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Abstract: Traditional airport development planning often overlooks an in-depth consideration of
the airport operation life cycle, which frequently causes deviations from planned objectives during
operation. This paper presents a framework for predicting and segmenting the airport operation life
cycle by integrating the dynamic characteristics of the System Dynamics (SD) model with the static
properties of Logistic modeling to examine the development trajectory of airport operations. The
influencing factors in this model are selected across three levels: airport, city, and macro-environment.
A system dynamics model of airport operation is constructed using causal loop diagrams and system
flow diagrams. Using Guangzhou Baiyun International Airport (CAN) as a case study, the airport’s
operational capacity from 2005 to 2035 is predicted through SD simulation. Subsequently, the airport
operation life cycle from 2005 to 2050 is forecasted and segmented using Logistic modeling. The
results indicate that, under the standard scenario, CAN’s operational capacity experiences two
declines in 2016 and 2020, attributed to airport construction and emergencies. Logistic modeling
identifies three distinct life cycle phases in the airport’s operation. Furthermore, by comparing various
airport operation scenarios, the analysis reveals that fluctuations in the city economy significantly
impact the airport’s operational system without altering its overall development trajectory. In contrast,
the occurrence of emergencies can substantially modify the airport operation life cycle.

Keywords: air transportation; airport operations; life cycle; system dynamics; logistic modeling

1. Introduction

As demand for air transportation continues to grow, airport operations are facing
increasing pressure [1] and the operating environment is changing dramatically. The rise
of low-cost carriers, innovations in aviation technology (including the development of
new airplanes and aviation fuels), fluctuations in fuel prices, and carbon emission restric-
tions have all contributed to heightened uncertainty in airport operations [2]. Furthermore,
the occurrence of emergencies such as the COVID-19 pandemic, directly affects airport
operations and leads to interruptions in airport development for extended periods [3],
thus deviating from airport planning that relies on a single indicator, such as the level of
delays and throughput, as the primary development targets. The complexity and unpre-
dictability of the current operational landscape make it difficult to achieve these planning
goals, ultimately hindering the realization of broader strategic objectives for national
air transportation.

As critical national infrastructure, airports are influenced by various internal and exter-
nal factors, including airport construction, urban development, and macro-environmental
changes [4,5]. Relying on singular indicators such as delay level and throughput as the
planning goal for an airport or as a static measure of airport development fails to capture
the long-term dynamic characteristics of airport operations and their life cycle patterns [6].
This makes it challenging for airport managers to identify the specific needs of airports at
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different life cycle stages, which may result in overbuilding, redundant management, and
resource waste, thereby triggering conflicts between airport management and operations
and leading to delayed airport development. Therefore, it is imperative to address the
shortcomings of current airport planning approaches. This would enable airport managers
to better understand the life cycle characteristics of airports, ensure smooth transitions
between different stages of development, and maintain stable airport operations.

Throughout the entire life cycle of airport planning, design, construction, operation,
and reconstruction [7,8], the airport operation process is responsible for passenger and
cargo transportation. This process is directly related to the beginning and end of the air-
port’s life cycle, indicating the development route and direction of the airport. It also has
the longest duration in the entire life cycle process and reflects the overall development of
the airport, while all other processes serve the airport operation. Given the complexity and
diversity of airport systems, airports experience varying operational states influenced by
numerous factors [9]. These states reveal the life cycle characteristics of airport operations,
illustrating the transition from the commencement of commercial services to eventual
withdrawal from the market. Therefore, airport development planning requires identi-
fying the life cycle characteristics of an airport, which essentially entails determining its
operational life cycle characteristics. By analyzing the life cycle change patterns of airport
operations under the influence of multiple factors, we can gain a clear understanding of the
overall picture of airport operations and development. This analysis allows us to clarify
the characteristics and needs at different stages, enabling airport managers to plan and
adjust development strategies in a more scientific manner, thereby promoting stable and
sustainable airport operations.

Life cycle theory provides a research framework for understanding how systems
evolve over time, making it an essential tool for systematically assessing the impact of vari-
ous factors, particularly in relation to the Sustainable Development Goals (SDGs) [10,11].
However, existing research primarily focuses on “process-based life cycle theory”, which
emphasizes that the development of entities progresses through various stages, such as
birth, growth, maturity, and decline. This perspective does not explore the internal opera-
tional mechanisms of the system or the influences of various factors and their associated
changes on development [12]. Therefore, the airport operation life cycle examined in this
paper extends traditional life cycle theory by analyzing the influence mechanisms of various
factors within airport operations. It illustrates the development curve shaped by the im-
pacts of multiple factors on the airport, encompassing its operational status across different
developmental stages. The life cycle theory posits that each life cycle change corresponds to
a growth curve, through which future life cycle changes can be predicted [13]. This allows
for an accurate depiction of life cycle characteristics and the determination of the direction
of development.

In predicting the life cycle of airport operations, suitable growth curve models are
selected to forecast future operational patterns. Common life cycle prediction models
include the polynomial model [14], the Gompertz model [15], and the Logistic model [16].
Among these, the Logistic model is commonly used to represent the basic life cycle changes
such as germination, growth, maturity and decline, and to classify their life cycle stages [17].
Although airport development aligns with basic life cycle characteristics and can be rep-
resented using Logistic modeling [18], Logistic curve modeling, as a static approach [17],
primarily relies on historical data to predict future development. This reliance limits the
effectiveness of Logistic modeling in addressing the dynamic changes inherent in the
airport operation life cycle. As a complex system, the airport is influenced by multilevel
factors, including its own characteristics, urban development, and the macro-environment.
Consequently, the operational state of the airport changes dynamically with fluctuations in
the operating environment and influencing factors. Therefore, relying solely on Logistic
modeling cannot capture the internal influence mechanisms of airport operations and
fails to comprehensively reflect the dynamic characteristics and life cycle patterns under
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the influence of multiple factors. It is essential to integrate Logistic modeling with other
methods to address its limitations.

System dynamics modeling is well-suited for analyzing complex systems character-
ized by interacting factors, uncertainty, and time-dependent variables [19,20]. The system
dynamics model can not only simulate development paths under various scenarios but
can also adjust scenario parameters as needed, providing a more dynamic approach to
development [21]. Additionally, the model has been applied to assess the impacts of dif-
ferent development strategies on transportation and other areas [22–24]. Therefore, this
paper integrates the dynamic characteristics of the system dynamics model with the static
features of Logistic modeling to construct a comprehensive methodological framework that
considers both the long-term development trends in airports and the impacts of short-term
fluctuations in various factors. This framework can thoroughly examine the influence mech-
anisms of multilevel factors affecting airport operations and deliver more dynamic and
comprehensive performance results for life cycle changes under various planning schemes.

Therefore, this paper integrates system dynamics with Logistic modeling to explore
the airport operation life cycle. It constructs a system dynamics model of airport opera-
tions to predict operational capacity and uses Logistic modeling to classify the different
development stages of airport operations, analyzing their characteristics based on historical
and forecast data. Additionally, it observes the changing trends in the airport operation
life cycle under various development scenarios to address the deficiencies in analyzing
multi-factor influence mechanisms and dynamic characteristics in traditional planning
methods. This study assists in formulating airport development planning and promotes
the stable and sustainable development of airport operations.

The research framework of this paper is as follows. Section 2 presents the methodology,
which introduces the framework for predicting the airport operation life cycle, details the
process of constructing the system dynamics model for airport operations, and describes
the stage division method used in Logistic modeling. Section 3 presents the results, ana-
lyzing and explaining the theoretical methods by applying them to Guangzhou Baiyun
International Airport as a case study. Section 4 presents the discussion, explaining the
influence mechanisms of different levels of factors on airport operations, how these fac-
tors contribute to various life cycle processes, and offering suggestions for formulating
airport development planning. Section 5 presents the conclusion, summarizing the research
content of this paper.

2. Materials and Methods
2.1. Study Area and Data Sources

This paper selects Guangzhou Baiyun International Airport as the case study. As a
significant hub airport in China, Guangzhou Baiyun International Airport ranks among
the top airports globally. The airport has undergone a relocation, as well as several re-
construction and expansion projects. It now operates two terminal buildings and three
runways, supported by a well-developed infrastructure. In 2019, the airport’s annual
passenger throughput exceeded 70 million, while its cargo and mail throughput reached
1.92 million tons. With over 400 air routes, the airport’s operations are well-established.
Furthermore, Guangzhou Baiyun International Airport is currently in a high-development
stage, and its comprehensive development experience provides substantial research data.
By forecasting the life cycle of its operations, more robust research results can be obtained,
offering a reference template for the development of other airports. Therefore, this paper
identifies Guangzhou Baiyun International Airport as the case study.

This paper uses 2005 as the base year for the study, with original data primarily
sourced from statistics provided by the official website of the Civil Aviation Administration
of China (CAAC), the official website of Guangzhou Baiyun International Airport, and the
Guangzhou Statistical Yearbook from previous years. National air transportation expen-
ditures are calculated using the ratio of Civil Aviation Development Fund expenditures
to government fund expenditures. Emergencies primarily encompass public health emer-
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gencies and civil aviation insecurity events. Due to the extensive time span required for
data observation and the challenges in fully collecting data on public health emergencies
that impact civil aviation, this study focuses solely on COVID-19, which occurred in recent
years, to analyze the changes in pressure on airport operational capacity resulting from the
epidemic. Civil aviation insecurity events encompass indicators of civil aviation accident
symptoms and other security-related events. The statistics on unsafe events in civil avia-
tion operations are collected with reference to the study by Du Yaqian et al. [25] and the
Statistical Analysis Report on Unsafe Events in Civil Aviation in China.

2.2. Airport Operation Life Cycle Prediction Model

The airport operation life cycle prediction model comprises two main modules: the
system dynamics prediction module and the Logistic model stage division module. The
system dynamics prediction module primarily utilizes causal loop diagrams and system
flow diagrams to illustrate the relationships between influencing factors. It determines
the mathematical equations for each causal relationship based on the ARIMA model and
regression fitting methods, establishing various airport operation scenarios to predict the
operational capacity that characterizes the airport life cycle. In contrast, the Logistic model
stage division module performs data simulation based on the airport operational capacity
calculated by the system dynamics model to predict and segment the airport life cycle
curve. The framework of the airport operation life cycle prediction model is depicted in
Figure 1.
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2.3. System Dynamics Prediction Module

The system dynamics (SD) model, developed by J.W. Forrester, a professor at the
Massachusetts Institute of Technology (MIT) in the United States, is a simulation method
used to study the causal relationships and dynamic changes among influencing factors in
complex systems. This approach facilitates an in-depth analysis of various complex systems
through feedback mechanisms. The system dynamics model can decompose the research
object into various subsystems, analyze the feedback interaction processes between these
subsystems through causal relationships, and present the results over time. This approach
aligns with the concept of dynamic development within the life cycle theory [26].

Airport operations exhibit different developmental states at various stages of the life
cycle, influenced by a combination of multilevel factors, including the airport, the city,
and the macro-environment [27]. System dynamics, as a research method for subdividing
subsystems, effectively aligns with the multilevel influencing factors of airport operations.
By constructing a system dynamics model, the evolution of the airport operation life cycle
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can be thoroughly analyzed. Based on the multilevel characteristics of the influencing
factors affecting airport operations, the model is divided into five subsystems: airport
operation, airport construction, city economy, city demand, and macro-environment. This
structure facilitates the exploration of the causal relationships among airport operations,
airport construction, urban development, and the macro-environment.

2.3.1. Causal Loop Diagram

Each subsystem contains its own feedback loop and is interconnected with other
subsystems through various variables to centralize the causal effects. The feedback loops
within each subsystem consist of various types of variables. The system dynamics model
can elucidate the mechanisms of change in airport operations as they are influenced by
different factors to varying degrees through these variables. To construct a system dynamics
model, it is first necessary to clarify the causal relationships between the factors, create a
causal loop diagram, and represent the responses through the specific connections among
the variables. In this paper, we use the Vensim PLE 10 platform to construct the system
dynamics model, where “+” represents positive causality and “−” represents negative
causality. The causal loop diagrams for each subsystem are shown below:

(1) Airport Operation Subsystem

The airport operation subsystem primarily reflects the airport’s response to pressure
from external factors at various levels. It is influenced by passenger throughput, cargo
and mail throughput, and aircraft movements [28,29], as well as by fluctuations in airport
construction, city demand, and the macro-environment. Among these factors, airport
passenger throughput is primarily driven by the urban population with high disposable
income in the city, while airport cargo and mail throughput is constrained by the devel-
opment of the city’s primary and secondary industries. In addition, airport passenger
throughput and aircraft movements are more sensitive to emergencies and tend to undergo
significant changes. In contrast, air transportation remains a crucial method for cargo trans-
fer even during emergencies, so the impact of emergencies on cargo and mail throughput
is relatively minor. Therefore, the causal loop diagram of the airport operation subsystem
is shown in Figure 2.
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(2) Airport Construction Subsystem

The airport construction subsystem primarily describes changes in airport infrastruc-
ture, consisting of two variables: terminal area and runway length. Both variables enhance
airport service capacity and positively influence airport operations [30,31]. Meanwhile,
airport construction is also driven by the development of the city. The growth of the city’s
economy and demand is positively correlated with airport construction—the more devel-
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oped the city’s economy, the higher the demand, and the faster the airport construction
progresses [32]. Therefore, the causal loop diagram of the airport construction subsystem is
presented in Figure 3.
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(3) City Economy Subsystem

The city economy subsystem primarily describes the economic development of the city
where the airport is located. It is represented by four variables: GDP, per capita disposable
income, tourism income, and the proportion of the tertiary industry [31,33], all of which
are positively correlated with the city economy. As the carrier of the airport, the city’s
development is closely related to airport operations. However, the city economy does not
directly affect airport operations; rather, it does so indirectly through airport construction
and the city demand for airport services. Therefore, the causal loop diagram of the city
economy subsystem is presented in Figure 4.
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(4) City Demand Subsystem

The city demand subsystem primarily describes the demand for airport services,
represented by two variables: the density of airports in the region and urban population in
airport service radius [30,31]. Both variables are positively correlated with city demand. A
higher density of airports in the region enhances the convenience and efficiency of major
airports for transporting passengers and cargo, thereby improving the operational efficiency
of core airports. However, when the density of airports reaches a certain threshold, it may
compete with the core airports in the region [34], negatively impacting their operations.
Since this situation only occurs in the larger airport clusters, which is not common, this
subsystem does not consider the negative impact of the increase in regional airport density
on airport operation. The larger the population of the cities within the airport’s service
radius, the greater the potential number of air travelers, which increases the services
provided by the airport and promotes the development of airport construction to meet the
city’s demand for these services. Therefore, the causal loop diagram of the city demand
subsystem is shown in Figure 5.
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(5) Macro-environment Subsystem

The macro-environment subsystem mainly describes the changes in the external en-
vironment of airport operation. This subsystem is represented by two variables: stability
after exposure to emergencies and national air transportation expenditures, both of which
are positively correlated with the macro-environment. However, emergencies negatively
correlate with airport stability, the more airports are affected by emergencies, the lower their
stability becomes. In the macro-environment subsystem, emergencies are categorized into
two types: public health emergencies and civil aviation insecurity events. These categories
are emphasized due to their longer duration and greater impact on airport operations
compared to other events. Among these two types of emergencies, civil aviation insecurity
events have a relatively minor impact on airport operations, while public health emergen-
cies can significantly affect airport operations, potentially leading to large-scale passenger
reductions, flight cancelations, and prolonged operational disruptions. Therefore, synthe-
sizing the various causal relationships, the causal loop diagram of the macro-environment
subsystem is shown in Figure 6.
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2.3.2. System Flow Diagram and Mathematical Equations

Causal feedback loops constitute the subsystems and clarify the causal relationships
between the subsystem variables. However, these loop diagrams merely provide a basic
overview of the relationships among the variables in the model without detailing the spe-
cific processes of change. While they illustrate the overall flow of influencing factors within
the subsystems, they do not yield corresponding results. Therefore, it is essential to develop
system flow diagrams based on the causal loop diagrams, establish specific mathematical
equations among the variables in these diagrams, and ultimately calculate and simulate
the values of airport operations across different time periods using these equations.
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System Flow Diagram

According to the causal loop diagram of the model, the three subsystems of airport
construction, city demand, and macro-environment are interconnected with the airport
operation subsystem through changes in airport operation capacity. The city economy
subsystem does not act directly on airport operation, but transmits its effect through the
airport construction and city demand subsystems, which are connected through the amount
of airport construction change and the amount of city demand change, respectively. Based
on the causal loop diagrams and the interconnections among the subsystems, a system flow
diagram has been created, as shown in Figure 7.
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Mathematical Equations

Each causal relationship in the system dynamics model corresponds to a mathematical
equation, and the final simulation results are derived by integrating these mathematical
relationships. The system dynamics model primarily consists of five types of variables:
state variables, rate variables, table functions, auxiliary variables, and constants. In the
constructed airport operation system dynamics model, the mathematical relationships
among the subsystems of the main model structure are calculated using structural equa-
tion modeling [33]. The mathematical relationships between the auxiliary variables were
obtained by fitting each variable with SPSS 27 software [35]. The remaining time-varying
variables were expressed using a time series prediction ARIMA model and the built-in
table functions in the system dynamics model [36]. This paper uses Guangzhou Baiyun
International Airport as a case study to establish mathematical equations, and the causal
relationships between the main variables are presented in Table 1.
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Table 1. Causal relationships between main variables.

Dependent Variables Independent Variables

Causal relationships
between subsystems

Amount of airport construction change Airport terminal area, Runway length, City demand,
City economy, Airport construction.

Amount of city economy change GDP, Per capita disposable income, Tourism revenue,
Share of tertiary industry, City economy.

Amount of city demand change Density of airports in the region, Urban population in
airport service radius, City economy, City demand.

Amount of macro-environment change Stability after exposure to emergencies, National air
transportation expenditure, Macro-environment.

City demand buffer Macro-environment, City demand.

Amount of airport operation change

Airport passenger throughput, Airport terminal area,
Airport cargo and mail throughput, Aircraft movements,

Macro-environment, City demand buffer, Airport
construction, Airport operation.

Causal relationships
between variables

Airport passenger throughput
Public health emergency, Per capita disposable income,

Urban population, Airport affected by emergencies,
Airport terminal area.

Airport cargo and mail throughput Primary industry output, Secondary industry output.

Aircraft movements Airport passenger throughput, Airport cargo and mail
throughput, Airport affected by emergencies.

Per capita disposable income Per capita urban GDP.

Urban population in airport service radius Total population.

(1) Mathematical Equations Between Subsystems

Amount of airport construction change = 0.499481 × Airport terminal area + 0.500519 × Runway length
+0.185 × City demand + 0.708 × City economy − Airport construction

(1)

Amount of city economy change = 0.263993 × GDP + 0.239469 × Per capita disposable income
+0.262551 × Tourism revenue + 0.233987 × Share of tertiary industry − City economy

(2)

Amount of city demand change = 0.492537 × Density of airports in the region + 0.507463 × Urban population in
airport service radius + 0.798 × City economy − City demand

(3)

Amount of macro environment change = 0.409923 × Stability after exposure to emergencies + 0.590077 × National
air transportation expenditure − Macro environment

(4)

City demand buffer = IF THEN ELSE(Macro environment > 6, City demand, 0) (5)

Amount of airport operation change = IF THEN ELSE(
Airport passenger throughput <= 1.2 × Airport terminal area × 100,
0.340321 × Airport passenger throughput + 0.316911 × Airport cargo and mail throughput
+0.342767 × Aircraft movements + 0.086 × Macro environment + 0.126 × City demand buffer
+0.821 × Airport construction − Airport operation,
0.340321 × Airport passenger throughput + 0.316911 × Airport cargo and mail throughput
+0.342767 × Aircraft movements + 0.086 × Macro environment − 0.126 × City demand buffer
+0.821 × Airport construction − Airport operation)

(6)

An auxiliary variable representing city demand buffer is established to illustrate the
relationship between city demand and airport operation. The variability in the impact of
city demand on airport operation is closely related to the macro-environment. When the
macro-environment is unfavorable, city demand for the airport decreases, impairing its
effectiveness on airport operations. Conversely, when the macro-environment is favorable,
city demand positively influences airport operations. Therefore, it is essential to establish
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conditions to assess changes in the macro-environment. When the macro-environment
is unfavorable, the effect of city demand on airport operations is set to zero. Although
the impact of city demand on airport operations does not disappear entirely in a negative
macro-environment, this paper sets the effect of city demand on airport operations to zero
under adverse conditions to better differentiate between changes in various situations.

Simultaneously, when the existing airport infrastructure meets the requirements for
passenger throughput, an increase in city demand positively impacts airport operations.
However, when the existing airport infrastructure fails to meet the requirements for passen-
ger throughput, the airport is already in a saturated or oversaturated state. The continued
increase in city demand will intensify the pressure on airport operations, thereby negatively
affecting them. Therefore, judgment conditions are incorporated into the amount of change
in airport operation. When airport facilities can accommodate the existing passenger vol-
ume, city demand exerts a positive effect on airport operations; conversely, when facilities
cannot meet this demand, city demand negatively impacts airport operations. In the model,
it is established that each square meter of airport terminal area can accommodate approxi-
mately 1 million passengers. The airport is allowed to operate at a slight oversaturation,
with the upper limit of this oversaturation set at 1.2 times the standard capacity.

(2) Mathematical Equations Between Variables

The mathematical equations for the other auxiliary variables were derived by fitting a
linear regression model to the historical data of each variable using SPSS 27 software. The
key mathematical equations are as follows:

Airport passenger throughput = IF THEN ELSE(Public health emergency = 0, 0 .057 × Per capita disposable income
+2.675 × Urban population + 27345.6 × Airport affected by emergencies − 615.931,
IF THEN ELSE((0 .01 × Per capita disposable income + 5.423 × Urban population
−415.074 × Airport affected by emergencies − 1959 .6) <= Airport terminal area × 100,
(0 .01 × Per capita disposable income + 5.423 × Urban population − 415.074 × Airport affected by emergencies
−1959 .6), RANDOM UNIFORM(1 .2 × Airport terminal area × 100, 1.5 × Airport terminal area × 100, 0)))

(7)

Airport cargo and mail throughput =− 0.00011 × Primary industry output
+6.276e − 06 × Secondary industry output + 75.43

(8)

Aircraft movements = 0.006 × Airport passenger throughput−0.002 × Airport cargo and mail throughput
+0.37 × Airport affected by emergencies + 8.784

(9)

Per capita disposable income = Per capita urban GDP × 0.633 − 21444.5 (10)

Urban population in airport service radius = 2.243 × Total population + 2962.02 (11)

Since airport passenger throughput and aircraft movements can be influenced by
emergencies, the mathematical equations governing these two variables must account for
the effects of such events. When emergencies are absent, their impact on airport operations
is not factored in. However, when emergencies occur, the specific effects on both airport
passenger throughput and aircraft movements must be incorporated into the mathematical
equations. Additionally, considering that airports have an oversaturation threshold, when
the terminal area cannot accommodate the passenger throughput, the model allows for
selecting values within a range of up to 1.5 times the terminal’s service capacity.

(3) Prediction of time varying variables

Some of the time-varying auxiliary variables need to be defined using the table func-
tions or step functions built into the system dynamics software Vensim PLE 10 [37]. Among
them, the variables defined using the table function require future data predictions, and this
paper employs the ARIMA model for time series forecasting to predict the future values of
each variable.

The share of primary industry, the share of secondary industry, the share of tertiary
industry, the population growth rate, and the urbanization rate can be obtained from 2005
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to 2022. The national air transportation expenditure and the density of airports in the region
can be obtained from 2005 to 2020. The growth rate of tourism revenue can be obtained
from 2005 to 2019. Predictions of future changes are based on the historical data acquired
for each variable. The prediction results of each variable are shown in Table 2.

Table 2. Prediction results for each variable.

Year
Share of
Primary
Industry

Share of
Secondary
Industry

Share of
Tertiary
Industry

Population
Growth Rate

Urbanization
Rate

National Air
Transportation

Expenditure

Density of
Airports in
the Region

Growth Rate
of Tourism
Revenue

2005 2.51 39.84 57.65 −0.016996 0.8151 7.3326 3 0.1420
2006 2.10 40.31 57.59 0.049469 0.8204 7.6824 3 0.1210
2007 2.08 39.80 58.12 0.056539 0.8217 7.8410 3 0.1390
2008 1.85 39.15 59.00 0.059192 0.8223 7.4522 3 0.0500
2009 1.70 37.83 60.47 0.064223 0.8378 7.0670 3 0.1866
2010 1.58 38.09 60.33 0.070760 0.8379 6.1610 4 0.2621
2011 1.48 37.97 60.55 0.059294 0.8383 7.1370 4 0.2998
2012 1.41 36.17 62.42 0.051407 0.8385 6.7080 4 0.1719
2013 1.30 35.34 63.36 0.040063 0.8388 5.9270 4 0.1524
2014 1.24 35.00 63.76 0.038567 0.8397 6.6510 4 0.1450
2015 1.19 33.30 65.51 0.043119 0.8422 7.9560 4 0.1389
2016 1.16 31.32 67.52 0.052309 0.8435 9.0940 5 0.1201
2017 1.11 29.69 69.20 0.040450 0.8441 8.3150 5 0.1235
2018 1.09 29.09 69.82 0.029698 0.8475 11.8800 5 0.1090
2019 1.04 27.30 71.66 0.018397 0.8513 9.7440 5 0.1114
2020 1.14 26.79 72.07 0.023383 0.8619 2.7860 5 0.1204
2021 1.06 27.41 71.53 0.003751 0.8646 5.9662 5 0.1242
2022 1.10 27.43 71.47 −0.004067 0.8648 9.7844 6 0.1245
2023 1.08 25.94 73.04 −0.003306 0.8663 8.1846 6 0.1233
2024 1.00 24.98 73.99 −0.002546 0.8682 7.3284 6 0.1215
2025 0.92 24.93 74.15 −0.001785 0.8708 8.0437 6 0.1195
2026 0.84 24.11 75.16 −0.001025 0.8735 8.2517 6 0.1173
2027 0.76 22.62 76.65 −0.000264 0.8761 8.0547 6 0.1151
2028 0.69 22.08 77.17 0.000496 0.8787 8.0876 7 0.1128
2029 0.61 21.91 77.55 0.001257 0.8814 8.2075 7 0.1106
2030 0.53 20.71 78.90 0.002018 0.8840 8.2401 7 0.1083
2031 0.45 19.45 80.07 0.002778 0.8866 8.2606 7 0.1060
2032 0.37 19.21 80.37 0.003539 0.8893 8.3106 7 0.1038
2033 0.29 18.73 81.12 0.004299 0.8919 8.3593 7 0.1015
2034 0.21 17.33 82.57 0.005060 0.8945 8.3990 8 0.0992
2035 0.13 16.43 83.35 0.005820 0.8972 8.4406 8 0.0970

The predictive performance of the model is evaluated using the root mean square
error (RMSE) and the mean absolute error (MAE). A closer proximity of these error values
to zero indicates a better predictive capability of the model. The prediction errors of the
ARIMA model for each variable are presented in Table 3. Table 3 illustrates that the error
values of the ARIMA model predictions for each variable are small, generally approaching
zero. This suggests that the model effectively captures the characteristics of the historical
data, resulting in accurate prediction outcomes.

Among the time varying variables, the three variables of flight movements growth
rate, GDP growth rate, and civil aviation insecurity growth rate are closely linked to policy
adjustments and technological advancements. Conservative estimates were derived from a
review of the Urban and Civil Aviation Development Plan and Vision 2035, with specific
values presented in Table 4.

The amount of change in airport terminal area, runway length, airport density, and
public health emergencies are represented as discrete jumps, input into the system dynamics
model using a step function. In the standard scenario for future changes, these four variables
are assumed to remain fixed after the last change. In contrast, in the other scenarios, the
relevant data are adjusted according to their respective contexts.
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Table 3. Prediction errors of ARIMA model for each variable.

Variables RMSE MAE

Share of primary industry 0.09778 0.057414
Share of secondary industry 0.689045 0.619341

Share of tertiary industry 0.645432 0.582114
Population growth rate 0.0185 0.011812

Urbanization rate 0.003912 0.002801
National air transportation expenditure 1.520321 1.061325

Density of airports in the region 0.231149 0.194581
Growth rate of tourism revenue 0.056048 0.040024

Table 4. Setting of future year values for each variable.

Airport Time Period Flight Movements
Growth Rate

GDP Growth
Rate

Civil Aviation Insecurity
Growth Rate

Guangzhou Baiyun
International Airport

Year of data unknown—2025 6.5% 5% 15%
2025–2030 9% 5.5% 10%
2030–2035 12% 6% 5%

2.3.3. Model Test

To ensure that the constructed system dynamics model effectively and accurately
predicts the life cycle of airport operations, it is essential to test the model. This paper selects
nine key variables from the system dynamics model for simulation, and the simulation
results are compared with historical data from 2005 to 2020. The simulation performance of
the system dynamics model is assessed based on the relative error values between the data,
and the formula for calculating relative error is presented in Equation (12) [37]:

µ =

∣∣∣∣Y − X
X

∣∣∣∣(%) (12)

where Y denotes the simulated value and X denotes the real value.
The relative error values of each variable of the model are shown in Table 5. The

simulated values from the airport operation system dynamics model exhibit a trend that
closely aligns with the actual values. The relative errors between the simulated and actual
values for each variable, with some exceptions, are generally within 10%, which is consid-
ered acceptable. Overall, the simulation results of the airport operation system dynamics
model developed in this paper closely align with the actual values, demonstrating the
model’s effectiveness.

Table 5. Relative error values of model variables.

Year
Airport

Passenger
Throughput

Airport
Cargo and

Mail
Throughput

Aircraft
Movements GDP

Per Capita
Disposable

Income

Tourism
Revenue

Urban
Population
in Airport

Service
Radius

Number of
Civil

Aviation
Insecurity
Incidents

Number of
Flight

Movements
Nationwide

2005 5.61 17.51 3.85 0.00 28.18 0.00 0.59 0.00 0.00
2006 1.79 7.76 3.69 0.04 12.17 0.03 0.99 0.03 0.06
2007 4.63 0.93 0.91 0.05 2.83 0.07 1.69 0.04 0.01
2008 0.32 18.99 2.01 0.09 2.67 0.03 2.56 0.05 0.02
2009 1.42 0.24 1.44 0.05 0.73 0.03 3.24 0.05 0.01
2010 0.62 0.56 1.01 0.07 6.35 0.03 3.86 0.06 0.01
2011 2.01 11.32 3.19 0.05 9.15 0.03 1.61 0.06 0.01
2012 1.27 6.36 1.24 0.09 4.48 0.03 0.29 0.05 0.01
2013 2.31 14.76 2.92 0.13 8.96 0.03 1.75 0.05 0.01
2014 3.04 13.89 2.44 0.11 12.76 0.04 2.96 0.05 0.01
2015 7.90 9.02 7.62 0.10 9.50 0.04 3.45 0.05 0.01
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Table 5. Cont.

Year
Airport

Passenger
Throughput

Airport
Cargo and

Mail
Throughput

Aircraft
Movements GDP

Per Capita
Disposable

Income

Tourism
Revenue

Urban
Population
in Airport

Service
Radius

Number of
Civil

Aviation
Insecurity
Incidents

Number of
Flight

Movements
Nationwide

2016 4.65 1.95 5.41 0.11 4.21 0.04 4.30 0.05 0.02
2017 0.50 8.74 3.29 0.11 1.84 0.03 4.11 0.04 0.02
2018 1.66 12.36 3.68 0.12 1.75 0.03 3.51 0.05 0.01
2019 4.27 17.66 2.83 0.08 7.51 0.03 2.38 0.06 0.03
2020 6.08 8.86 3.48 0.09 7.54 0.03 11.96 0.06 0.04

2.3.4. Airport Operation Scenarios

Due to various limitations, airports must contend with different operating environ-
ments, and changes in the external environment will result in varying life cycle processes
for airport operations. When airport operations deviate from the planned route due to
internal and external factors, managers must promptly propose solutions based on the
specific operational circumstances to mitigate the impact of these changes. Therefore, to
provide airport managers with a comprehensive understanding of airport operations under
varying environments and to clarify the life cycle of the airport in different scenarios, it
is essential to construct specific scenarios that simulate the real airport operation system,
enabling effective responses to various emergencies.

Airport operations are influenced by three primary levels: the airport itself, urban
development, and the macro-environment. From the perspective of airport construction,
airports can be categorized as either changed or unchanged over time. Unchanged airports
indicate that the existing infrastructure can meet the operational needs, while changing
airports signify that the current infrastructure is insufficient to accommodate growing
operational demands, necessitating modifications to the status quo of airport construction.
The primary ways in which airports can be modified include remodeling and expanding
existing facilities, relocating airports, and constructing new ones. These changes can be
viewed as updates to airport infrastructure, unified by the common thread that site con-
straints of the original airport have impacted operations. Typically, these modifications
involve an increase in terminal size and runway length. Infrastructure changes are more
prevalent during airport operations and can directly influence the operational develop-
ment of airports. Therefore, fluctuations in airport construction must be considered in the
planning process.

Urban development supports airport operation. City demand provides the sources of
passengers and cargo for airport operations. Although the city economy does not directly
affect airport operations, it can indirectly influence them by shaping city demand and
airport construction. Consequently, the city economy significantly contributes to the airport
operation system, serving as a primary driving force for the development of airport opera-
tions. Therefore, the effects of changes in the city economy must be thoroughly considered
in the planning process.

Changes in the macro-environment are also a significant factor influencing airport
operations. A favorable external environment promotes healthy airport operations, while a
poor external environment negatively impacts them. Emergencies are key variables that can
rapidly alter the macro-environment. Although the likelihood of such events is low, their
impact can be substantial. Once they occur, they significantly affect the entire airport opera-
tion environment. Simulating emergencies allows for a more intuitive understanding of
their impact on airport operations, enabling airports to implement more effective measures
when responding to future emergencies and enhancing the resilience of airport operations.
Given the complexity and uncertainty of the current airport operation environment, it
is essential to consider emergencies in the planning scenarios to ensure the stability and
healthy development of airport operations.
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This paper constructs airport operation simulation scenarios based on changes at three
levels: the airport, the city, and the macro-environment. Four key scenarios are developed
to simulate the airport operation life cycle. To ensure that the system dynamics model
accurately reflects the airport operation environment, the scenarios are established based
on the following assumptions: (1) As the scenarios are designed to simulate potential future
situations, they will begin to change, starting in 2026. (2) To assess the long-term impact of
emergencies on airport operations, the airport must be allowed sufficient recovery time.
Therefore, it is assumed that emergencies occur only once and last for two years. The airport
operation scenarios are shown in Table 6.

Table 6. Airport operation scenarios settings.

Scenario Scenario Description Parameter Settings

Scenario 1 (S1) Airport expansion
+ Rapid economic development

Airport terminal area increased by 50% from the original;
Runway length increased by 3600 m;

GDP growth rate increased by 20% from the original

Scenario 2 (S2) Airport expansion
+ Slow economic development

Airport terminal area increased by 50% from the original;
Runway length increased by 3600 m;

GDP growth rate reduced by 20% from the original

Scenario 3 (S3) Rapid economic development
+ Macro-environment changes

The GDP growth rate is increased by 20% from the original,
adjusted to 10% when affected by emergencies;

One emergency occurs

Scenario 4 (S4) Slow economic development
+ Macro-environment changes

The GDP growth rate is reduced by 20% from the original,
adjusted to 30% when affected by an emergency;

One emergency occurs

2.4. Logistic Model Stage Division Module

During airport operations, disturbances from the external environment may cause the
operational capacity to fluctuate and increase, resulting in a multi-cycle growth pattern,
which reflects a multi-life cycle characteristic. Consequently, the historical and projected
airport operation capacity values calculated by the system dynamics model are segmented
and simulated using Logistic modeling. The model that provides the best fit is selected to
represent changes in airport operation capacity values, ensuring that the Logistic model
aligns with the life cycle curve of airport operations. After obtaining the corresponding
Logistic curve modeling, the key time nodes of different curve models are calculated based
on the simulation parameters to delineate the stages of the airport operation life cycle.

Logistic curve modeling has two main forms, an S-shaped curve and a bell-shaped
curve [38]. These forms represent two possible development trends in airport operations,
and the schematic diagram of Logistic modeling is illustrated in Figure 8.
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stage. The bell-shaped curve indicates that airport operations progress through four stages:
germination, growth, maturity, and decline. After reaching the maturity stage, airport
operations experience a significant downward trend. Therefore, two forms of Logistic
modeling are used to fit the change in airport operation. The general form of Logistic curve
modeling (S-shaped curve) is the following:

y =
1

1 + e−x =
1
2

(
1 + tanh

( x
2

))
(13)

where x and y are the independent and dependent variables, e is the Euler constant, and
tanh is the hyperbolic tangent function. This paper employs a flexible four-parameter
Logistic model for the study, constructing a multi-period growth model based on the
changes in the airport operation life cycle.

2.4.1. S-Shaped Logistic Modeling

(1) Model Equation

The four-parameter S-shaped Logistic modeling is shown in the following equation:

A(t) = H +
L − H

1 + e(
t−M

W )
(14)

where A(t) is the airport operation capacity value at time t, L is the minimum value of
airport operation capacity, which corresponds to the capacity during the germination
period, and H is the maximum value of airport operation capacity, corresponding to the
maturity period. t is the year of operation. M is the mid-point of growth, which indicates
that at this point, the airport operation capacity value is located at the mid-point of L and

H, i.e., A(M) =
L + H

2
, and at the same time, the rate of change in the airport operation

capacity reaches the maximum. W is the width factor, which determines the rate of model
change, indicating how quickly the airport operation capacity grows from L to H. The
larger the value of W, the smoother the curve is, and conversely the curve is steeper.

(2) Stage Division

For the S-shaped curve model, the maximum utility value achievable by the model is
defined as the saturation point, representing the maximum airport operation capacity. The
time required to reach 10% to 90% of this maximum capacity is referred to as the growth
time, encompassing the period between the growth and maturity stages. The turning point
of the S-curve occurs where the second derivative changes from positive to negative at a
value of 0. This turning point marks the moment when the growth rate of airport operation
capacity reaches its peak. Before the turning point, the growth rate of the capacity increases;
after the turning point, it gradually decreases [16]. The S-shaped Logistic model stage
division is shown schematically in Figure 9.

Denote by L + 0.1(H − L) and L + 0.9(H − L) the values of airport operation capacity
value in order to reach the maximum utility value of 10% and 90% of the value taken.
Substituting these two values into Equation (14) gives the following time:

tS_10% = M − W ln 9 (15)

tS_90% = M + W ln 9 (16)

where tS_10% and tS_90% denote the time when the airport operation capacity values of the
S-shaped Logistic modeling reach 10% and 90% of the maximum utility value, respectively,
and M and W denote the parameter values of the S-shaped Logistic modeling.



Sustainability 2024, 16, 9596 16 of 26

Sustainability 2024, 16, 9596 16 of 27 
 

operation capacity reaches its peak. Before the turning point, the growth rate of the capac-
ity increases; after the turning point, it gradually decreases [16]. The S-shaped Logistic 
model stage division is shown schematically in Figure 9. 

 
Figure 9. Schematic diagram of the stage division of S-shaped Logistic modeling. 

Denote by ( )0.1L H L+ −  and ( )0.9L H L+ −  the values of airport operation capac-
ity value in order to reach the maximum utility value of 10% and 90% of the value taken. 
Substituting these two values into Equation (14) gives the following time: 

_10% ln 9St M W= −  (15) 

_ 90% ln 9St M W= +  (16) 

where _10%St  and _ 90%St  denote the time when the airport operation capacity values of 
the S-shaped Logistic modeling reach 10% and 90% of the maximum utility value, respec-
tively, and M  and W  denote the parameter values of the S-shaped Logistic modeling. 

2.4.2. Bell-Shaped Logistic Modeling 
(1) Model Equation 

The four-parameter bell-shaped Logistic modeling (obtained by taking the time 
derivative of Equation (14)) is shown in Equation (17): 

( ) 2

( )

1

t M
W

A A

t M
W

H L eA t

W e

− 
 
 

− 
 
 

−
=

 
+  

 

 
(17) 

where ( )A t  is denoted as the airport operation capacity value at time t , AL  is the mini-
mum value of airport operation capacity, AH  is the maximum value of airport operation 
capacity, t  is the year of operation, M  is the mid-point of growth, which indicates that 
the airport operation capacity value reaches its maximum value at this point, i.e., 

( )
4
A AH LA M
W
−

= , W  is the width factor, and e  is the Euler’s constant. In this context, 

although the bell-shaped Logistic equation is derived from the S-shaped Logistic equa-
tion, it holds practical significance. Therefore, the minimum and maximum parameters (
AL  and AH ) do not indicate the rate of change in the airport operation capacity, but ra-

ther the value of the airport operation capacity. 

Figure 9. Schematic diagram of the stage division of S-shaped Logistic modeling.

2.4.2. Bell-Shaped Logistic Modeling

(1) Model Equation

The four-parameter bell-shaped Logistic modeling (obtained by taking the time deriva-
tive of Equation (14)) is shown in Equation (17):

A(t) =
(HA − LA)e(

t−M
W )

W
(

1 + e(
t−M

W )
)2 (17)

where A(t) is denoted as the airport operation capacity value at time t, LA is the minimum
value of airport operation capacity, HA is the maximum value of airport operation capacity,
t is the year of operation, M is the mid-point of growth, which indicates that the airport

operation capacity value reaches its maximum value at this point, i.e., A(M) =
HA − LA

4W
,

W is the width factor, and e is the Euler’s constant. In this context, although the bell-
shaped Logistic equation is derived from the S-shaped Logistic equation, it holds practical
significance. Therefore, the minimum and maximum parameters (LA and HA) do not
indicate the rate of change in the airport operation capacity, but rather the value of the
airport operation capacity.

(2) Stage Division

Similar to the S-shaped Logistic modeling, in bell-shaped Logistic modeling, the
maximum value of the model is defined as the saturation point. The time required to reach
10% to 90% of this maximum value is referred to as the growth time, representing the
duration between the growth period and the maturity phase. The stages of the bell-shaped
Logistic modeling are illustrated schematically in Figure 10.

Since the bell-shaped Logistic modeling is the derivative form of the S-shaped Lo-
gistic modeling, the bell-shaped curve reaches its maximum at point t = M. The size of
the utility value to reach 10% and 90% is represented by 0.1A(M) and 0.9A(M), respec-
tively, and the time to reach both can be obtained by substituting these two numbers into
Equation (17), respectively:

tbell_10%_1,2 = W ln

(
0.95 ±

√
0.9

0.05

)
+ M (18)

tbell_90%_1,2 = W ln

(
0.55 ±

√
0.1

0.45

)
+ M (19)
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where tbell_10%_1,2 and tbell_90%_1,2 denote the time for the airport operation capacity values
of the bell-shaped Logistic modeling to reach 10% and 90% of the maximum utility
value, respectively, and M and W denote the parameters of the bell-shaped Logistic
modeling, respectively.
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3. Results

The paper selects Guangzhou Baiyun International Airport as the case study. Guangzhou
Baiyun International Airport, a large hub airport in China, ranks among the top airports
globally. Guangzhou Baiyun International Airport has undergone a relocation as well as
several reconstruction and expansion projects. It now operates two terminal buildings and
three runways, supported by well-developed infrastructure. In 2019, the airport’s annual
passenger throughput exceeded 70 million, and its cargo and mail throughput reached
1.92 million tons. With over 400 air routes, the airport’s operations are well-established.
Moreover, Guangzhou Baiyun International Airport is in the high-development stage, and
its comprehensive development experience offers sufficient research data. By forecasting
the life cycle of its operation, more robust research results can be obtained, providing a
reference template for the development of other airports. Therefore, this paper selects
Guangzhou Baiyun International Airport as a case study.

3.1. System Dynamics Model Predictions
3.1.1. Standard Scenario Simulation

Under the standard scenario, the development trend in airport operation capacity is
simulated using a system dynamics model, as illustrated in Figure 11. The overall trend
in Guangzhou Baiyun Airport’s operational capacity is upward, with declines observed
in 2016 and 2020. The capacity then begins to gradually increase again in 2018 and 2023,
eventually returning to its original growth trajectory.

The decline in operational capacity in 2016 is attributed to the airport’s passenger
throughput reaching the upper limit of what the terminal building could accommodate.
When an airport operates at oversaturation, increasing city demand adds pressure on
its operations, which negatively impacts performance and causes operational capacity to
gradually decrease. However, after Guangzhou Baiyun Airport completed the expansion
of its terminal in 2018, its service capacity increased, eliminating limitations on passenger
throughput. Consequently, operational capacity exhibited an upward trend, returning to
its initial growth path.

The decline in operational capacity in 2020 is attributed to emergencies that altered
the external environment. Under the conditions set by the system dynamics model, the
macro-environment performance value fell below the standard, resulting in a city demand
of zero for the airport. Due to insufficient city demand for the airport, there is a lack of
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motivation for development, resulting in a downward trend in operational capacity in 2020.
Following a period of recovery, the external environment gradually improves, and the
macro-environment performance value rises above the standard. As city demand positively
impacts airport operations, operational capacity increases, returning to the initial trend in
change. Consequently, the airport exhibits characteristics of a multi-life cycle.
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3.1.2. Multi-Scenario Simulations

The established airport operation scenarios, simulated using the system dynamics
model, reveal operational capacity values under different conditions, as shown in Figure 12.
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As the multi-scenario changes are scheduled to begin in 2026, the airport’s operational
changes under each scenario remain consistent with the standard scenario (BASE) until
2025, influenced by the constraints of airport construction and emergencies. As illustrated
in Figure 12, both Scenarios S1 and S2 exceed the operational capacity of the standard sce-
nario (BASE) during the initial period of airport expansion. However, due to differences in
economic development rates between Scenarios S1 and S2, Scenario S2, which experiences
slower growth, exhibits an operational capacity that gradually falls below that of the stan-
dard scenario (BASE) in subsequent development, while Scenario S1 continues to maintain
its original growth trend. In Scenarios S3 and S4, the occurrence of emergencies caused
the operational capacity values to fall below those of the standard scenario (BASE) during
the early stages, leading to a period of low development. However, after overcoming the
negative impacts of emergencies, Scenario S3 benefits from rapid economic development,
leading to its operational capacity exceeding that of the standard scenario (BASE).

The expansion of airport construction influences operations; however, this effect is
generally limited. Significant changes in airport operations occur primarily when existing
facilities cannot meet demand, necessitating further construction renewal. The city economy
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serves as a crucial external factor influencing the airport operation system. Although it
does not directly affect operations, it indirectly impacts the entire system through airport
construction and city demand. Consequently, fluctuations in the city economy can lead to
significant changes in the airport operation system, indicating a high correlation between
the development of the city economy and the current stage of airport operations [39].
Additionally, the occurrence of emergencies can alter the development trend in airport
operations, leading to a significant impact. However, once the airport recovers from these
emergencies, a favorable development environment at the city level may allow airport
operations to meet or even exceed the standard level.

3.2. Airport Operation Life Cycle Stage Division
3.2.1. Standard Scenario Life Cycle Stages

The operational capacity values calculated by the system dynamics model were input
into the Logistic modeling framework to delineate the operational life cycle of Guangzhou
Baiyun Airport and identify its development state.

Based on the multi-life cycle characteristics of airport operation development, the
operational capacity value is simulated in three segments using Logistic modeling. The
operational capacity of Guangzhou Baiyun Airport shows an initial increase followed by a
decrease from 2005 to 2017 and again from 2017 to 2022. Therefore, the operational capacity
values for these two segments are modeled using a bell-shaped Logistic curve. After the
emergency, the airport undergoes a recovery period, during which the operational capacity
value rises and enters the next life cycle stage. This life cycle generally exhibits an S-shaped
curve development, so the third segment of the airport operation process is simulated using
S-shaped Logistic curve modeling. Following the simulation and prediction, the airport
operation life cycle curve is presented in Figure 13, and the Logistic model parameters are
detailed in Table 7.
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Table 7. Standard scenario airport operation life cycle Logistic curve modeling parameters.

Logistic Modeling First Logistic Curve Second Logistic Curve Third Logistic Curve

Time period 2005–2017 2017–2022 2022–2050
H 463,046.33 869,202.33 57,724.77
L 173,063.79 627,820.81 18,235.92
W 4.18 2.50 4.43
M 2016.13 2020.37 2029.89

After simulating and optimizing the airport operational capacity values using the
three-stage Logistic modeling, the goodness-of-fit R2 of the airport operation life cycle
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Logistic model is 0.989. This indicates that the model fits the airport operational capacity
values very well, effectively characterizing the developmental changes in airport operations.
By substituting the parameters of the Logistic curve model obtained from the simulation
into the stage division equations of the two curve models, the key time nodes of the airport
operation life cycle for the standard scenario can be calculated over the observation period.
The stages are delineated according to the airport operation life cycle curve, as shown in
Table 8.

Table 8. Standard scenario airport operation life cycle stage division.

Logistic Modeling Germination Stage Growth Stage Maturity Stage Decline Stage Growth Time/Year

First (Bell-shaped) \ 2005–2013 2013–2017 \ 8.39
Second (Bell-shaped) \ 2017–2019 2019–2022 \ 1.73

Third (S-shaped) \ 2022–2040 2040–2050 \ 17.62

Combined with Figure 13 and Table 8, it is evident that the operational capacity of
Guangzhou Baiyun Airport exhibits multiple life cycle characteristics, encompassing three
life cycle processes, and generally follows an S-shaped trend. In 2016 and 2020, the airport
operational capacity displays a decreasing trend due to limitations in airport construction
and the impact of emergencies. Nevertheless, at the conclusion of the two life cycles, the
airport operational capacity remains above 90% of the maximum value. Consequently, the
airport operation does not enter a decline period after the two bell curve developments but
transitions directly to the growth stage of the next life cycle.

During the development of the third life cycle, the rate of change in airport operational
capacity peaks in 2030. After this point, the rate of change gradually slows, leading to
the stabilization of the airport operational capacity. From Table 8, it is evident that after
Guangzhou Baiyun Airport enters the third life cycle, its operations remain in the growth
stage from 2022 to 2040, before transitioning to the maturity stage in 2040, demonstrating
stable development.

3.2.2. Multi-Scenario Life Cycle Stage Division

The values of airport operational capacity in different scenarios were calculated using
the system dynamics model and subsequently input into the Logistic modeling to fit the
airport operation life cycle curves across these scenarios, as shown in Figure 14. The airport
operation life cycle Logistic model parameters for each scenario, obtained through Logistic
modeling, are presented in Table 9.

The goodness-of-fit of the airport operation life cycle across the four scenarios exceeds
0.98, indicating that different types of Logistic curve modeling can effectively explain the
life cycle of airport operations under varying scenarios and facilitate the division of life
cycle stages. By substituting the calculated Logistic curve model parameters from Table 9
into the stage division equations for both the S-shaped and bell-shaped Logistic models,
we obtain the airport operation life cycle stage divisions across multiple scenarios over the
observation period, as shown in Table 10.

Combined with Figure 14 and Table 10, it is evident that the airport operations in each
scenario exhibit multiple life cycle characteristics. Scenarios S1 and S2 exhibit three life
cycle histories, with the first two life cycles displaying bell curve changes due to constraints
from airport construction and emergencies, while the third life cycle follows the typical
S-curve development pattern for airport operations. In Scenario S1, airport operations are
in the growth phase from 2022 to 2040, with the rate of change in operational capacity
peaking in 2031 and transitioning to the maturity phase in 2040. In Scenario S2, airport
operations are in the growth phase from 2022 to 2036, with the rate of change peaking in
2027 before transitioning to the maturity phase in 2036.
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Table 9. Multi-scenario airport operation life cycle Logistic curve modeling parameters.

Scenario Logistic Modeling Time Period H L W M

Scenario 1
(S1)

First (Bell-shaped) 2005–2017 463,046.33 173,063.79 4.18 2016.13
Second (Bell-shaped) 2017–2022 869,202.33 627,820.81 2.50 2020.37

Third (S-shaped) 2022–2050 64,794.59 18,454.56 4.25 2030.61

Scenario 2
(S2)

First (Bell-shaped) 2005–2017 463,046.33 173,063.79 4.18 2016.13
Second (Bell-shaped) 2017–2022 869,202.33 627,820.81 2.50 2020.37

Third (S-shaped) 2022–2050 51,011.48 15,998.31 3.83 2027.36

Scenario 3
(S3)

First (Bell-shaped) 2005–2017 463,046.33 173,063.79 4.18 2016.13
Second (Bell-shaped) 2017–2022 869,202.33 627,820.81 2.50 2020.37
Third (Bell-shaped) 2022–2028 −477,727.96 −912,382.06 3.52 2026.78
Fourth (S-shaped) 2028–2050 55,406.35 26,056.58 2.17 2031.32

Scenario 4
(S4)

First (Bell-shaped) 2005–2017 463,046.33 173,063.79 4.18 2016.13
Second (Bell-shaped) 2017–2022 869,202.33 627,820.81 2.50 2020.37
Third (Bell-shaped) 2022–2028 1,107,056.74 672,698.72 3.52 2026.78
Fourth (S-shaped) 2028–2050 46,237.25 27,627.83 1.69 2030.48

Scenarios S3 and S4 incorporate emergency variables into the first two scenarios. Under
the assumption of an emergency event occurring in 2026, airport operations exhibit a four-
segment life cycle, where the first three segments display bell-shaped curve fluctuations,
while the fourth segment presents an S-shaped curve. Assuming an emergency event
occurs in 2026, the airport operation capacity values for Scenarios S3 and S4 experience
a brief decrease. Since these values do not fall below 90% of the maximum operational
capacity under the third bell curve model, they do not enter a decline period and transition
directly to the growth phase of the fourth life cycle segment. In Scenario S3, the airport
operates in the growth phase of the fourth life cycle segment from 2028 to 2036, with the
rate of change in operational capacity peaking in 2031 and transitioning to the maturity
phase by 2036. In Scenario S4, the airport remains in the growth phase of the fourth life
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cycle from 2028 to 2034, with the rate of change in operational capacity peaking in 2030
and entering the maturity phase in 2034.

Table 10. Multi-scenario airport operation life cycle stage division.

Scenario Logistic Modeling Growth Stage Maturity Stage Growth Time/Year

Scenario 1
(S1)

First (Bell-shaped) 2005–2013 2013–2017 8.39
Second (Bell-shaped) 2017–2019 2019–2022 1.73

Third (S-shaped) 2022–2040 2040–2050 17.95

Scenario 2
(S2)

First (Bell-shaped) 2005–2013 2013–2017 8.39
Second (Bell-shaped) 2017–2019 2019–2022 1.73

Third (S-shaped) 2022–2036 2036–2050 13.78

Scenario 3
(S3)

First (Bell-shaped) 2005–2013 2013–2017 8.39
Second (Bell-shaped) 2017–2019 2019–2022 1.73
Third (Bell-shaped) 2022–2024 2024–2028 2.48
Fourth (S-shaped) 2028–2036 2036–2050 8.09

Scenario 4
(S4)

First (Bell-shaped) 2005–2013 2013–2017 8.39
Second (Bell-shaped) 2017–2019 2019–2022 1.73
Third (Bell-shaped) 2022–2024 2024–2028 2.47
Fourth (S-shaped) 2028–2034 2034–2050 6.19

Comparing the life cycles of airport operations across the four scenarios, Scenario S1
sustains longer growth periods and exceeds the performance of the standard scenario in
the absence of emergency disruptions, expanded airport construction, and rapid economic
growth. The other scenarios reach the bottleneck of airport operations more quickly due to
constraints from slow economic growth or emergencies, which hinder the accumulation
of operational capacity during the growth period, resulting in the slower development of
airport operations.

4. Discussion
4.1. Mechanisms for Influencing Factors at Different Levels of Airport Operation

The combined effects of various influencing factors ultimately lead to different airport
operation states, giving the airport operation life cycle characteristics of both single-life
cycle and multi-life cycle patterns. However, it remains unclear how these subsystems
specifically impact airport operations and what conditions airport operations must meet
to progress to the next stage of development. By analyzing these factors, the influence
mechanisms of different levels on airport operations can be clarified, providing airport
managers with a scientific basis for formulating development plans and offering informed
recommendations. Therefore, using a system dynamics model to analyze the four subsys-
tems of the airport operation system—airport construction, city economy, city demand, and
macro-environment—and taking the standard scenario as an example, the trends in each
subsystem over different time periods are able to be illustrated in Figure 15.

Airport construction capacity and city demand capacity are not only influenced by
their respective internal factors but are also significantly impacted by city economic ca-
pacity, which serves as an external driver of the airport operation system and contributes
to the development of both [32,34]. As shown in Figure 15, driven by the city economy,
airport construction capacity, city demand capacity, and city economic capacity all exhibit
an upward trend and maintain steady growth until 2035, with all three positively impacting
airport operations. The downward trend observed in the first life cycle of airport operation
is primarily due to the limitation of the terminal area on passenger throughput, rather than
the impact of airport construction capacity on operations. The macro-environment subsys-
tem is expected to remain steady, with fluctuations around a standard value. However, the
sudden decline in the macro-environment in 2020 impacted airport operations, leading to
the arrival of a second life cycle phase.
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In the absence of emergencies, the macro-environment remains stable, and the other
three subsystems will continue to show an upward trend until around 2035, collectively
driving the development of airport operations toward maturity. However, while the macro-
environment may remain stable, the other three subsystems will not continue to grow
indefinitely. The development of the city economy and city demand will eventually level off,
and airport construction will gradually reach saturation due to internal space constraints
and the influence of external factors such as the city economy and city demand. This
will ultimately lead to the maturity and stability of airport operations. This indicates
that although airport operations during the intermediate development period exhibit
multiple life cycle characteristics due to various influencing factors, the overall trend still
follows an S-shaped growth pattern. Ultimately, operations reach a stable state under the
influence of multiple factors, validating the “slow–rapid–slow” growth pattern in airport
operations [40].

The airport operation system dynamics model constructed in this paper closely resem-
bles the real system, where airport operations rely on the support of other subsystems to
form the life cycle stages of airport operations through the fluctuating changes in external
factors. In this process, airport operations passively absorb both positive and negative
influences from various factors and cannot actively respond to them. When subsystems
such as airport construction, urban development, and the macro-environment reach equi-
librium, airport operations also tend to stabilize. To move airport operations into the next
life cycle stage after reaching a bottleneck, the airport must shift from being a passive entity
to an active one. It should actively influence changes in other subsystems, disrupt the
equilibrium of various factors, and integrate the airport, city, and macro-environment into
a cohesive system. This integration will promote progressive changes in the life cycle stage
of airport operations.

4.2. Policy Recommendations

This paper addresses the limitations of traditional airport development planning by
studying the life cycle characteristics of airport operations and analyzing the patterns
of change in airport operation. To assist airport managers in better formulating airport
development plans, this paper proposes relevant policy recommendations based on the
research findings.
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1. Comprehensive airport operation indicators should be incorporated into airport
development plans. In the evaluation of airport operations, single indicators such
as throughput and delay time only describe specific aspects and fail to capture the
overall performance of airport operations. Therefore, in addition to setting individual
planning goals for airport operations, comprehensive goals should also be established.
For instance, using airport operational capacity, influenced by various factors, as a
comprehensive indicator to measure airport development. Setting specific goals will
promote the coordinated and sustainable development of airports.

2. Airport development planning should prioritize identifying the stages of airport
operation development. The different development states of airport operations are
shaped by multiple factors. According to the life cycle of airport operations, the
characteristics and needs of airports vary at different stages of development. Therefore,
specific development plans should be formulated for each stage, addressing the
unique requirements of each phase and refining the operational tasks accordingly to
further enhance airport operational capacity.

3. Airport development planning should emphasize strengthening the connection be-
tween city and airport operations. At the current stage, the city’s economy, as the
primary external driver of the airport operation system, has a significant impact
on airport operations. Therefore, planning should reflect the integration of city and
airport development, fully exploring the city’s role in promoting airport operations
while laying the groundwork for the future integration of both systems.

4. Airport development planning should incorporate response measures for unexpected
situations and dynamically adjust development strategies accordingly. In today’s
complex and rapidly changing external environment, unexpected situations can sig-
nificantly impact airport operations. If the airport is unable to effectively respond, it
may experience prolonged stagnation, hindering the achievement of airport devel-
opment goals. Therefore, a detailed contingency plan should be included in airport
development planning to address potential emergencies, ensuring the stability and
continuity of airport operations.

5. Conclusions

To address the insufficient consideration of internal influence mechanisms, long-term
dynamics, and life cycle patterns in traditional airport development planning, this paper
investigates a dynamic prediction and stage division method for airport operations based
on life cycle theory. It analyzes the operational patterns of airports and promotes stable
and sustainable airport development. By constructing a system dynamics model for airport
operations, the operational capacity of Guangzhou Baiyun International Airport from
2005 to 2035 is simulated and calculated. Using Logistic modeling, the operational trend
in Guangzhou Baiyun International Airport up to 2050 is predicted, and the different
development stages of airport operations are classified. Meanwhile, to enhance the airport
operation simulation environment, the life cycle changes in the airport operations under
different scenarios are explored. The following conclusions can be drawn:

1. The operational capacity of Guangzhou Baiyun International Airport shows an overall
upward trend, with two declines observed in 2016 and 2020. The decline in operational
capacity in 2016 was due to limitations in passenger throughput caused by the size of
the terminal building. The capacity returned to an upward trend in 2018 when the
expanded terminal building was put into use. The decline in operational capacity in
2020 was caused by a drop in city demand for airport services due to emergencies.
Airport operations gradually recovered as the impact of the emergencies diminished.

2. Based on Logistic curve modeling to predict the operational trend from 2005 to 2050,
Guangzhou Baiyun International Airport exhibits three life cycle phases under the
standard scenario, reflecting multiple life cycle characteristics. The first and second
life cycles follow bell-shaped curves, while the third phase follows an S-shaped curve.
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Airport operations are in the growth phase from 2022 to 2040, with the rate of change
in operational capacity peaking in 2030 and entering the maturity phase around 2040.

3. The simulations of airport operations under different scenarios reveal that fluctuations
in the city’s economy have a significant impact on changes in airport operations. How-
ever, this factor only affects the value of airport operational capacity and does not alter
the overall trend in airport operations. In contrast, the occurrence of emergencies can
disrupt the airport operation life cycle and accelerate its transition to the next phase.

This study can help airport managers gain a comprehensive understanding of the
airport operation life cycle, clarify the internal influence mechanisms, and recognize the
characteristics and needs of airports at different stages. It provides a theoretical foundation
for airport managers to formulate more scientific airport development plans, promoting
stable and sustainable airport operations.

In this study, the methodological framework for airport operation life cycle prediction
and stage division employs the Logistic Growth Curve, which is commonly utilized in
existing research, to simulate the airport operation life cycle. Additionally, more accurate
research methods can be employed in future studies to predict and segment the airport
operation life cycle. Furthermore, the scope of the research can be expanded by comparing
and analyzing airports in high-development and low-development stages to yield richer
research results.
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