Spatiotemporal Variations and Driving Factors of Ecological Sensitivity in the West Qinling Mountains, China, Under the Optimal Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Construction of the Indicator System
2.4. Methodology
2.4.1. Indicator Standardization Method
2.4.2. Entropy Weight Method
2.4.3. Calculation of Comprehensive Ecological Sensitivity
2.4.4. Spatial Data Exploration of Ecological Sensitivity
2.4.5. Optimal Parameter Geographical Detector Model
2.4.6. Frequency Change
2.4.7. Geocoding Method
3. Results and Analysis
3.1. Spatiotemporal Variation Patterns of Comprehensive Ecological Sensitivity
3.2. Scale Response Characteristics of Comprehensive Ecological Sensitivity
3.2.1. Variation Characteristics of Ecological Sensitivity Based on Different Scales
3.2.2. Response Mechanism of Ecological Sensitivity at Different Scales
3.3. Analysis of Ecological Sensitivity Impact Factors Based on the Optimal Parameter Geographical Detector
3.3.1. Identification of the Optimal Spatial Scale
3.3.2. Analysis of Driving Factors
3.4. Characteristics of Ecological Sensitivity Change Intensity at the Optimal Scale
3.5. Analysis of Ecological Sensitivity Change Patterns at the Optimal Scale
4. Discussions
4.1. Collinearity Diagnosis of Indicators
4.2. Causes of Ecological Sensitivity Changes
4.3. Scale Differences in Ecological Sensitivity Variation and Driving Factors
4.4. Limitations and Future Prospects
5. Conclusions
- (1)
- From a spatial scale perspective, the dependence of ecological sensitivity on scale variation diminished at spatial scales ranging from 4.5 km to 6 km. Over the 20-year period, the coefficient of variation reached its minimum at 5.5 km, while the 90th percentile of the q-values of the influencing factors was the largest at this scale. Considering the descriptive statistics and data volume requirements of each scale, the 5.5 km spatial scale reaches a balance between precision, spatial heterogeneity, and data suitability, making it the optimal scale for analyzing the spatiotemporal variation patterns of ecological sensitivity in the West Qinling region.
- (2)
- From a temporal perspective, the mean ecological sensitivity in the West Qinling region showed a decreasing trend, from 0.163 in 2000 to 0.160 in 2020, indicating an improvement in ecological conditions. Spatially, ecological sensitivity exhibited significant spatial differentiation, characterized by a pattern of “low in the west and high in the east, low in the south and high in the north”. High and extremely high sensitivity were mainly concentrated in the northeastern part of the West Qinling region, while insensitivity and low sensitivity were mainly concentrated in the western and southwestern parts. Overall, the ecological sensitivity of the West Qinling exhibits a relatively stable state in space and time, with no significant high-frequency changes.
- (3)
- According to the results of the geographical detector, the q-value for population density is 0.659, making it the primary driving factor of spatial differentiation in ecological sensitivity in the West Qinling region. The q-value for GDP is 0.601, highlighting it as a secondary driving factor. Overall, socioeconomic factors exert a greater influence on ecological sensitivity than natural environmental factors.
- (4)
- From the pattern of change, the area of fluctuating increase zones is smaller than that of fluctuating decrease zones, the ecological sensitivity of the West Qinling region shows a downward trend. However, the fluctuating increase zones account for 8.54% of the total study area. This indicates that the ecological management and prevention of the West Qinling region is still challenging under the background of drastic changes in the global ecological environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, J.; Wei, X.J.; Jiang, P.; Liang, Y.Q. Ecosystem service trade-off synergy strength and spatial pattern optimization based on bayesian network: A case study of the Fenhe River Basin. Environ. Sci. 2024, 45, 2780–2792. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, R.; Xue, C.B.; Xia, Z.H. Ecological sensitivity evaluation and explanatory power analysis of the Giant Panda National Park in China. Ecol. Indic. 2023, 146, 109792. [Google Scholar] [CrossRef]
- Shi, Y.S.; Li, J.Q.; Xie, M.Q. Evaluation of the ecological sensitivity and security of tidal flats in Shanghai. Ecol. Indic. 2018, 85, 729–741. [Google Scholar] [CrossRef]
- Ayer, B.E.J.; Lämmle, L.; Mincato, L.R.; Donadio, C.; Avramidis, P.; Pereira, Y.S. Three-dimensional model and environmental fragility in the Guarani Aquifer system, SE-Brazil. Groundw. Sustain. Dev. 2024, 26, 101285. [Google Scholar] [CrossRef]
- Yu, J.; Li, F.T.; Wang, Y.; Lin, Y.; Peng, Z.W.; Cheng, K. Spatiotemporal evolution of tropical forest degradation and its impact on ecological sensitivity: A case study in Jinghong, Xishuangbanna, China. Sci. Total Environ. 2020, 727, 138678. [Google Scholar] [CrossRef]
- Liu, H.L.; Wang, W.Q.; Wang, Y.F.; Ding, Y.N.; Tian, Q.C. Comprehensive evaluation of ecological sensitivity and the characteristics of spatiotemporal variations in Fenhe River Basin. Acta Ecol. Sin. 2021, 41, 3952–3964. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Zhang, Y.L.; Li, T.; LÜ, Y.H.; Wang, C.; Wu, X. Comprehensive evaluation and spatio-temporal variations of ecological sensitivity on the Qinghai-Tibet Plateau based on spatial distance index. Acta Ecol. Sin. 2022, 42, 7403–7416. [Google Scholar] [CrossRef]
- Fang, C.; Kuang, H.; Jia, Q.; Chen, X.; Zhu, Z.Y.; Ye, Q. Evaluation of ecological security pattern in Wuhan City based on the importance of ecosystem services and ecological sensitivity. J. Environ. Eng. Technol. 2022, 12, 1446–1454. [Google Scholar] [CrossRef]
- Kang, Z.W.; Zhang, Z.Y.; Wei, H.; Liu, L.; Ning, S.; Zhao, G.N.; Wang, T.X.; Tian, H. Landscape ecological risk assessment in Manas River Basin based on land use change. Acta Ecol. Sin. 2020, 40, 6472–6485. [Google Scholar]
- Yang, G.; Zhang, Z.J.; Cao, Y.G.; Zhuang, Y.N.; Yang, K.; Bai, Z.K. Spatial-temporal heterogeneity of landscape ecological risk of large-scale open-pit mining area in north Shanxi. Chin. J. Ecol. 2021, 40, 187–198. [Google Scholar] [CrossRef]
- Zuo, Q.; Zhou, Y.; Li, Q.; Wang, L.; Liu, J.Y.; He, N. Spatial and temporal variations of landscape ecological risk in the mountainous region of southwestern Hubei Province based on the optimal scale. Chin. J. Ecol. 2023, 42, 1186–1196. [Google Scholar] [CrossRef]
- Wen, Y.J.; Shi, C.; Wang, S.W.; Zhang, J.L.; Ma, X.F. Landscape pattern evolution and its driving forces in the Shiyang River Basin. Pratacultural Sci. 2023, 40, 303–317. [Google Scholar] [CrossRef]
- Zhou, H.J.; Liu, X.Y.; Hu, J.D.; Yu, S.F. Analysis on dynamic changes of landscape structure in Guangxi Gulf of Tonkin Economic Zone based on optimum granularity. J. Ecol. Rural Environ. 2022, 38, 545–555. [Google Scholar] [CrossRef]
- Yuan, B.Y.; Gao, J.H.; Chi, Y.; Zha, B.; Gong, Z.H. Cross-scale spatiotemporal characteristics of landscape ecological conditions index in coastal zone of Jiangsu Province, China during 1990-2020. Chin. J. Appl. Ecol. 2022, 33, 489–499. [Google Scholar] [CrossRef]
- Chen, T.T.; Wen, W.Q.; Wang, Q. Factors driving differentiation in ecosystem service supply-demand in karst regions at optimal scale. Chin. J. Ecol. 2024, 1–17. [Google Scholar]
- Zhang, Y.W.; Zhang, S.Y.; Zhu, H.K.; Zhao, C.Y.; Wang, Y.W.; Wang, Y.; Liu, M. Construction and optimization of the ecological security pattern in metropolitan areas based on the supply and demand of ecosystem services at multiple scale. Acta Ecol. Sin. 2024, 44, 1–14. [Google Scholar] [CrossRef]
- Zhang, B.P. Ten major scienifc issues concerming the study of China’s north- south transitional zone. Prog. Geogr. 2019, 38, 305–311. [Google Scholar] [CrossRef]
- Du, H.M. Study on landscape ecological risk assessment and landscape pattern optimization of West Qinling area. Resour. Environ. Eng. 2021, 35, 347–354. [Google Scholar] [CrossRef]
- Li, F.; Zhou, W.Z.; Shao, Z.L.; Zhou, X.Y.; Fu, X.L. Landscape pattern changes and ecosystem health assessment in the Western Qinling Mountains from 2000 to 2018. Acta Ecol. Sin. 2023, 43, 1338–1352. [Google Scholar] [CrossRef]
- Song, P.L.; Xie, J.B.; Yang, T.F.; Mou, N.X.; Chen, M. Exploring the spatio-temporal variation of the regional environment and driving factors based on ecological sensitivity: Taking Ding’an county as an example. Bull. Surv. Mapp. 2023, 18–24. [Google Scholar] [CrossRef]
- Yang, Y.X.; Zhang, Y.F. Temporal-spatial evolutionary characteristics of ecological sensitivity in Yanhe River basin based on spatial distance index. Remote Sens. Nat. Resour. 2021, 33, 229–237. [Google Scholar] [CrossRef]
- An, M.; Wei, Y.Q.; He, W.J.; Huang, J.; Fang, X.; Song, M.F.; Wang, B. Impact of climate change and human activities on the ecological sensitivity of the Yangtze River Economic Belt. Environ. Sci. 2024, 45, 5833–5843. [Google Scholar] [CrossRef]
- Kong, X.L.; Han, M.; Li, Y.L.; Kong, F.B.; Sun, J.X.; Zhu, W.J.; Wei, F. Spatial differentiation and formation mechanism of ecological sensitivity in large river basins: A case study of the Yellow River Basin, China. Ecol. Indic. 2024, 158, 111571. [Google Scholar] [CrossRef]
- Jazouli, E.A.; Barakat, A.; Ghafiri, A.; Moutaki, E.S.; Ettaqy, A.; Khellouk, R. Soil erosion modeled with USLE, GIS, and remote sensing: A case study of Ikkour watershed in Middle Atlas (Morocco). Geosci. Lett. 2017, 4, 25. [Google Scholar] [CrossRef]
- Liu, J.H.; Gao, J.X.; Ma, S.; Wang, W.J.; Zou, C.X. Evaluation of ecological sensitivity in China. J. Nat. Resour. 2015, 30, 1607–1616. [Google Scholar] [CrossRef]
- Xu, X.L.; Wang, S.Y.; Yan, G.G.; He, X.Y. Ecological security assessment based on the “importance–sensitivity–connectivity” index and pattern construction: A case study of Xiliu Ditch in the Yellow River Basin. Land 2023, 12, 1296. [Google Scholar] [CrossRef]
- Wu, C.C. Study on Evaluation Method of Ecological Sensitivity in Lanzhou Section of Yellow River Basin. Master’ s Thesis, Lanzhou Jiaotong University, Lanzhou, China, 2022. [Google Scholar]
- Deng, T.; Luo, Z.J.; Zeng, J.L. Study on the spatial optimization of ‘production-living-ecology’ in Mine-Grain complex area of Dexing City based on suitability and spatial function value. Res. Soil Water Conserv. 2024, 31, 395–407. [Google Scholar] [CrossRef]
- Chen, J.R.; Li, J.M.; Feng, M.R.; Zhang, W.Z. Spatio-temporal coupling between regional development intensity and ecological security on the Qinghai-Tibet Plateau, China. Acta Ecol. Sin. 2023, 43, 4039–4053. [Google Scholar] [CrossRef]
- Yang, L.J.; Qin, L.S.; Yang, Y.C.; Pan, J.H. Interaction between high-quality of urban development and ecological environment in urban agglomeration areas: Taking the Chengdu-Chongqing urban agglomeration as an example. Acta Ecol. Sin. 2023, 43, 7035–7046. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wei, W.; Zhou, L.; Liu, C.F.; Guo, Z.C.; Pang, S.F.; Zhang, J. Spatio-temporal evolution characteristics of terrestrial ecological sensitivity in China. Acta Geogr. Sin. 2022, 77, 150–163. [Google Scholar] [CrossRef]
- Yuan, Z.Z.; Wang, Q.H.; Wang, Y.; Li, W.J.; Gao, J.; Cheng, X.; Zhu, D.Y. Impacts of land use change on ecosystem health in Chongqing under multi-scenario simulation. Acta Ecol. Sin. 2023, 43, 8279–8291. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wei, W.; Zhou, L.; Guo, Z.C.; Li, Z.Y.; Zhang, J.; Xie, B.B. Analysis on spatio-temporal evolution of ecological vulnerability in arid areas of Northwest China. Acta Ecol. Sin. 2021, 41, 4707–4719. [Google Scholar] [CrossRef]
- Luo, M.Y.; Jia, X.; Zhao, Y.H.; Zhang, P.; Zhao, M. Ecological vulnerability assessment and its driving force based on ecological zoning in the Loess Plateau, China. Ecol. Indic. 2024, 159, 111658. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Bao, Y.; Wang, Z.T.; Chen, X.T. Potential recreation service efficiency of urban remnant mountain wilderness: A case study of Yunyan District of Guiyang city, China. Ecol. Indic. 2022, 141, 109081. [Google Scholar] [CrossRef]
- Zhan, M.S.; Zhu, J.H. Spatial planning of Qingyun Mountain scenic spot in Benxi, Northeast China based on ecological sensitivity assessment. Chin. J. Appl. Ecol. 2019, 30, 2352–2360. [Google Scholar] [CrossRef]
- Xie, T.; Wang, M.; Chao, S.; Chen, W.P. Corrigendum to “Evaluation of the natural attenuation capacity of urban residential soils with ecosystem-service performance index (EPX) and entropy-weight methods”. Environ. Pollut. 2018, 238, 222–229. [Google Scholar] [CrossRef]
- Pica, A.; Lämmle, L.; Burnelli, M.; Monte, D.M.; Donadio, C.; Faccini, F.; Lazzari, M.; Mandarino, A.; Melelli, L.; Filho, P.A.; et al. Urban Geomorphology Methods and Applications as a Guideline for Understanding the City Environment. Land 2024, 13, 907. [Google Scholar] [CrossRef]
- Jin, Y.R.; Tan, T.H.; Tang, Q.; Hua, L.; Guo, Z.L. Land use change characteristics and ecological sensitivity evaluation in the Black Soil Belt in Northeast China. J. Soil Water Conserv. 2023, 37, 341–349. [Google Scholar] [CrossRef]
- He, S.T.; Yang, H.F.; Chen, X.Q.; Wang, D.J.; Lin, Y.M.; Pei, Z.L.; Li, Y.; Akbar, J.A. Ecosystem sensitivity and landscape vulnerability of debris flow waste-shoal land under development and utilization changes. Ecol. Indic. 2024, 158, 111335. [Google Scholar] [CrossRef]
- Zhao, T.X.; Zhu, L.Q.; Wang, L.Y.; Sun, Z.X.; Zhang, Z.; Dong, Q.D.; Zhu, W.B. Coupling mechanisms of eco-environmental quality and human activities in China and their influencing factors. Environ. Sci. 2024, 45, 3341–3351. [Google Scholar] [CrossRef]
- Zhu, D.D.; An, R.; Liu, Y.F.; Tong, Z.M.; Dou, C.; YAN, Y. Analysis of Spatial-temporal Difference in Synergistic Trade-offs of Ecosystem Services in Hubei Province. Resour. Environ. Yangtze Basin. 2024, 33, 799–809. [Google Scholar]
- Shi, J.; Shi, P.J.; Li, X.H.; Wang, Z.Y.; Xu, A.K. Spatial and temporal variability of ecosystem services in the Shiyang River Basin and its multi-scale influencing factors. Prog. Geogr. 2024, 43, 276–289. [Google Scholar] [CrossRef]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Wei, W.; Yu, X.; Zhang, M.Z.; Zhang, J.; Yuan, T.; Liu, C.F. Dynamics of desertification in the lower reaches of Shiyang River Basin, Northwest China during 1995-2018. Chin. J. Appl. Ecol. 2021, 32, 2098–2106. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wei, W.; Zhou, L.; Guo, Z.C.; Xie, B.B.; Zhou, J.J. Temporal and spatial evolution of ecological sensitivity in arid inland river basins of northwest China based on spatial distance index: A case study of Shiyang River Basin. Acta Ecol. Sin. 2019, 39, 7463–7475. [Google Scholar] [CrossRef]
- Guo, Z.C.; Wei, W.; Zhang, X.Y.; Li, Z.Y.; Zhou, J.J.; Xie, B.B. Spatial distribution characteristics and influencing factors of eco-environmental quality based on RS and GIS in Shiyang River Basin, China. Chin. J. Appl. Ecol. 2019, 30, 3075–3086. [Google Scholar] [CrossRef]
- Song, Y.; Shi, H.; Xie, M.; Zhao, P. Spatiotemporal evolution pattern and influencing factors of eco-environmental quality in Gansu from 2000 to 2017. Chin. J. Ecol. 2019, 38, 3800–3808. [Google Scholar] [CrossRef]
- Hong, B.T.; Ren, P.; Yuan, Q.Z.; Wang, L. Ecological Function Regionalization in the Upper Yangtze River. J. Ecol. Rural Environ. 2019, 35, 1009–1019. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, L.X. Ecological Vulnerability Assessment and Driving Factors Analysis in the Middle Yellow River Basin Based on SRP Model. Environ. Sci. 2024, 1–16. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhao, W.; Fan, J.R. Spatiotemporal characteristics of grassland GPP response to drought in the Three-River Headwaters Region of the Qinghai-Tibetan Plateau. Remote Sens. Technol. Appl. 2024, 1–12. [Google Scholar]
- Zhong, J.Y.; Ye, C.J.; Wu, H.J.; Yang, M.; Li, B.; Liang, C.Y.; Lu, Z.X.; Hu, J.J.; Yu, F.Y.; Miao, S.Y.; et al. Diversity patterns and influencing factors of seed plant flora in the Tibetan Plateau. Acta Ecol. Sin. 2025, 45, 1–17. [Google Scholar] [CrossRef]
- Wang, X.F.; Sun, Z.C.; Feng, X.M.; Ma, J.H.; Jia, Z.X.; Wang, X.X.; Zhou, J.T.; Zhang, X.R.; Yao, W.J.; Tu, Y. Identification of priority protected areas in Yellow River Basin and detection of key factors for its optimal management based on multi-scenario trade-off of ecosystem services. Ecol. Eng. 2023, 194, 107037. [Google Scholar] [CrossRef]
- Yin, L.C.; Feng, X.M.; Fu, B.J.; Wang, S.; Wang, X.F.; Chen, Y.Z.; Tao, F.L.; Hu, J. A coupled human-natural system analysis of water yield in the Yellow River basin, China. Sci. Total Environ. 2020, 762, 143141. [Google Scholar] [CrossRef]
- Hou, P.; Xi, G.J.; Chen, Y.; Zhai, J.; Xiao, R.L.; Zhang, W.G.; Sun, C.X.; Wang, Y.C.; Jing, H. Development process and characteristics of China’s ecological protection policy. Acta Ecol. Sin. 2021, 41, 1656–1667. [Google Scholar] [CrossRef]
- Chen, M.Y.; Liu, Y.F.; Liu, X.K.; Xu, Z.H.; Zeng, L.X.; Xiao, W.F. Land suitability assessment for forest landscape restoration. J. For. Environ. 2024, 44, 217–224. [Google Scholar] [CrossRef]
- Guo, X.D.; Zhang, Q.Y.; Ma, L.B. Analysis of the Spatial Distribution Character and its Influence Factors of Rural Settlement in Transition-region between Mountain and Hilly. Econ. Geogr. 2012, 32, 114–120. [Google Scholar] [CrossRef]
Target Layer | Primary Indicators | Secondary Indicators | Tertiary Indicators | Formula | Specific Parameters and Description |
---|---|---|---|---|---|
Sensitivity | Natural factors | Soil erosion [24,25,26] | Precipitation erosivity (+) | is the soil erosion sensitivity; is the precipitation erosivity; is the soil erodibility; is the slope and slope length; is the vegetation coverage. | |
Soil erodibility (+) | |||||
Slope and slope length (+) | |||||
Vegetation coverage (−) | |||||
Climate environment [23] | Annual precipitation (−) | is the climate environmental sensitivity index; is the weight of the i-th indicator; is the i-th indicator after standardization. | |||
Average annual temperature (−) | |||||
Geological hazards [27] | DEM (+) | is the geological hazard sensitivity index; is the weight of the i-th indicator; is the i-th indicator after standardization. | |||
Slope (+) | |||||
Degree of topographic relief (+) | |||||
Vegetation coverage (−) | |||||
Annual precipitation (+) | |||||
Density of geologic hazard sites (+) | |||||
River distance (−) | |||||
Biodiversity [28,29,30] | Biological richness index (−) | BAI = × (0.35 × Forest + 0.21 × Grassland + 0.28 × Water + 0.11 × Cropland + 0.04 × Built + 0.01 × Unused)/Area | BAI is the biological abundance index; is the normalized coefficient of the biological abundance index; is the maximum value of the biological abundance index before normalization. | ||
Human factors | Human disturbance [31] | Population density (+) | is the human disturbance sensitivity index; is the weight of the i-th indicator; is the i-th indicator after standardization. | ||
GDP (+) |
Indicator Layer | Weight | ||||
---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | |
Soil erosion sensitivity | 0.470 | 0.454 | 0.461 | 0.486 | 0.480 |
Climate environmental sensitivity | 0.031 | 0.041 | 0.027 | 0.027 | 0.037 |
Geological hazard sensitivity | 0.129 | 0.132 | 0.110 | 0.110 | 0.100 |
Biodiversity sensitivity | 0.068 | 0.068 | 0.070 | 0.069 | 0.074 |
Human disturbance sensitivity | 0.301 | 0.304 | 0.332 | 0.309 | 0.309 |
Sub-Indicator | Insensitive | Low Sensitivity | Moderate Sensitivity | High Sensitivity | Extremely Sensitive |
---|---|---|---|---|---|
Soil erosion sensitivity | <0.03 | 0.03–0.07 | 0.07–0.11 | 0.11–0.15 | >0.15 |
Climate environmental sensitivity | <0.27 | 0.27–0.45 | 0.45–0.61 | 0.61–0.75 | >0.75 |
Geological hazard sensitivity | <0.12 | 0.12–0.18 | 0.18–0.26 | 0.26–0.36 | >0.36 |
Biodiversity sensitivity | <0.18 | 0.18–0.32 | 0.32–0.45 | 0.45–0.58 | >0.58 |
Human disturbance sensitivity | <0.04 | 0.04–0.09 | 0.09–0.24 | 0.24–0.47 | >0.47 |
Comprehensive ecological sensitivity | <0.11 | 0.11–0.18 | 0.18–0.27 | 0.27–0.39 | >0.39 |
Assignment code | 1 | 2 | 3 | 4 | 5 |
Overall Conversion Type | Conversion Coding | Classification Criteria |
---|---|---|
Perennial unchanged zones | 11111, 22222, 33333, 44444, 55555 | The ecological sensitivity grade values for the years 2000, 2005, 2010, 2015, and 2020 must remain consistent. |
Fluctuating unchanged zones | 11121, 11211, 12111, 12121, 12211, 12221, 21112, 21222, 22112, 22122, 22212, 22232, 23222, 23322, 23332, 32223, 32333, 33223, 33233, 33323, 33343, 33433, 33443, 34333, 34443, 44334, 44344, 44434, 44544, 45444, 55545 | The ecological sensitivity grade values for 2000 and 2020 must be equal, and the ecological sensitivity grade values for 2005, 2010, and 2015 may either increase, decrease, or remain unchanged. |
Fluctuating increase zones | 11112, 11122, 11212, 11222, 12112, 12122, 12212, 12222, 12232, 22223, 22233, 22323, 22333, 23223, 23233, 23323, 23333, 33334, 33344, 33444, 34444 | The ecological sensitivity grade value for 2020 must be higher than that for 2000, and the ecological sensitivity grade values for 2005, 2010, and 2015 may either increase, decrease, or remain unchanged. |
Fluctuating decrease zones | 21111, 21121, 22111, 22121, 22211, 22221, 32211, 32221, 32222, 33222, 33232, 33322, 33332, 43333, 44333, 44343, 44433, 44443, 55444, 55544, 55554 | The ecological sensitivity grade value for 2020 must be lower than that of 2000, and the ecological sensitivity grade values for 2005, 2010, and 2015 may either increase, decrease, or remain unchanged. |
Sensitivity Classification | 2000 | 2005 | 2010 | 2015 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area/ | Ratio | Area | Ratio | Area | Ratio | Area | Ratio | Area | Ratio | |
km2 | /% | /km2 | /% | /km2 | /% | /km2 | /% | /km2 | /% | |
Insensitive | 31,794.29 | 37.81 | 28,010.68 | 33.31 | 31,248.14 | 37.16 | 33,596.36 | 39.96 | 29,345.72 | 34.90 |
Low sensitivity | 24,339.83 | 28.95 | 26,164.96 | 31.12 | 25,406.94 | 30.22 | 24,381.98 | 29.00 | 27,784.06 | 33.04 |
Moderate sensitivity | 16,197.42 | 19.26 | 18,684.61 | 22.22 | 17,067.97 | 20.3 | 16,298.34 | 19.38 | 18,123.58 | 21.55 |
High sensitivity | 8624.06 | 10.26 | 8587.77 | 10.21 | 7763.58 | 9.23 | 7550.28 | 8.98 | 6933.38 | 8.25 |
Extremely sensitive | 3128.48 | 3.72 | 2636.07 | 3.14 | 2597.46 | 3.09 | 2257.12 | 2.68 | 1897.33 | 2.26 |
Factor | q-Value | Ranking | Factor | q-Value | Ranking |
---|---|---|---|---|---|
Elevation (X1) | 0.272 | 5 | Precipitation erosivity (X8) | 0.095 | 10 |
Slope (X2) | 0.020 | 12 | Soil erodibility (X9) | 0.208 | 7 |
Topographic relief (X3) | 0.050 | 11 | Density of geologic hazard sites (X10) | 0.156 | 8 |
Slope and slope length (X4) | 0.018 | 13 | River distance (X11) | 0.009 | 14 |
Annual precipitation (X5) | 0.138 | 9 | Biological richness index (X12) | 0.244 | 6 |
Average annual temperature (X6) | 0.397 | 4 | Population density (X13) | 0.659 | 1 |
Vegetation coverage (X7) | 0.421 | 3 | GDP (X14) | 0.601 | 2 |
Classification of Change Intensity | Frequency of Changes | Area/km2 | Proportion/% |
---|---|---|---|
Unchanged area | 0 | 51,070.44 | 60.74 |
Weaker area | 1 | 16,922.57 | 20.13 |
Moderate area | 2 | 12,524.75 | 14.9 |
High area | 3 | 3526.23 | 4.19 |
Extremely high area | 4 | 40.09 | 0.05 |
Zoning | Area/km2 | Proportion/% |
---|---|---|
Perennial insensitive | 24,755.10 | 29.44 |
Perennial low sensitivity | 12,343.11 | 14.68 |
Perennial moderate sensitivity | 7205.62 | 8.57 |
Perennial high sensitivity | 4990.72 | 5.94 |
Perennial extremely sensitive | 1775.89 | 2.11 |
Zoning | Area/km2 | Proportion/% |
---|---|---|
Fluctuating increase zones | 7181.21 | 8.54 |
Fluctuating decrease zones | 13,358.35 | 15.89 |
Fluctuating unchanged zones | 12,474.09 | 14.84 |
Indicator Layer | p | TOL | VIF |
---|---|---|---|
Soil erosion sensitivity | 0.000 | 0.817 | 1.224 |
Climate environmental sensitivity | 0.000 | 0.842 | 1.187 |
Geological hazard sensitivity | 0.000 | 0.798 | 1.253 |
Biodiversity sensitivity | 0.000 | 0.876 | 1.142 |
Human disturbance sensitivity | 0.000 | 0.879 | 1.138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Liu, X.; Wu, Y.; Liu, H.; Qu, F.; Zhang, M.; Li, X. Spatiotemporal Variations and Driving Factors of Ecological Sensitivity in the West Qinling Mountains, China, Under the Optimal Scale. Sustainability 2024, 16, 9595. https://doi.org/10.3390/su16219595
Zhao Q, Liu X, Wu Y, Liu H, Qu F, Zhang M, Li X. Spatiotemporal Variations and Driving Factors of Ecological Sensitivity in the West Qinling Mountains, China, Under the Optimal Scale. Sustainability. 2024; 16(21):9595. https://doi.org/10.3390/su16219595
Chicago/Turabian StyleZhao, Qiqi, Xuelu Liu, Yingying Wu, Hongyan Liu, Fei Qu, Miaomiao Zhang, and Xiaodan Li. 2024. "Spatiotemporal Variations and Driving Factors of Ecological Sensitivity in the West Qinling Mountains, China, Under the Optimal Scale" Sustainability 16, no. 21: 9595. https://doi.org/10.3390/su16219595
APA StyleZhao, Q., Liu, X., Wu, Y., Liu, H., Qu, F., Zhang, M., & Li, X. (2024). Spatiotemporal Variations and Driving Factors of Ecological Sensitivity in the West Qinling Mountains, China, Under the Optimal Scale. Sustainability, 16(21), 9595. https://doi.org/10.3390/su16219595