A Comparative Analysis of the Environmental Impacts of Wood–Aluminum Window Production in Two Life Cycle Assessment Software
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.2. Life Cycle Inventory
- The soaking base is applied to the sanded wood. It prepares the surface for the second surface treatment, binds directly to the wood and carries the protective substance. Thanks to this base, the windows are protected against mold, fungi, pests and even UV rays.
- The glaze (Intermedio) guarantees the resistance of the wood and the base against moisture. Intermedio is applied by dipping or pouring on the base, where it also reaches the joints and where moisture penetrates the wood the most. Intermedio protects the wood of the entire perimeter in contact with the external environment.
- The thick layer of glaze is the last layer and is applied by spraying. It is resistant to moisture, it must be soft enough to withstand hail. It is flexible enough to withstand small dimensional changes caused by changes in wood moisture.
2.3. Life Cycle Impact Assessment
2.3.1. GaBi
2.3.2. SimaPro
2.4. Interpretation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hauschild, M.Z.; Rosenbaum, R.K.; Olsen, S. Life Cycle Assessment; Springer International Publishing: Cham, Switzerland, 2018; Volume 2018. [Google Scholar] [CrossRef]
- Hossain, M.d.U.; Poon, C.S. Global Warming Potential and Energy Consumption of Temporary Works in Building Construction: A Case Study in Hong Kong. Build. Environ. 2018, 142, 171–179. [Google Scholar] [CrossRef]
- Ghanbari, M. Environmental Impact Assessment of Building Materials Using Life Cycle Assessment. J. Archit. Environ. Struct. Eng. Res. 2023, 6, 11–22. [Google Scholar] [CrossRef]
- Abo Einan, O.; Hussien, E.S.; Rashad, S. Life Cycle Assessment and Sustainable Building Materials. Port-Said Eng. Res. J. 2015, 19, 21–30. [Google Scholar] [CrossRef]
- de Lassio, J.; França, J.; Espirito Santo, K.; Haddad, A. Case Study: LCA Methodology Applied to Materials Management in a Brazilian Residential Construction Site. J. Eng. 2016, 2016, 8513293. [Google Scholar] [CrossRef]
- Menzies, G.F.; Wherrett, J.R. Windows in the Workplace: Examining Issues of Environmental Sustainability and Occupant Comfort in the Selection of Multi-Glazed Windows. Energy Build. 2005, 37, 623–630. [Google Scholar] [CrossRef]
- Khasreen, M.M.; Banfill, P.F.G.; Menzies, G.F. Life-Cycle Assessment and the Environmental Impact of Buildings: A Review. Sustainability 2009, 1, 674–701. [Google Scholar] [CrossRef]
- Kowalczyk, Z.; Twardowski, S.; Malinowski, M.; Kuboń, M. Life Cycle Assessment (LCA) and Energy Assessment of the Production and Use of Windows in Residential Buildings. Sci. Rep. 2023, 13, 19752. [Google Scholar] [CrossRef] [PubMed]
- Salazar, J.; Sowlati, T. Life Cycle Assessment of Windows for the North American Residential Market: Case Study. Scand. J. For. Res. 2008, 23, 121–132. [Google Scholar] [CrossRef]
- Menzies, G.F. Whole Life Analysis of Timber, Modified Timber and Aluminium-Clad Timber Windows: Service Life Planning (SLP), Whole Life Costing (WLC) and Life Cycle Assessment (LCA); Heriot-Watt University: Edinburgh, UK, 2013. [Google Scholar]
- Souviron, J.; van Moeseke, G.; Khan, A.Z. Analysing the Environmental Impact of Windows: A Review. Build. Environ. 2019, 161, 106268. [Google Scholar] [CrossRef]
- Herrmann, I.T.; Moltesen, A. Does It Matter Which Life Cycle Assessment (LCA) Tool You Choose?—A Comparative Assessment of SimaPro and GaBi. J. Clean. Prod. 2015, 86, 163–169. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organisation for Standardisation: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organisation for Standardisation: Geneva, Switzerland, 2006.
- Ormazabal, M.; Jaca, C.; Puga-Leal, R. Analysis and Comparison of Life Cycle Assessment and Carbon Footprint Software. In Proceedings of the Eighth International Conference on Management Science and Engineering Management, Lisbon, Portugal, 25–27 July 2014; Xu, J., Cruz-Machado, V.A., Lev, B., Nickel, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1521–1530. [Google Scholar]
- Makrowin MAKROWIN. 2024. Available online: https://makrowin.sk/en/ (accessed on 2 February 2024).
- RAL-GZ 607/3; Drehbeschläge und Drehkippbeschläge—Gütesicherung (Rotary and Tilt-and-Turn Hardware—Quality Assurance). DIN Media: Berlin, Germany, 2017.
- STN 166011 (166011); Stavebné kovanie. Spoločné ustanovenia. Požiadavky a skúšobné metódy (Building Hardware—General Provisions, Requirements, and Test Methods). Slovak Standards Institute: Bratislava, Slovakia, 2014.
- STN EN 17610 (166010); Stavebné kovanie. Environmentálne vyhlásenia o produktoch. Pravidlá skupiny výrobkov pre stavebné kovanie, dopĺňajúce EN 15804 (Building Hardware—Environmental Product Declarations—Product Category Rules for Building Hardware, Complementing EN 15804). Slovak Standards Institute: Bratislava, Slovakia, 2023.
- Commission Recommendation (EU) 2021/2279 of 15 December 2021 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations; European Commission, Directorate-General for Environment: Brussel, Belgium, 2021.
- Sečkár, M.; Schwarz, M.; Golej, J.; Veverková, D. Life cycle assessment and software tools comparison. Int. J. Environ. Sustain. Dev. in press. [CrossRef]
- OKTE National Energy Mix. OKTE, a.s. Available online: https://www.okte.sk/en/guarantees-of-origin/national-energy-mix/2022/ (accessed on 30 June 2023).
- Speck, R.; Selke, S.; Auras, R.; Fitzsimmons, J. Life Cycle Assessment Software: Selection Can Impact Results. J. Ind. Ecol. 2016, 20, 18–28. [Google Scholar] [CrossRef]
- Lopes Silva, D.A.; Nunes, A.O.; Piekarski, C.M.; da Silva Moris, V.A.; de Souza, L.S.M.; Rodrigues, T.O. Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. Sustain. Prod. Consum. 2019, 20, 304–315. [Google Scholar] [CrossRef]
- Lopes Silva, D.A.; Nunes, A.O.; da Silva Moris, A.; Piekarski, C.M.; Rodrigues, T.O. How important is the LCA software tool you choose comparative results from GaBi, openLCA, SimaPro and Umberto. In Proceedings of the VII Conferencia Internacional de Análisis de Ciclo de Vida en Latinoamérica, Medellin, Colombia, 10–15 June 2017. [Google Scholar]
- Sanjuan-Delmás, D.; Alvarenga, R.A.F.; Lindblom, M.; Kampmann, T.C.; van Oers, L.; Guinée, J.B.; Dewulf, J. Environmental assessment of copper production in Europe: An LCA case study from Sweden conducted using two conventional software-database setups. Int. J. Life Cycle Assess. 2022, 27, 255–266. [Google Scholar] [CrossRef]
- Emami, N.; Heinonen, J.; Marteinsson, B.; Säynäjoki, A.; Junnonen, J.M.; Laine, J.; Junnila, S. A Life Cycle Assessment of Two Residential Buildings Using Two Different LCA Database-Software Combinations: Recognizing Uniformities and Inconsistencies. Buildings 2019, 9, 20. [Google Scholar] [CrossRef]
- Pauer, E.; Wohner, B.; Tacker, M. The Influence of Database Selection on Environmental Impact Results. Life Cycle Assessment of Packaging Using GaBi, Ecoinvent 3.6, and the Environmental Footprint Database. Sustainability 2020, 12, 9948. [Google Scholar] [CrossRef]
- Sinha, R.; Lennartsson, M.; Frostell, B. Environmental Footprint Assessment of Building Structures: A Comparative Study. Build. Environ. 2016, 104, 162–171. [Google Scholar] [CrossRef]
Material | Distance (km) |
---|---|
Hardware | 1119 |
Screws | 913 |
Gaskets | 803 |
Triple glazing | 474 |
Extruded aluminum | 330 |
Plastic clips | 330 |
Window scantlings | 116 |
Impact Category | SimaPro | GaBi | Impact Category | SimaPro | GaBi |
---|---|---|---|---|---|
Acidification [mol H+ eq] | 0.071962204 | 0.023072 | Human Toxicity, cancer [CTUh] | 7.14 × 10−9 | 3.78 × 10−9 |
Climate Change [kg CO2 eq] | 22.43133305 | 19.41167 | Human Toxicity, cancer—inorganics [CTUh] | 4.26 × 10−9 | 3.66 × 10−9 |
Ecotoxicity, freshwater [CTUe] | 121.5963485 | 186.1876 | Human Toxicity, cancer—organics [CTUh] | 2.87 × 10−9 | 1.12 × 10−10 |
Ecotoxicity, freshwater—inorganics [CTUe] | 99.27048682 | 183.842 | Human Toxicity, non -cancer [CTUh] | 2.48 × 10−7 | 1.68 × 10−7 |
Ecotoxicity, freshwater—organics [CTUe] | 22.3253124 | 2.345638 | Human Toxicity, non-cancer—inorganics [CTUh] | 2.38 × 10−7 | 1.66 × 10−7 |
Particulate Matter [disease inc.] | 2.63129 × 10−6 | 1.65 × 10−7 | Human Toxicity, non-cancer—organics [CTUh] | 1.00 × 10−8 | 1.55 × 10−9 |
Eutrophication, marine [kg N eq] | 0.015930564 | 0.00824 | Ionizing Radiation [kBq U-235 eq] | 1.87 × 10 | 7.31 × 10−2 |
Eutrophication, freshwater [kg P eq] | 0.00145078 | 6.98 × 10−5 | Ozone Depletion [kg CFC11 eq] | 5.66 × 10−6 | 2.48 × 10−12 |
Eutrophication, terrestrial [mol N eq] | 0.176334866 | 0.093935 | Photochemical Ozone Formation [kg NMVOC eq] | 6.92 × 10−2 | 2.03 × 10−2 |
Water Use [m3 depriv.] | 1.298615647 | 0.230719 | Resource Use, fossils [MJ] | 3.67 × 102 | 2.60 × 102 |
Land Use [Pt] | 420.3608962 | 108.6179 | Resource Use, minerals and metals [kg Sb eq] | 5.00 × 10−5 | 1.26 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sečkár, M.; Schwarz, M.; Pochyba, A.; Polgár, A. A Comparative Analysis of the Environmental Impacts of Wood–Aluminum Window Production in Two Life Cycle Assessment Software. Sustainability 2024, 16, 9581. https://doi.org/10.3390/su16219581
Sečkár M, Schwarz M, Pochyba A, Polgár A. A Comparative Analysis of the Environmental Impacts of Wood–Aluminum Window Production in Two Life Cycle Assessment Software. Sustainability. 2024; 16(21):9581. https://doi.org/10.3390/su16219581
Chicago/Turabian StyleSečkár, Michal, Marián Schwarz, Adam Pochyba, and András Polgár. 2024. "A Comparative Analysis of the Environmental Impacts of Wood–Aluminum Window Production in Two Life Cycle Assessment Software" Sustainability 16, no. 21: 9581. https://doi.org/10.3390/su16219581
APA StyleSečkár, M., Schwarz, M., Pochyba, A., & Polgár, A. (2024). A Comparative Analysis of the Environmental Impacts of Wood–Aluminum Window Production in Two Life Cycle Assessment Software. Sustainability, 16(21), 9581. https://doi.org/10.3390/su16219581