaković, A.; Schlangen, E. Self-Healing Asphalt Review: From Idea to Practice. Adv. Mater. Interfaces 2018, 5, 1800536. [Google Scholar] [CrossRef]
- García, Á.; Schlangen, E.; van de Ven, M.; Liu, Q. Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Constr. Build. Mater. 2009, 23, 3175–3181. [Google Scholar] [CrossRef]
- Liu, Q.; Schlangen, E.; García, Á.; van de Ven, M. Induction heating of electrically conductive porous asphalt concrete. Constr. Build. Mater. 2010, 24, 1207–1213. [Google Scholar] [CrossRef]
- Wan, P.; Wu, S.; Liu, Q.; Wang, H.; Gong, X.; Zhao, Z.; Xu, S.; Jiang, J.; Fan, L.; Tu, L. Extrinsic self-healing asphalt materials: A mini review. J. Clean. Prod. 2023, 425, 138910. [Google Scholar] [CrossRef]
- Yang, C.; Wu, S.; Xie, J.; Amirkhanian, S.; Liu, Q.; Zhang, J.; Xiao, Y.; Zhao, Z.; Xu, H.; Li, N.; et al. Enhanced induction heating and self-healing performance of recycled asphalt mixtures by incorporating steel slag. J. Clean. Prod. 2022, 366, 132999. [Google Scholar] [CrossRef]
- Ye, X.; Chen, Y.; Yang, H.; Xiang, Y.; Ye, Z.; Li, W.; Hu, C. Enhancing self-healing of asphalt mixtures containing recycled concrete aggregates and reclaimed asphalt pavement using induction heating. Constr. Build. Mater. 2024, 439, 137361. [Google Scholar] [CrossRef]
- Ye, X.; Li, X.; Chen, Y.; Yang, H.; Xiang, Y.; Ye, Z.; Hu, C. Optimum moment to heal cracks in asphalt pavement by means of waste carbon fiber-enhanced electromagnetic induction heating during multiple damage-healing cycles. J. Clean. Prod. 2024, 470, 143265. [Google Scholar] [CrossRef]
- Li, J.; Gao, M.; Li, X. Study on the Influence of Steel Slag and Steel Fiber on Microwave Heating Properties of Asphalt Mixture. J. Munic. Technol. 2024, 42, 256–262. [Google Scholar]
- Jiao, W.; Sha, A.; Liu, Z.; Jiang, W.; Hu, L.; Li, X. Utilization of steel slags to produce thermal conductive asphalt concretes for snow melting pavements. J. Clean. Prod. 2020, 261, 121197. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, H.; Da, Y.; Wang, F.; Liu, Q. Regulatory strategy for balancing deicing efficiency and energy-saving effects of induction heating asphalt pavements. J. Clean. Prod. 2024, 466, 142812. [Google Scholar] [CrossRef]
- Wang, J.; Feng, K.; Feng, J.; Yao, S.; Dong, W. Review of Construction and Maintenance of Carbon Emission and Low-carbon Path of Asphalt Pavement. J. Munic. Technol. 2024, 42, 55–60. [Google Scholar]
- Lizasoain-Arteaga, E.; Indacoechea-Vega, I.; Pascual-Muñoz, P.; Castro-Fresno, D. Environmental impact assessment of induction-healed asphalt mixtures. J. Clean. Prod. 2019, 208, 1546–1556. [Google Scholar] [CrossRef]
- Rodríguez-Alloza, A.M.; Heihsel, M.; Fry, J.; Gallego, J.; Geschke, A.; Wood, R.; Lenzen, M. Consequences of long-term infrastructure decisions—The case of self-healing roads and their CO2 emissions. Environ. Res. Lett. 2019, 14, 114040. [Google Scholar] [CrossRef]
- Liu, J.; Jing, H.; Wang, Z.; Wang, X.; Zhang, L. Recycling of steel slag in sustainable bituminous mixtures: Self-healing performance, mechanism, environmental and economic analyses. J. Clean. Prod. 2023, 429, 139496. [Google Scholar] [CrossRef]
- Wang, F.; Hoff, I.; Yang, F.; Wu, S.; Xie, J.; Li, N.; Zhang, L. Comparative assessments for environmental impacts from three advanced asphalt pavement construction cases. J. Clean. Prod. 2021, 297, 126659. [Google Scholar] [CrossRef]
- Wan, J.; Xiao, Y.; Song, W.; Chen, C.; Pan, P.; Zhang, D. Self-Healing Property of Ultra-Thin Wearing Courses by Induction Heating. Materials 2018, 11, 1392. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Wu, S.; Xiao, Y.; Fang, M.; Song, W.; Pan, P.; Zhang, D. Enhanced ice and snow melting efficiency of steel slag based ultra-thin friction courses with steel fiber. J. Clean. Prod. 2019, 236, 117613. [Google Scholar] [CrossRef]
- Liu, W.; Wan, P.; Wu, S.; Liu, Q.; Wang, J.; Jiang, Q.; Xu, H. Effect of aging level on the healing properties of an induction-heated ultra-thin wearing course and its mechanism. Constr. Build. Mater. 2024, 430, 136506. [Google Scholar] [CrossRef]
- Xu, H.; Wu, S.; Chen, A.; Zou, Y.; Yang, C.; Cui, P. Study on preparation and characterization of a functional porous ultra-thin friction course (PUFC) with recycled steel slag as aggregate. J. Clean. Prod. 2022, 380, 134983. [Google Scholar] [CrossRef]
- Hoxha, E.; Vignisdottir, H.R.; Barbieri, D.M.; Wang, F.; Bohne, R.A.; Kristensen, T.; Passer, A. Life cycle assessment of roads: Exploring research trends and harmonization challenges. Sci. Total Environ. 2021, 759, 143506. [Google Scholar] [CrossRef]
- Wang, F.; Xie, J.; Wu, S.; Li, J.; Barbieri, D.M.; Zhang, L. Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies. Renew. Sustain. Energy Rev. 2021, 141, 110823. [Google Scholar] [CrossRef]
- JTG E20-2011; Chinese Ministry of Transport, Test Regulations for Asphalt and Asphalt Mixtures in Highway Engineering. Chinese Ministry of Transport: Beijing, China, 2011.
- Eggleston, H.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; The Institute for Global Environmental Strategies (IGES): Hayama, Kanagawa, 2006. [Google Scholar]
- Giani, M.I.; Dotelli, G.; Brandini, N.; Zampori, L. Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling. Resour. Conserv. Recycl. 2015, 104, 224–238. [Google Scholar] [CrossRef]
- Wang, F.; Li, X.; Wu, S.; Zheng, L.; Luo, Q.; Zhang, J.; Barbieri, D.M. Comparative study for global warming potentials of Chinese and Norwegian roads with life cycle assessment. Process Saf. Environ. Prot. 2023, 177, 1168–1180. [Google Scholar] [CrossRef]
- Ozcelik, M. Energy consumption analysis for natural aggregate processing and its results (Atabey, Isparta, Turkey). Min. Miner. Depos. 2018, 12, 80–86. [Google Scholar] [CrossRef]
Tests | Units | Results | Test Methods |
---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 0.1 mm | 48 | T0604-2011 |
Softening point | °C | 84 | T0606-2011 |
Ductility (5 cm/min, 5 °C) | cm | 30 | T0605-2011 |
Viscosity (135 °C) | Pa·s | 1.23 | T0625-2011 |
Density | g/cm3 | 1.039 | T0625-2011 |
Tests | Units | Results | Test Methods |
---|---|---|---|
Apparent relative density | g/cm3 | 3.021 | T0304-2005 |
Needle-like content | % | 3.7 | T0312-2005 |
Los Angeles wear and tear | % | 7.4 | T0317-2005 |
Crushing value | % | 11.6 | T0316-2005 |
Water absorption rate | % | 0.81 | T0304-2005 |
Tests | Units | Results |
---|---|---|
Density | g/cm3 | 7.8 |
Oil content | % | <0.2 |
Equivalent diameter | μm | 70–130 |
Average fiber length | mm | 4.2 |
Melting point | °C | 1530 |
Materials | Unit Calories [MJ/t] | Unit Emission Factors [kg/t] | References |
---|---|---|---|
Base asphalt | 2700.00 | 180.00 | [47] |
SBS-modified asphalt | 7937.00 | 366.00 | [48] |
Steel fiber | 6423.41 | 1973.28 | [38] |
Crushed aggregate | 16.00 | 1.42 | [49] |
Mineral powder | 38.00 | 2.57 | [49] |
Energy Type | Standard Coal Coefficients | Unit Calories | Unit Emission Factors |
---|---|---|---|
Coal | 1.00 | 29.31 MJ/kg | 2.70 kg/kg |
Diesel | 1.46 | 42.65 MJ/kg | 3.31 kg/kg |
Gasoline | 1.47 | 43.07 MJ/kg | 3.15 kg/kg |
Heavy oil | 1.43 | 41.82 MJ/kg | 3.15 kg/kg |
Electricity | 0.12 kg/kWh | 3.60 MJ/kWh | 0.93 kg/kWh |
Materials | Suppliers | Prices (CNY/t) |
---|---|---|
Base asphalt | Xiamen Huate Group Co., Ltd. | 4800 |
SBS-modified asphalt | Xiamen Huate Group Co., Ltd. | 5600 |
Basalt | Zhangping Haoyuan Building Materials Co., Ltd. | 245 |
Limestone powder | Fujian Sanyouxin Trading Co., Ltd. | 190 |
Steel fiber | Jiangsu Jinjuoju Metal Products Co., Ltd. | 6200 |
Energy Sources | Market Prices | Units | Comments |
---|---|---|---|
92 octane gasoline | 7.64 | CNY/L | Market price |
95 octane gasoline | 8.15 | CNY/L | Market price |
Diesel | 7.33 | CNY/L | Market price |
Heavy oil | 5100.00 | CNY/t | Market price |
Industrial electricity | 0.5959 | CNY/kWh | Not exceeding 1 kV |
0.5759 | CNY/kWh | 1–10 kV | |
0.5559 | CNY/kWh | 10–35 kV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Li, X.; Huang, C.; Zhou, W.; Luan, D. Integrative Benefits of Carbon Emission and Economic Cost for Self-Healing, Ultra-Thin Overlay Contained Steel Fiber. Sustainability 2024, 16, 9498. https://doi.org/10.3390/su16219498
Wang F, Li X, Huang C, Zhou W, Luan D. Integrative Benefits of Carbon Emission and Economic Cost for Self-Healing, Ultra-Thin Overlay Contained Steel Fiber. Sustainability. 2024; 16(21):9498. https://doi.org/10.3390/su16219498
Chicago/Turabian StyleWang, Fusong, Xiaoqing Li, Chao Huang, Wangwang Zhou, and Dongxing Luan. 2024. "Integrative Benefits of Carbon Emission and Economic Cost for Self-Healing, Ultra-Thin Overlay Contained Steel Fiber" Sustainability 16, no. 21: 9498. https://doi.org/10.3390/su16219498
APA StyleWang, F., Li, X., Huang, C., Zhou, W., & Luan, D. (2024). Integrative Benefits of Carbon Emission and Economic Cost for Self-Healing, Ultra-Thin Overlay Contained Steel Fiber. Sustainability, 16(21), 9498. https://doi.org/10.3390/su16219498