Screening of Suitable Mixed Grass Species and Seeding Rates of Four Native Grass Seeds in an Alpine Mining Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Sample Collection and Determination
- Determination of growth characteristics
- Determination of plant stoichiometric ratio
- Determination of the plant nutrient content
- Determination of soil physicochemical parameters
- Comprehensive ranking:
2.4. Data Processing
3. Results
3.1. Analysis of Vegetation Community Characteristics Under Different Mixed Grass Species and Seeding Rates
3.1.1. Vegetation Coverage Under Different Mixed Grass Species and Seeding Rates
3.1.2. Vegetation Biomass and Root–Shoot Ratio Under Different Mixed Grass Species and Seeding Rates
3.2. Analysis of Plant Stoichiometry Under Different Mixed Grass Species and Seeding Rates
3.3. Nutrient Composition Analysis of Vegetation Under Different Mixed Grass Species and Seeding Rates
3.4. Analysis of Soil Physicochemical Indexes Under Different Mixed Grass Species and Seeding Rates
3.4.1. Soil Water Content Changes Under Different Mixed Grass Species and Seeding Rates
3.4.2. Soil pH Changes Under Different Mixed Grass Species and Seeding Rates
3.4.3. Changes in Soil Nutrients Under Different Mixed Grass Species and Seeding Rates
3.4.4. Comprehensive Evaluation of Different Mixed Grass Species and Seeding Rates
Principal Component Analysis of Each Index Under Different Mixed Grass Species and Seeding Rates
Membership Function Ranking of Different Mixed Grass Species and Seeding Rates
4. Discussion
4.1. Effects of Different Mixed Grass Species and Seeding Rates on Plant Community Characteristics
4.2. Effects of Different Mixed Grass Species and Seeding Rates on Plant Stoichiometry and Nutritional Components
4.3. Effects of Different Mixed Grass Species and Seeding Rates on Soil Physicochemical Properties
4.4. Comprehensive Evaluation of Plant Community Adaptability and High Yield of Different Mixed Grass Species and Seeding Rates
5. Conclusions and Prospects
5.1. Conclusions
5.2. Prospects
- (1)
- In this study, there are few grass species of other families except Gramineae. Only Pedicularis kansuensis of Scrophulariaceae can survive in the extremely harsh environment of the Muli mining area. The collection of native grass seeds should be continuously strengthened to enrich the screening of suitable native grass seeds in the Muli mining area.
- (2)
- Grass species adaptability and community stability are the results of a long-term evaluation. Limited by the project implementation time and epidemic situation, this study only discussed the plant growth and soil remediation effect in the second year, and the relevant conclusions were only preliminary results. Because of the adaptability of grass species and the stability of mixed grass communities, long-term continuous observation and research should be carried out in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, T.; Du, B.; Li, C.C.; Wang, H.; Zhou, W.; Wang, H.; Lin, Z.Y.; Zhao, X.; Xiong, T. Ecological environment restoration and management mode and key technology in plateau alpine coal mine area. J. China Coal Soc. 2021, 46, 230–244. [Google Scholar] [CrossRef]
- Wen, H.J.; Shao, W.L.; Li, Y.H.; Lu, J.; Zhang, S.L.; Wang, W.L.; Huang, M. The structural outline and stratigraphic framework of Juhugeng mining area in Muli coalfield, Tianjun County, Qinghai Province. Geol. Bull. China 2011, 30, 1823–1828. [Google Scholar] [CrossRef]
- Li, X.; Gao, J.; Zhang, J.; Wang, R.; Zhou, H. Adaptive strategies to overcome challenges in vegetation restoration to coalmine wasteland in a frigid alpine setting. CATENA 2019, 182, 104142. [Google Scholar] [CrossRef]
- Ren, X.X.; Cai, T.J.; Wang, X.F. Effects of different vegetation restoration models on soil nutrients in abandoned mining areas. J. Beijing For. Univ. 2010, 32, 151–154. [Google Scholar] [CrossRef]
- Fu, Y. Study on Ecological Restoration Effect of Open-pit Coal Mine in Loess Plateau; Northeast Normal University: Changchun, China, 2010. [Google Scholar]
- Li, J.C.; Wang, X.; Yue, J.Y.; Guo, C.Y.; Lu, N.; Yang, S.Q. Evaluation of soil ecological fertility in the process of vegetation restoration in Antaibao Open-pit Mine. Res. Soil Water Conserv. 2015, 22, 66–71+79. [Google Scholar] [CrossRef]
- Jin, L.Q.; Li, X.L.; Song, Z.H.; Sun, H.F.; Yang, X.G. Response of vegetation restoration to surface matrix of slag mountain in alpine mining area. Pratacultural. Sci. 2018, 35, 2784–2793. [Google Scholar] [CrossRef]
- Gusev, E.M.; Nasonova, O.N.; Kovalev, E.E. Change in Water Availability in Territories of River Basins Located in Different Regions of the World due to Possible Climate Changes. Arid Ecosyst. 2021, 11, 221–230. [Google Scholar] [CrossRef]
- Jänsch, S.; Römbke, J.; Römbke, J.; Hilbeck, A.; Hilbeck, A.; Weiß, G.; Teichmann, H.; Tappeser, B.; Tappeser, B. Assessing the potential risks of transgenic plants for non-target invertebrates in Europe: A review of classification approaches of the receiving environment. BioRisk 2011, 6, 53–65. [Google Scholar] [CrossRef]
- Schutz, C.J.; Christie, S.I.; Heman, B. Site Relationships for Some Wood Properties of Pine Species in Plantation Forests of Southern Africa. J. S. Afr. For. Assoc. 1991, 156, 1–6. [Google Scholar] [CrossRef]
- Zerizghi, T.; Guo, Q.; Tian, L.; Zhao, C. An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area. Sci. Total Environ. 2021, 814, 152653. [Google Scholar] [CrossRef]
- Krsauss, S.L.; Sinclair, E.A.; Bussell, J.D.; Hobbs, R.J. An ecological genetic delineation of local seed-source provenance for ecological restoration. Ecol. Evol. 2013, 3, 2138–2149. [Google Scholar] [CrossRef] [PubMed]
- Jochimsen, M.E. Vegetation development and species assemblages in a long-term reclamation project on mine spoil. Ecol. Eng. 2001, 17, 187–198. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Qi, Y.; Niu, J.; Xu, Y.; Zhang, J. A Comparative Study on the Examination System of CPA in the AI Evelopment Background Take China, Australia, the United States, the United Kingdom, Japan, and Germany as examples. E3S Web Conf. 2021, 233, 01162. [Google Scholar] [CrossRef]
- Xu, L.P.; Yang, L.; Zhai, X.Y.; Yang, S.Y.; Feng, L.G.; Xu, Y. Effects of number, density and source of species on species diversity of grass-flower mixed community in Yangzhou City. Mol. Plant Breed. 2022, 20, 996–1002. [Google Scholar] [CrossRef]
- Herrera, M.A.; Salamanca, C.P.; Barea, J.M. Mycorrhizal Fungi and Rhizobia To Recover Desertified Mediterranean Ecosystems. Appl. Environ. Microbiol. 1993, 59, 129–133. [Google Scholar] [CrossRef]
- Liu, H.L. Ecological restoration and sustainable landscape design of mining wasteland. Acta Ecol. Sin. 2004, 24, 7. [Google Scholar] [CrossRef]
- Nan, W.G.; Jiao, L.; Wang, H.; Hu, G.Y.; Xiao, F.J.; Dong, Z.B.; Zhang, X. Ecological restoration effect of artificial grassland and natural turf transplantation in alpine mining area. Pratacultural. Sci. 2023, 40, 3018–3029. [Google Scholar]
- Pang, J.W.; Liang, Y.; Liu, Y.B.; Li, G.R.; Zhu, H.L.; Hu, X.H.; Shi, X.P.; Shang, Q.; Miao, X.X.; Wang, Y.X. Effects of restoration years on plant diversity and soil chemical properties in an alpine metal mine dump. Bull. Soil Water Conserv. 2023, 43, 110–120. [Google Scholar] [CrossRef]
- Dong, Y.S.; Zhang, C.P.; Yu, Y.; Cao, Q.; Dong, Q.M.; Yang, Z.Z.; Zhang, X.; Zhang, X.F.; Huo, L.A.; Li, C.D. Mixed sowing effect of perennial grasses in the area around Qinghai Lake. Acta Agrestia Sin. 2023, 31, 2203–2209. [Google Scholar] [CrossRef]
- Pan, Z.W.; Zhuo, Y.P. Mixed sowing methods test of perennial artificial grassland in alpine pastoral area. Pratacultural. Sci. 2007, 41, 53–55. [Google Scholar] [CrossRef]
- Berdahl, J.D.; Karn, J.F.; Hendrickson, J.R. Dry matter yields of cool-season grass monocultures and grass-alfalfa binary mixtures. Agron. J. 2001, 93, 463–467. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Wright, J.P.; Marc, W.C.; Carroll, I.T.; Hector, A.; Srivastava, D.S.; Loreau, M.; Weis, J.J. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. USA 2007, 104, 18123–18128. [Google Scholar] [CrossRef]
- Güsewell, S.; Bollens, U. Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply. Basic Appl. Ecol. 2003, 4, 453–466. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.L.; Zhang, J. The effects of four kinds of soil covering treatments on vegetation restoration in slag mountain of dump in alpine coal mine area. J. Prataculture 2020, 29, 40–51. [Google Scholar] [CrossRef]
- Qiao, Q.L.; Wu, Y.R.; Li, Q.Y.; Zhang, Y.C.; Kou, W.L.; He, X.; Li, X.L.; Kou, J.C.; Yang, W.Q. Effects of commercial organic fertilizer and sheep manure on artificial grassland and soil characteristics in alpine mining area. J. Grassl. Sci. 2024, 32, 2659–2669. [Google Scholar]
- Dao, R.; Zhang, Y.; Li, Q.; Ma, L.X.; Tie, X.L. Study on the variation characteristics of soil biochemical properties and fungal diversity in the process of vegetation restoration in alpine coal mine slag mountain. Acta Microbiol. Sin. 2024, 64, 2025–2041. [Google Scholar] [CrossRef]
- Jin, L.; Li, X.; Sun, H.; Wang, J.; Zhang, J.; Zhang, Y. Effects of Restoration Years on Vegetation and Soil Characteristics under Different Artificial Measures in Alpine Mining Areas, West China. Sustainability 2022, 14, 10889. [Google Scholar] [CrossRef]
- Ba, Y.; Li, X.; Ma, Y.; Chai, Y.; Li, C.; Ma, X.; Yang, Y. A Study on the C, N, and P Contents and Stoichiometric Characteristics of Forage Leaves Based on Fertilizer-Reconstructed Soil in an Alpine Mining Area. Plants 2023, 12, 3838. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agricultural Chemistry Analysis, 3rd ed.; China Agricultural Publishing House: Beijing, China, 2000. [Google Scholar]
- Qiao, Q.L.; Yang, W.Q.; Zhao, S.; Fu, W.H.; Chai, G.N.; Yu, Y.H.; Lin, B.J.; Li, X.L.; Kou, J.C. Effect of Grass Substrate on Vegetation Restoration in Muli Mining Area. Pratacultural. Sci. 2022, 39, 1782–1792. [Google Scholar] [CrossRef]
- Guo, D.G.; Zhao, B.Q.; Shangguan, T.L.; Bai, Z.K.; Shao, H.B. Dynamic Parameters of Plant Communities Partially Reflect the Soil Quality Improvement in Eco-reclamation Area of an Opencast Coal Mine. CLEAN-Soil Air Water 2013, 41, 1018–1026. [Google Scholar] [CrossRef]
- Li, J.; Zhao, J.Y.; Chen, W.Q. Reclamation of abandoned land in mining area and reconstruction of ecological environment. Territ. Nat. Resour. Study 2004, 55, 2–9. [Google Scholar] [CrossRef]
- Zhao, D.F.; Guo, J.B.; Jing, F.; Guo, H.Q. Vegetation restoration and reconstruction technology in abandoned land of Gepu Coal Mine in Shanxi Province. Res. Soil Water Conserv. 2009, 16, 4–33. [Google Scholar]
- Liu, Q.Q.; He, M.H.; Li, F.; Wang, X.L.; Xing, Y.F.; Li, S.Y.; Zhang, H.R.; Shi, J.J. Evaluation of the restoration effect of mixed grassland in alpine mining area under different slope directions. Acta Agrestia Sin. 2023, 31, 2834–2842. [Google Scholar] [CrossRef]
- Li, S.D. Evaluation of Production Performance and Adaptability of Poa pratensis and Other Forage Grasses Mixed Sowing Grassland in Qinghai-Tibet Plateau. Master’s Thesis, Qinghai University, Xining, China, 2023. [Google Scholar] [CrossRef]
- Zheng, W.; Zhu, J.Z.; Jianaerguli; Li, H.; Zhang, J.L. Effects of different mixed sowing methods on the production performance of legume-grass mixed grassland. Chin. J. Grassl. 2011, 33, 8. [Google Scholar]
- Shi, J.J.; Ma, Y.S.; Dong, Q.M.; Shao, X.Q.; Wu, G.L.; Wang, Y.L.; Liu, Y.; Zhang, C.P.; Wang, X.L. Effects of artificial regulation on the production performance of perennial ecological grass mixed grassland in Sanjiangyuan region. Acta Agrestia Sin. 2018, 26, 907–916. [Google Scholar]
- Bao, S.G.; Song, M.L.; Wang, Y.Q.; Li, C.J. Effects of Pedicularis kansuensis parasitism on symbiotic relationship of grass endophytic fungi symbionts. Acta Prataculturae Sin. 2020, 29, 42–51.40. [Google Scholar]
- Zhang, Q.Q.; Jing, Y.P.; Yang, X.; Jiang, L.G.; Li, F.X. Soil physicochemical properties of legume-grass mixed grassland in mountainous area of Shandong section of Tarbagatai. Pratacultural. Sci. 2014, 8, 5–12. [Google Scholar] [CrossRef]
- AdI, H.Z.; Chang, T.; Su, H.H.; Wei, J.J.; Qin, R.M.; Hu, X.; Ma, L.; Zhang, Z.H.; Shi, Z.C.; Li, S.; et al. Effects of monoculture and mixed grass on soil physicochemical properties and microbial biomass. Acta Agrestia Sin. 2024, 31, 1–13. [Google Scholar]
- Wang, B.; Lin, X.K.; Feng, Z.R.; Yan, J.H.; Li, Z.G. Effects of reseeding native grasses on soil water holding capacity and vegetation biomass in desert grassland. Pratacultural. Sci. 2023, 40, 2247–2256. [Google Scholar] [CrossRef]
- Chen, Y.F.; Yun, L.; Ai, Q.; Li, N.; Yao, N.; Ren, X.M.; Shi, F.X. Study on the improvement effect of alfalfa and grass mixed sowing on saline-alkali soil in Hailiutu. Acta Agrestia Sin. 2023, 31, 3203–3211. [Google Scholar] [CrossRef]
- Wang, T.T. Study on Plant Screening and Soil Adaptability of Vegetation Restoration in Open-pit Coal Mine Dump. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2023. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Li, X.L.; Jin, L.Q.; Gao, Z.X.; Ma, X.W.; Zhang, Y.L.; Ma, R.M.; Kou, J.C. Analysis of physical and chemical properties of reconstructed soil without foreign soil based on combined application of granular organic fertilizer and sheep manure in alpine mining area. Soil Fertil. Sci. China 2023, 7, 129–137. [Google Scholar] [CrossRef]
- Robinson, R.; Beck, L.; Kettenring, M.K. The effects of native seed mix composition and sowing density on plant community reassembly in wetlands. Ecosphere 2024, 15, 5–12. [Google Scholar] [CrossRef]
- Zhao, W.; Yin, Y.; Song, J.; Li, S. Mixed sowing improves plant and soil bacterial community restoration in the degraded alpine meadow. Plant Soil 2024, 499, 379–392. [Google Scholar] [CrossRef]
- Fei, D.; Xie, M.; Xu, J.; Zhou, Y.M.; Guang, Y.L.; Tang, Y.P.; Tu, T.H.; Xiong, X.H. Comprehensive evaluation of the quality of different varieties of asparagus based on principal component analysis and membership function method. Acta Agric. Jiangxi 2024, 36, 33–39. [Google Scholar] [CrossRef]
Treatment | Name of Grass Species | Seeds per (m−2) |
---|---|---|
HA1 | Poa pratensis cv. Qinghai + Poa crymophila cv. Qinghai | 17,647 + 7500 |
HA2 | Poa pratensis cv. Qinghai + Poa crymophila cv. Qinghai | 14,750 + 10,000 |
HA3 | Poa pratensis cv. Qinghai + Poa crymophila cv. Qinghai | 11,250 + 15,220 |
HB1 | Poa pratensis cv. Qinghai + Puccinellia tenuiflora cv. Tongde | 17,647 + 14,285 |
HB2 | Poa pratensis cv. Qinghai + Puccinellia tenuiflora cv. Tongde | 14,706 + 19,048 |
HB3 | Poa pratensis cv. Qinghai + Puccinellia tenuiflora cv. Tongde | 11,250 + 21,429 |
HC1 | Poa pratensis cv. Qinghai + Pedicularis kansuensis | 17,647 + 4286 |
HC2 | Poa pratensis cv. Qinghai + Pedicularis kansuensis | 14,705 + 5714 |
HC3 | Poa pratensis cv. Qinghai + Pedicularis kansuensis | 11,250 + 6429 |
HD | Poa pratensis cv. Qinghai + Poa crymophila cv. Qinghai + Puccinellia tenuiflora cv. Tongde | 11,765 + 7500 + 9524 |
HE | Poa pratensis cv. Qinghai + Poa crymophila cv. + Pedicularis kansuensis | 11,765 + 7500 + 2857 |
HF | Poa pratensis cv. Qinghai + Poa crymophila cv. Qinghai + Puccinellia tenuiflora cv. Tongde + Pedicularis kansuensis | 5882 + 5000 + 9524 + 4286 |
Treatment | Crude Protein (g·kg−1) | Crude Fat (%) | Soluble Sugar (mg·g−1) | Soluble Protein (mg·g−1) | Neutral Fiber (%) | Acidic Fiber (%) |
---|---|---|---|---|---|---|
HA1 | 117.52 ± 10.02 c | 22.67 ± 2.13 b | 43.64 ± 2.35 b | 49.26 ± 2.43 b | 55.73 ± 2.47 b | 35.16 ± 2.37 a |
HA2 | 129.14 ± 12.43 b | 23.23 ± 1.54 b | 42.38 ± 3.03 b | 49.80 ± 3.31 b | 55.94 ± 4.72 b | 35.42 ± 2.32 a |
HA3 | 130.09 ± 9.32 b | 20.72 ± 1.54 c | 43.23 ± 3.45 b | 45.97 ± 2.64 c | 54.02 ± 2.35 bc | 33.78 ± 2.47 ab |
HB1 | 120.84 ± 10.02 c | 24.42 ± 2.32 ab | 35.53 ± 2.43 c | 48.56 ± 2.53 b | 56.98 ± 3.84 b | 35.87 ± 1.58 a |
HB2 | 134.27 ± 10.32 ab | 22.86 ± 1.68 b | 39.76 ± 2.37 c | 50.75 ± 3.38 ab | 54.88 ± 3.26 bc | 34.38 ± 1.32 ab |
HB3 | 108.02 ± 8.48 c | 24.02 ± 1.68 ab | 39.94 ± 1.34 c | 55.38 ± 4.32 a | 56.81 ± 2.65 b | 35.47 ± 2.37 a |
HC1 | 110.87 ± 10.32 c | 19.67 ± 12.05 c | 53.96 ± 2.04 ab | 49.09 ± 3.36 b | 58.66 ± 3.25 ab | 33.09 ± 1.66 ab |
HC2 | 109.56 ± 8.63 c | 20.59 ± 1.68 c | 63.65 ± 3.24 a | 48.53 ± 4.52 b | 63.12 ± 4.15 a | 32.92 ± 2.36 b |
HC3 | 109.95 ± 9.56 c | 22.55 ± 2.47 b | 49.14 ± 2.23 b | 46.69 ± 2.43 c | 60.25 ± 4.25 a | 33.16 ± 1.37 ab |
HD | 143.52 ± 11.02 a | 27.39 ± 1.64 a | 55.49 ± 3.42 ab | 60.62 ± 3.54 a | 52.27 ± 3.23 c | 30.81 ± 1.82 c |
HE | 146.03 ± 10.52 a | 28.14 ± 2.13 a | 58.78 ± 2.43 a | 55.21 ± 3.26 a | 63.61 ± 4.24 a | 36.41 ± 2.35 a |
HF | 136.23 ± 11.24 ab | 25.66 ± 2.14 ab | 57.72 ± 3.47 a | 53.42 ± 3.48 ab | 64.54 ± 3.53 a | 34.12 ± 1.84 a |
Treatment | Organic Matter | Total Nitrogen | Total Phosphorus | Total Potassium | Available Phosphorus | Rapidly Available Potassium | Ammoniacal Nitrogen | Nitrate Nitrogen |
---|---|---|---|---|---|---|---|---|
(g·kg−1) | (g·kg−1) | (g·kg−1) | (g·kg−1) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | |
HA1 | 261.68 ± 14.25 b | 7.52 ± 0.46 b | 2.28 ± 0.15 b | 16.51 ± 1.25 ab | 67.03 ± 4.25 ab | 743.07 ± 12.34 ab | 3.41 ± 0.21 ab | 3.85 ± 0.21 a |
HA2 | 268.53 ± 16.35 b | 8.28 ± 0.42 a | 2.48 ± 0.07 ab | 16.84 ± 1.24 a | 57.12 ± 2.39 b | 855.36 ± 12.04 a | 3.07 ± 0.18 ab | 3.95 ± 0.25 a |
HA3 | 254.68 ± 14.36 bc | 7.96 ± 0.54 b | 2.35 ± 0.05 b | 16.66 ± 1.18 a | 68.25 ± 4.22 ab | 820.32 ± 24.21 a | 2.92 ± 0.02 b | 3.99 ± 0.19 a |
HB1 | 261.57 ± 16.33 b | 7.72 ± 0.52 b | 2.32 ± 0.13 b | 15.59 ± 1.42 c | 57.15 ± 2.32 b | 565.45 ± 16.43 b | 3.79 ± 0.08 a | 3.51 ± 0.11 b |
HB2 | 288.55 ± 16.75 ab | 8.09 ± 0.52 ab | 2.33 ± 0.15 b | 16.89 ± 1.20 a | 66.85 ± 2.34 ab | 540.55 ± 11.32 b | 2.88 ± 0.14 b | 3.95 ± 0.15 a |
HB3 | 290.66 ± 15.22 a | 8.24 ± 0.41 a | 2.52 ± 0.18 a | 15.63 ± 1.16 c | 64.25 ± 4.32 b | 715.36 ± 22.31 ab | 3.83 ± 0.22 a | 3.73 ± 0.07 ab |
HC1 | 244.82 ± 17.36 c | 7.38 ± 0.38 bc | 2.47 ± 0.20 ab | 15.91 ± 1.22 c | 57.75 ± 5.32 b | 585.21 ± 17.36 b | 2.99 ± 0.15 b | 3.63 ± 0.20 ab |
HC2 | 224.86 ± 11.36 c | 5.95 ± 0.38 c | 2.12 ± 0.11 b | 16.87 ± 1.24 a | 67.75 ± 5.21 ab | 590.37 ± 16.33 b | 2.98 ± 0.15 b | 3.47 ± 0.15 b |
HC3 | 234.48 ± 15.27 c | 7.31 ± 0.54 bc | 2.31 ± 0.15 b | 16.01 ± 1.16 c | 68.25 ± 3.21 ab | 680.29 ± 15.43 a | 2.85 ± 0.05 b | 3.25 ± 0.26 b |
HD | 290.25 ± 14.65 a | 8.15 ± 0.46 a | 2.50 ± 0.13 a | 16.63 ± 1.07 a | 58.15 ± 2.56 b | 715.45 ± 16.43 ab | 3.84 ± 0.19 a | 3.86 ± 0.17 a |
HE | 273.36 ± 11.43 ab | 7.93 ± 0.37 b | 2.46 ± 0.20 ab | 16.11 ± 0.47 c | 62.24 ± 3.28 ab | 775.32 ± 20.31 ab | 3.48 ± 0.22 a | 3.91 ± 0.22 a |
HF | 281.57 ± 24.36 ab | 8.11 ± 0.64 a | 2.48 ± 0.17 ab | 16.47 ± 0.86 ab | 73.25 ± 4.23 a | 735.22 ± 16.32 ab | 3.65 ± 0.18 a | 4.25 ± 0.16 a |
CK | 205.45 ± 12.14 d | 5.83 ± 0.03 d | 1.62 ± 0.12 c | 14.80 ± 1.51 d | 47.20 ± 2.34 c | 383.68 ± 11.25 e | 2.63 ± 0.01 c | 3.06 ± 0.02 b |
Treatment | Organic Matter | Total Nitrogen | Total Phosphorus | Total Potassium | Available Phosphorus | Rapidly Available Potassium | Ammoniacal Nitrogen | Nitrate Nitrogen |
---|---|---|---|---|---|---|---|---|
(g·kg−1) | (g·kg−1) | (g·kg−1) | (g·kg−1) | (g·kg−1) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | |
HA1 | 212.84 ± 10.02 c | 3.95 ± 0.17 c | 2.41 ± 0.13 a | 17.13 ± 1.02 b | 44.25 ± 6.14 c | 362.84 ± 11.31 b | 3.05 ± 0.25 a | 3.01 ± 0.22 bc |
HA2 | 230.15 ± 8.03 b | 4.22 ± 0.26 c | 2.49 ± 0.11 a | 17.60 ± 1.32 b | 42.25 ± 3.25 c | 396.36 ± 10.34 b | 3.15 ± 0.14 a | 3.02 ± 0.14 bc |
HA3 | 224.68 ± 14.36 bc | 5.96 ± 0.25 a | 2.05 ± 0.05 b | 16.56 ± 1.28 bc | 48.25 ± 4.26 bc | 352.32 ± 24.21 b | 2.92 ± 0.02 b | 3.59 ± 0.19 a |
HB1 | 211.01 ± 7.24 c | 5.09 ± 0.35 bc | 1.83 ± 0.03 bc | 17.09 ± 1.36 b | 45.00 ± 3.55 c | 361.46 ± 10.32 b | 2.11 ± 0.01 c | 3.09 ± 0.01 bc |
HB2 | 207.12 ± 8.03 c | 3.40 ± 0.14 c | 1.61 ± 0.07 c | 16.53 ± 1.34 bc | 41.75 ± 2.16 c | 390.08 ± 11.04 b | 2.87 ± 0.12 b | 3.40 ± 0.11 b |
HB3 | 260.66 ± 5.12 a | 5.24 ± 0.41 b | 2.52 ± 0.18 a | 15.63 ± 1.16 c | 54.25 ± 2.02 a | 415.36 ± 22.31 ab | 3.03 ± 0.22 a | 3.24 ± 0.17 bc |
HC1 | 207.73 ± 8.10 c | 4.31 ± 0.15 c | 1.62 ± 0.12 c | 16.23 ± 1.26 bc | 46.50 ± 3.03 c | 355.43 ± 16.32 b | 2.07 ± 0.73 c | 3.31 ± 0.22 bc |
HC2 | 228.60 ± 6.16 bc | 5.57 ± 0.26 b | 1.95 ± 0.04 bc | 17.93 ± 1.32 ab | 42.25 ± 5.03 c | 415.06 ± 13.44 ab | 2.28 ± 0.11 c | 3.57 ± 0.21 a |
HC3 | 226.56 ± 10.44 bc | 5.15 ± 0.26 b | 1.58 ± 0.05 c | 15.97 ± 1.34 bc | 45.50 ± 3.16 c | 427.54 ± 17.52 a | 2.26 ± 0.16 c | 3.05 ± 0.24 bc |
HD | 238.68 ± 6.27 b | 4.96 ± 0.14 bc | 1.68 ± 0.07 c | 18.08 ± 1.05 a | 52.50 ± 0.26 b | 409.16 ± 15.33 ab | 2.70 ± 0.11 bc | 3.71 ± 0.23 a |
HE | 201.95 ± 12.16 c | 3.89 ± 0.11 c | 1.57 ± 0.03 c | 18.97 ± 1.20 a | 44.75 ± 3.16 c | 369.36 ± 18.44 b | 2.39 ± 0.12 c | 3.12 ± 0.20 bc |
HF | 224.86 ± 10.32 bc | 5.97 ± 0.32 a | 2.33 ± 0.13 ab | 13.91 ± 0.64 c | 56.25 ± 2.16 a | 415.57 ± 10.04 ab | 3.04 ± 0.15 a | 3.27 ± 0.12 bc |
CK | 203.28 ± 11.48 c | 4.30 ± 0.09 c | 1.67 ± 0.02 c | 14.77 ± 0.80 c | 46.60 ± 2.65 c | 370.60 ± 10.28 b | 2.02 ± 0.01 c | 2.79 ± 0.16 c |
Principal Component | Eigenvalues | Contribution Rate (%) | Cumulative Contribution Rate (%) |
---|---|---|---|
Principal component1 | 9.066 | 39.416 | 39.416 |
Principal component2 | 3.532 | 15.357 | 54.773 |
Principal component3 | 3.047 | 13.248 | 68.02 |
Principal component4 | 1.989 | 8.646 | 76.667 |
Principal component5 | 1.657 | 7.205 | 83.872 |
Observable Indicator | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Coverage | 0.915 | 0.146 | 0.086 | 0.245 | 0.076 |
Aboveground biomass | 0.935 | −0.137 | −0.016 | −0.127 | 0.119 |
Belowground biomass | 0.947 | 0.179 | 0.02 | 0.044 | −0.109 |
Plant carbon content | 0.792 | 0.416 | 0.131 | −0.157 | −0.033 |
Plant nitrogen content | 0.865 | 0.393 | 0.216 | −0.012 | −0.064 |
Plant phosphorus contents | 0.343 | 0.636 | 0.246 | −0.528 | 0.361 |
Plant crude protein | 0.555 | −0.181 | 0.177 | 0.331 | −0.349 |
Plant crude fat | 0.54 | −0.441 | 0.228 | 0.112 | 0.514 |
Plant soluble sugar | −0.091 | 0.868 | 0.192 | 0.094 | −0.346 |
Plant soluble protein | 0.35 | 0.164 | −0.432 | −0.144 | −0.322 |
Plant neutral fiber | −0.162 | −0.603 | 0.415 | −0.044 | 0.111 |
Acidic plant fiber | 0.156 | −0.605 | 0.533 | −0.011 | 0.363 |
Soil water content | 0.582 | −0.123 | 0.607 | −0.262 | 0.101 |
Soil pH | −0.811 | −0.371 | −0.373 | 0.102 | 0.078 |
Soil organic matter | 0.808 | −0.337 | 0.767 | −0.08 | 0.062 |
Soil total nitrogen | 0.799 | −0.373 | −0.125 | 0.094 | 0.303 |
Soil total phosphorus | 0.794 | −0.058 | −0.293 | −0.264 | 0.219 |
Soil total potassium | 0.008 | 0.405 | −0.433 | 0.64 | 0.011 |
Soil available phosphorus | −0.085 | 0.47 | 0.078 | 0.273 | 0.288 |
Soil available potassium | 0.356 | −0.028 | 0.075 | 0.64 | 0.22 |
Soil ammonia nitrogen | 0.706 | −0.212 | 0.32 | −0.213 | 0.441 |
Soil nitrate nitrogen | 0.675 | 0.117 | −0.17 | 0.559 | 0.21 |
Treatment | U (x1) | U (x2) | U (x3) | U (x4) | U (x5) | D | Scheduling |
---|---|---|---|---|---|---|---|
HA1 | 0.371 | 0.245 | 0.612 | 1 | 0.453 | 0.458 | 7 |
HA2 | 0.669 | 0.392 | 0.404 | 0.869 | 0.931 | 0.62 | 5 |
HA3 | 0.317 | 0.425 | 0 | 0.989 | 0.864 | 0.403 | 8 |
HB1 | 0.455 | 0 | 0.715 | 0.289 | 0.346 | 0.386 | 9 |
HB2 | 0.624 | 0.533 | 0.077 | 0.416 | 1 | 0.532 | 6 |
HB3 | 0.877 | 0.453 | 0.476 | 0 | 0.99 | 0.655 | 3 |
HC1 | 0.129 | 0.563 | 0.225 | 0.241 | 0.618 | 0.277 | 12 |
HC2 | 0 | 1 | 0.523 | 0.514 | 0.449 | 0.357 | 10 |
HC3 | 0.123 | 0.581 | 0.573 | 0.324 | 0.747 | 0.352 | 11 |
HD | 1 | 0.626 | 0.029 | 0.476 | 0 | 0.638 | 4 |
HE | 0.71 | 0.673 | 1 | 0.673 | 0.764 | 0.75 | 2 |
HF | 0.965 | 0.876 | 0.635 | 0.741 | 0.664 | 0.848 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Lv, L.; He, M.; Cai, Z.; Shi, J. Screening of Suitable Mixed Grass Species and Seeding Rates of Four Native Grass Seeds in an Alpine Mining Area. Sustainability 2024, 16, 9587. https://doi.org/10.3390/su16219587
Liu Q, Lv L, He M, Cai Z, Shi J. Screening of Suitable Mixed Grass Species and Seeding Rates of Four Native Grass Seeds in an Alpine Mining Area. Sustainability. 2024; 16(21):9587. https://doi.org/10.3390/su16219587
Chicago/Turabian StyleLiu, Qingqing, Liangyu Lv, Miaohua He, Zongcheng Cai, and Jianjun Shi. 2024. "Screening of Suitable Mixed Grass Species and Seeding Rates of Four Native Grass Seeds in an Alpine Mining Area" Sustainability 16, no. 21: 9587. https://doi.org/10.3390/su16219587
APA StyleLiu, Q., Lv, L., He, M., Cai, Z., & Shi, J. (2024). Screening of Suitable Mixed Grass Species and Seeding Rates of Four Native Grass Seeds in an Alpine Mining Area. Sustainability, 16(21), 9587. https://doi.org/10.3390/su16219587