Multi-Objective Optimal Power Flow Analysis Incorporating Renewable Energy Sources and FACTS Devices Using Non-Dominated Sorting Kepler Optimization Algorithm
Abstract
:1. Introduction
1.1. Literature Review
1.2. The Novelty and Scope of Work
- This paper introduces a novel non-dominating sorting KOA referred to as NSKOA, to tackle SOPF problems.
- It addresses the OPF problem by incorporating RESs, namely solar PV, wind, and hydro power systems and FACTs devices such as the SVC and TCSC.
- It optimizes the size and location to maximize the benefits of FACTS devices for the power system.
- The paper utilizes lognormal, Weibull, and Gumbel Probability Density Functions (PDFs) to effectively model and characterize the RES uncertainties within the system.
- A statistical analysis is performed to confirm the effectiveness of the proposed NSKOA and to highlight the advantages gained from integrating RES and FACTS devices.
2. Problem Formulation
- -
- denotes the objective function that needs to be minimized.
- -
- represents the collection of equality constraints that must be fulfilled.
- -
- represents the vector of decision variables, and d represent the vector of state variables.
2.1. Optimization Problem
2.1.1. Cost of Generation for Thermal Units
2.1.2. The Investment Cost of FACTS Modeling
- SVC modeling
- TCSC modeling
2.1.3. Cost Generation for Renewable Sources
Direct Cost of RES Generators (DCost)
The Evaluation of Cost Uncertainties in RES Generators
2.2. Objective Functions
2.2.1. Minimization of Power Production Cost
2.2.2. Real Power Losses (RPLs)
2.2.3. Total Voltage Deviation (TVD)
2.2.4. Voltage Stability Index (VSI)
2.3. Constraints
2.3.1. Equality Constraints
2.3.2. Security Constraints
3. RES Uncertainty Models
3.1. Wind Power Model
3.2. Probability of Wind Power at Various Wind Speeds
4. The Proposed Optimization Technique
4.1. Kepler Optimization Algorithm
- -
- The orbital period of each planet (candidate solution) is randomly determined from a normal distribution.
- -
- The eccentricity of the planet’s orbit is randomly chosen within the range of 0 to 1.
- -
- , , , and are random numbers chosen within the range of 0 to 1.
- -
- Solution fitness is evaluated based on the objective function.
- -
- The Sun, the central star, symbolizes the best solution at each time.
- Phase 1: Initialization process
- Phase 2: Determining the gravitational force (F)
- Phase 3: Calculating of planets velocity
- Phase 4: Preventing the local optimum
- Phase 5: Updating objects’ locations
- Phase 6: Updating the distance of objects from the Sun
- Phase 7: Elitism
4.2. Non-Dominated Sorting Kepler Optimization Algorithm (NSKOA)
- Non-Dominated Sorting: This mechanism is essential for navigating trade-offs in multi-objective problems by ranking solutions based on Pareto dominance. In the modified version, after initializing the population and calculating the objective functions, non-dominated sorting is performed to assign ranks to solutions. Non-dominated solutions, which are not outperformed in all objectives, receive a rank of 1, while subsequent ranks are assigned iteratively to solutions that are dominated by others. This ranking system helps preserve a diverse set of optimal solutions, ensuring that different trade-offs between objectives are explored.
- Crowding distance (CD): An important aspect of this approach is the calculation of crowding distance, which measures the proximity of solutions to their neighbors in the objective space. A higher crowding distance indicates a less crowded region, helping to maintain diversity among solutions and favoring those that are well-distributed along the Pareto front.
- 2.
- Best Compromise Solution (BCS): The best compromise solution (BCS) is introduced in the multi-objective version, calculated using Equation (72). This BCS serves as a reference point to guide the search toward an optimal trade-off among objectives, considering both ranks and crowding distances.
- 3.
- Elitism and Population Combination: After each iteration, the algorithm combines the newly generated population (Npi) with the previous population (Pi) to form an augmented population (Upi). Non-dominated sorting is again applied to this combined population. From this merged pool, the best N elitist objects are selected to form the next generation. This ensures that high-quality solutions from both the new and previous generations are preserved, promoting convergence to the Pareto front. Algorithm 1 below represents the pseudocode of NSKOA. More details on the process how to transform KOA of NSKOA are given at Appendix A.
Algorithm 1: Pseudocode of NSKOA |
Step 1:
|
Step 2:
|
Step 3:
|
Step 4: Perform non-dominated sorting:
|
Step 5: While (t < Tmax):
|
Step 6: For i = 1: N Pi = population
If r > r1
Else
End if |
Step 7:
Upi = Npi U Pi. |
Step 8: Perform non dominated sorting:
|
Step 9:
|
Step 10:
|
End for End while |
4.3. The Best Compromise Solution (BCS)
5. Results and Discussion
5.1. Test-System: Conventional and Modified IEEE 57 BUS Network
- Base Case Scenario: In this case, the conventional IEEE 57 bus was simulated in order to show the impact of RESs and FACTs devices on the four optimization cases (cost, power losses, voltage deviation, and voltage stability index) in the next two scenarios.
- Scenario number 1: This study was conducted on the modified IEEE 57 system after the integration of RES sources.
- Scenario number 2: This study was conducted on the modified IEEE 57 system after the integration of RES sources and FACTs devices.
5.2. Case 1: Total Generation Cost and the Investment Cost of FACTS Optimization
5.3. Case 2: Real Power Loses and the Investment Cost of FACTS Optimization
5.4. Case 3: Total Voltage Deviation and the Investment Cost of FACTS Optimization
5.5. Case 4: Voltage Stability Index and the Investment Cost of FACTS Optimization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm A1: The Pseudocode of NSKOA |
Initialization of the initial population P0 of size N Evaluate the solutions of P0 Sort the solutions of P0 Until stopping criterion is satisfied do Create Qt from Pt (using KOA by Equation (68)), Evaluate all solutions Combine the populations of parents and children Rt = Pt ∪ Qt, Sort the solutions of Rt into subset Fi by Pareto dominance Pt +1 = 0; i = 1 As long as |Pt + 1| + |Fi| < N Do Pt + 1 ← Pt + 1 ∪ Fi; i = i + 1 End as long as Order the subset Fi according to the “crowding distances” Add N-|P t + 1| solutions with the largest distance values in Pt + 1 End as long as |
- The classification of the population is as follows:
- A
- The concept of dominance is as follows:
- B
- The rank is as follows:
- Undominated rank 1
- Dominated except by rank 1 rank 2
- …
- C
- The crowding distance [40]
References
- Wei, H.; Sasaki, H. Large Scale Optimal Power Flow Based on Interior Point Quadratic Programming of Solving Symmetric Indefinite System. IFAC Proc. Vol. 1995, 28, 377–382. [Google Scholar] [CrossRef]
- Yan, X.; Quintana, V.H. An infeasible interior-point algorithm for optimal power-flow problems. Electr. Power Syst. Res. 1996, 39, 39–46. [Google Scholar] [CrossRef]
- Santos, A.J.; Da Costa, G.R.M. Optimal-power-flow solution by Newton’s method applied to an augmented Lagrangian function. IEE Proc.-Gener. Transm. Distrib. 1995, 142, 33–36. [Google Scholar] [CrossRef]
- Al-Muhawesh, T.A.; Qamber, I.S. The established megawatt linear programming-based optimal power flow model applied to the real power 56-bus system in eastern province of Saudi Arabia. Energy 2008, 33, 12–21. [Google Scholar] [CrossRef]
- Momoh, J.; Adapa, R.; El-Hawary, M. A review of selected optimal power flow literature to 1993 part i: Nonlinear and quadratic Programming Approaches. IEEE Trans. Power Syst. 1999, 14, 96–104. [Google Scholar] [CrossRef]
- Islam, M.Z.; Wahab, N.I.A.; Veerasamy, V.; Hizam, H.; Mailah, N.F.; Guerrero, J.M.; Nasir, M.N.M. A harris hawks’ optimization based single- and multi-objective optimal power flow considering environmental emission. Sustainability 2020, 12, 5248. [Google Scholar] [CrossRef]
- Chen, G.; Qian, J.; Zhang, Z.; Li, S. Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem. Appl. Soft Comput. 2020, 92, 106321. [Google Scholar] [CrossRef]
- Kaur, M.; Narang, N. An integrated optimization technique for optimal power flow solution. Soft Comput. 2020, 24, 10865–10882. [Google Scholar] [CrossRef]
- Warid, W. Optimal power flow using the AMTPG-Jaya algorithm. Appl. Soft Comput. 2020, 91, 106252. [Google Scholar] [CrossRef]
- Naidu, T.P.; Venkateswararao, B.; Balasubramanian, G. Whale Optimization Algorithm based Optimal Power Flow: In View of Power Losses, Voltage Stability and Emission. In Proceedings of the 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 27–29 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Pravina, P.; Babu, M.R.; Kumar, A.R. Solving Optimal Power Flow Problems Using Adaptive Quasi-Oppositional Differential Migrated Biogeography-Based Optimization. J. Electr. Eng. Technol. 2021, 16, 1891–1903. [Google Scholar] [CrossRef]
- Jebaraj, L.; Sakthivel, S. A new swarm intelligence optimization approach to solve power flow optimization problem incorporating conflicting and fuel cost based objective functions. e-Prime 2022, 2, 100031. [Google Scholar] [CrossRef]
- Houssein, E.H.; Hassan, M.H.; Mahdy, M.A.; Kamel, S. Development and application of equilibrium optimizer for optimal power flow calculation of power system. Appl. Intell. 2023, 53, 7232–7253. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Narang, N. Optimal Power Flow Solution Using Space Transformational Invasive Weed Optimization Algorithm. Iran. J. Sci. Technol. Trans. Electr. Eng. 2023, 47, 939–965. [Google Scholar] [CrossRef]
- Abid, M.; Belazzoug, M.; Mouassa, S.; Chanane, A.; Jurado, F. Optimal power flow of thermal-wind-solar power system using enhanced Kepler optimization algorithm: Case study of a large-scale practical power system. Wind. Eng. 2024, 48, 708–739. [Google Scholar] [CrossRef]
- Duman, S.; Li, J.; Wu, L. AC optimal power flow with thermal–wind–solar–tidal systems using the symbiotic organisms search algorithm. IET Renew. Power Gener. 2021, 15, 278–296. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, H.D.; Duong, M.Q. Optimal Power Flow Solutions for Power System Considering Electric Market and Renewable Energy. Appl. Sci. 2023, 13, 3330. [Google Scholar] [CrossRef]
- Samakpong, T.; Ongsakul, W.; Manjiparambil, N.M. Optimal power flow incorporating renewable uncertainty related opportunity costs. Comput. Intell. 2022, 38, 1057–1082. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Selim, A.; Khurshaid, T.; Domínguez-García, J.L. A modified rao-2 algorithm for optimal power flow incorporating renewable energy sources. Mathematics 2021, 9, 1532. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z. Solving optimal power flow problem with stochastic wind–solar–small hydro power using barnacles mating optimizer. Control. Eng. Pract. 2021, 106, 104672. [Google Scholar] [CrossRef]
- Avvari, R.K.; DM, V.K. A new hybrid evolutionary algorithm for multi-objective optimal power flow in an integrated WE, PV, and PEV power system. Electr. Power Syst. Res. 2023, 214, 108870. [Google Scholar] [CrossRef]
- Shekarappa G, S.; Mahapatra, S.; Raj, S. A novel meta-heuristic approach for optimal RPP using series compensated FACTS controller. Intell. Syst. Appl. 2023, 18, 200220. [Google Scholar] [CrossRef]
- Ebeed, M.; Kamel, S.; Youssef, H. Optimal setting of STATCOM based on voltage stability improvement and power loss minimization using Moth-Flame algorithm. In Proceedings of the 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 27–29 December 2016; pp. 815–820. [Google Scholar] [CrossRef]
- Durković, V.; Savić, A.S. ATC enhancement using TCSC device regarding uncertainty of realization one of two simultaneous transactions. Int. J. Electr. Power Energy Syst. 2020, 115, 105497. [Google Scholar] [CrossRef]
- Shafik, M.B.; Chen, H.; Rashed, G.I.; El-Sehiemy, R.A. Adaptive multi objective parallel seeker optimization algorithm for incorporating TCSC devices into optimal power flow framework. IEEE Access 2019, 7, 36934–36947. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z. Optimal placement and sizing of FACTS devices for optimal power flow using metaheuristic optimizers. Results Control Optim. 2022, 8, 100145. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z. Hyper-heuristic strategies for optimal power flow problem with FACTS devices allocation in wind power integrated system. Results Control Optim. 2024, 14, 100373. [Google Scholar] [CrossRef]
- Khan, N.H.; Wang, Y.; Tian, D.; Jamal, R.; Iqbal, S.; Saif, M.A.A.; Ebeed, M. A Novel Modified Lightning Attachment Procedure Optimization Technique for Optimal Allocation of the FACTS Devices in Power Systems. IEEE Access 2021, 9, 47976–47997. [Google Scholar] [CrossRef]
- Banerjee, S.; Roshan, R.; Bhattacharya, K.; Alam, A. Reduction of Power losses & Improvement of power transfer with SVC & TCSC using Sensitivity Index. In Proceedings of the 2018 4th International Conference for Convergence in Technology (I2CT), Mangalore, India, 27–28 October 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Nusair, K.; Alasali, F.; Hayajneh, A.; Holderbaum, W. Optimal placement of FACTS devices and power-flow solutions for a power network system integrated with stochastic renewable energy resources using new metaheuristic optimization techniques. Int. J. Energy Res. 2021, 45, 18786–18809. [Google Scholar] [CrossRef]
- Biswas, P.P.; Arora, P.; Mallipeddi, R.; Suganthan, P.N.; Panigrahi, B.K. Optimal placement and sizing of FACTS devices for optimal power flow in a wind power integrated electrical network. Neural Comput. Appl. 2021, 33, 6753–6774. [Google Scholar] [CrossRef]
- Hassan, M.H.; Daqaq, F.; Kamel, S.; Hussien, A.G.; Zawbaa, H.M. An enhanced hunter-prey optimization for optimal power flow with FACTS devices and wind power integration. IET Gener. Transm. Distrib. 2023, 17, 3115–3139. [Google Scholar] [CrossRef]
- Ebeed, M.; Mostafa, A.; Aly, M.M.; Jurado, F.; Kamel, S. Stochastic optimal power flow analysis of power systems with wind/PV/TCSC using a developed Runge Kutta optimizer. Int. J. Electr. Power Energy Syst. 2022, 152, 109250. [Google Scholar] [CrossRef]
- Sahari, N.; Azman, Z.; Ngadiron, Z.; Yi, S.S.; Hanim, F.; Noh, M. Optimal Sizing of Static VAR Compensator Using Bees Algorithm for Cost Minimization. J. Electr. Power Electron. Syst. 2020, 2, 1–6. [Google Scholar]
- Xie, S.; Wang, X.; Qu, C.; Wang, X.; Guo, J. Impacts of different wind speed simulation methods on conditional reliability indices. Int. Trans. Electr. Energy Syst. 2014, 20, 1–6. [Google Scholar] [CrossRef]
- Mouassa, S.; Alateeq, A.; Alassaf, A.; Bayindir, R.; Alsaleh, I.; Jurado, F. Optimal Power Flow Analysis with Renewable Energy Resource Uncertainty Using Dwarf Mongoose Optimizer: Case of ADRAR Isolated Electrical Network. IEEE Access 2024, 12, 10202–10218. [Google Scholar] [CrossRef]
- Abaci, K.; Yamacli, V. Differential search algorithm for solving multi-objective optimal power flow problem. Int. J. Electr. Power Energy Syst. 2016, 79, 1–10. [Google Scholar] [CrossRef]
- Kyomugisha, R.; Muriithi, C.M.; Edimu, M. Multiobjective optimal power flow for static voltage stability margin improvement. Heliyon 2021, 7, e08631. [Google Scholar] [CrossRef]
- Belagra, E.A.; Mouassa, S.; Chettih, S.; Jurado, F. Optimal power flow calculation in hybrid power system involving solar, wind, and hydropower plant using weighted mean of vectors algorithm. Wind. Eng. 2023, 48, 468–493. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In Proceedings of the Parallel Problem Solving from Nature VI (PPSN-VI), Paris, France, 18–20 September 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 849–858. [Google Scholar]
Elements | IEEE 57-Bus Test System |
---|---|
No of buses | 57 |
No of branches | 81 |
No of generators | 07 |
No of thermal generators | 04 |
No of RES generators | 03 |
No of load buses | 50 |
No of control variables | 161 |
Initial active and reactive load demand | 1250.80 MW; 336.40 Mvar |
Wind-power unit | |||
No. of turbines | Rated power, (MW) | Weibull PDF parameters | |
25 | 75 | l = 9; p = 2 | |
Photovoltaic plant | |||
Rated power, (MW) | Lognormal PDF parameters | ||
50 | μ = 5.2 σ = 0.6 | ||
Combined solar and small hydro power | |||
Photovoltaic rated power (MW) | Lognormal PDF parameters | ||
45 | μ = 5.0 σ = 0.6 | ||
Small hydro rated power (MW) | Gumbel PDF parameters | ||
5 | λ = 15 γ = 1.2 |
Variables | Base Case | Scenario 1 | Scenario 2 | BCS | ||
---|---|---|---|---|---|---|
Pg1 | 331.516 | 552.331 | 550.564 | 551.9723 | ||
Pg2 | 99.986 | 100.000 | 100.000 | 100.000 | ||
Pg3 | 76.635 | 76.6229 | 76.6240 | 76.6183 | ||
Pg6 | 99.997 | 100.000 | 100.000 | 99.9995 | ||
Pg8 | 53.916 | 50.5657 | 50.8772 | 50.0453 | ||
Pg9 | 160.173 | 199.9998 | 200.000 | 199.999 | ||
Pg12 | 209.847 | 210.000 | 209.999 | 209.998 | ||
Vg1 | 1.100000 | 1.09983 | 1.099983 | 1.099990 | ||
Vg2 | 1.095161 | 1.092973 | 1.093325 | 1.093092 | ||
Vg3 | 1.079965 | 1.070328 | 1.071347 | 1.070841 | ||
Vg6 | 1.065115 | 1.043710 | 1.040434 | 1.040998 | ||
Vg8 | 1.064082 | 1.034728 | 1.029753 | 1.031650 | ||
Vg9 | 1.050054 | 1.027750 | 1.032134 | 1.028320 | ||
Vg12 | 1.06068 | 1.03707 | 1.03637 | 1.03660 | ||
T(4,18) | 1.0539 | 1.0084 | 1.0507 | 1.0724 | ||
T(4,18) | 0.9958 | 0.9868 | 0.9727 | 0.9664 | ||
T(21,20) | 1.0538 | 1.0122 | 1.0010 | 1.0133 | ||
T(24,25) | 0.9601 | 0.939 | 0.9495 | 0.9457 | ||
T(24,25) | 1.0158 | 0.9375 | 0.9622 | 0.9585 | ||
T(24,26) | 1.0020 | 0.9820 | 0.9787 | 0.983 | ||
T(7,29) | 1.0006 | 0.9599 | 0.9659 | 0.9634 | ||
T(34,32) | 0.9717 | 0.9184 | 0.9135 | 0.9107 | ||
T(11,41) | 0.9220 | 0.9000 | 0.9158 | 0.9123 | ||
T(15,45) | 0.9835 | 0.9887 | 1.0014 | 0.9959 | ||
T(14,46) | 0.9744 | 0.9648 | 0.9800 | 0.9744 | ||
T(10,51) | 0.9978 | 0.9723 | 0.9782 | 0.9775 | ||
T(13,49) | 0.9503 | 0.9331 | 0.9784 | 0.9771 | ||
T(11,43) | 0.9997 | 0.9591 | 0.9872 | 0.9776 | ||
T(40,56) | 1.0168 | 0.9861 | 0.9509 | 0.9432 | ||
T(39,57) | 0.9744 | 0.9549 | 0.9577 | 0.9617 | ||
T(9,55) | 0.9922 | 0.9643 | 0.97113 | 0.9679 | ||
Cost (USD/h) | 5570.956 | 5217.635 | 5208.97 | 5211.722 | ||
TFcost (USD/h) | — | — | 288.973 | 82.5115 | ||
Emission | 234.75 | 181.294 | 180.125 | 181.06 | ||
RPL (MW) | 43.958 | 38.7203 | 37.263 | 37.833 | ||
TVD (pu) | 1.4994 | 1.5821 | 1.6739 | 1.6739 | ||
VSI (pu) | 0.2899 | 0.2757 | 0.2533 | 0.2533 | ||
Optimal size and location of SVC–TCSC | ||||||
svc(13) | 50.000 | svc(42) | 0.7796 | |||
svc(16) | 24.050 | svc(44) | 6.5088 | |||
svc(21) | 7.135 | svc(21) | 3.5401 | |||
svc(35) | 15.038 | svc(35) | 12.438 | |||
svc(52) | 5.825 | svc(52) | 0.6752 | |||
svc(54) | 2.567 | svc(54) | 1.5976 | |||
Tcsc(21,22) | 0.0377 | Tcsc(30,31) | 0.3588 | |||
Tcsc(30,31) | 0.3976 | Tcsc(13,49) | 0.1184 | |||
Tcsc(13,49) | 0.1260 | Tcsc(29,52) | 0.1430 | |||
Tcsc(29,52) | 0.1393 | Tcsc(56,42) | 0.2421 | |||
Tcsc(56,42) | 0.1939 | Tcsc(38,49) | 0.0138 | |||
Tcsc(38,49) | 0.0332 |
Case 1 | Case 2 | ||||
---|---|---|---|---|---|
Algorithms | Results ($/h) | Algorithms | Results (MW) | ||
BMO | [20] | 5300.457 | BMO | [20] | 20.7850 |
MFO | [20] | 5316.140 | MFO | [20] | 21.3031 |
PSO | [20] | 5417.538 | PSO | [20] | 21.3621 |
GTO | [39] | 5260.009 | GTO | [39] | 19.7703 |
AEO | [39] | 5260.249 | AEO | [39] | 19.7633 |
INFO | [39] | 5259.204 | INFO | [39] | 19.7040 |
NSKOA | 5217.635 | NSKOA | 16.8360 |
Control Variables | Base Case | Scenario 1 | Scenario 2 | BCS | ||
---|---|---|---|---|---|---|
Pg1 | 198.3536 | 301.5189 | 297.4671 | 299.6088 | ||
Pg2 | 19.6385 | 8.424944 | 7.759523 | 8.143402 | ||
Pg3 | 136.582 | 140.000 | 139.9811 | 139.962 | ||
Pg6 | 94.5306 | 99.9969 | 99.9978 | 99.9930 | ||
Pg8 | 319.912 | 308.590 | 311.9925 | 309.931 | ||
Pg9 | 199.070 | 199.999 | 199.999 | 200.000 | ||
Pg12 | 209.994 | 209.998 | 210.000 | 209.997 | ||
Vg1 | 1.074194 | 1.075784 | 1.073172 | 1.075249 | ||
Vg2 | 1.067047 | 1.068157 | 1.066069 | 1.067677 | ||
Vg3 | 1.061879 | 1.064005 | 1.063692 | 1.063580 | ||
Vg6 | 1.063364 | 1.059364 | 1.059340 | 1.059306 | ||
Vg8 | 1.075176 | 1.061550 | 1.064236 | 1.064473 | ||
Vg9 | 1.051757 | 1.043234 | 1.051782 | 1.047636 | ||
Vg12 | 1.040481 | 1.037484 | 1.037586 | 1.038832 | ||
T(4,18) | 1.042820 | 0.964453 | 0.955661 | 0.950783 | ||
T(4,18) | 0.969822 | 1.026266 | 1.035669 | 1.040006 | ||
T(21,20) | 1.00078 | 1.019229 | 1.006507 | 1.014671 | ||
T(24,25) | 0.946581 | 0.937832 | 0.960908 | 0.954601 | ||
T(24,25) | 0.962140 | 0.971551 | 0.975584 | 0.972877 | ||
T(24,26) | 1.025195 | 1.013087 | 1.009955 | 1.016856 | ||
T(7,29) | 0.991647 | 0.983174 | 0.990604 | 0.986726 | ||
T(34,32) | 0.943693 | 0.927002 | 0.929053 | 0.932515 | ||
T(11,41) | 0.922844 | 0.900000 | 0.930783 | 0.919565 | ||
T(15,45) | 0.982334 | 0.983402 | 0.993976 | 0.984972 | ||
T(14,46) | 0.963354 | 0.963000 | 0.984149 | 0.975964 | ||
T(10,51) | 0.975757 | 0.969271 | 0.986212 | 0.977325 | ||
T(13,49) | 0.937087 | 0.936787 | 0.991151 | 0.980100 | ||
T(11,43) | 0.975505 | 0.977018 | 0.988254 | 0.982823 | ||
T(40,56) | 1.003564 | 1.006911 | 0.958281 | 0.960962 | ||
T(39,57) | 0.962797 | 0.968382 | 0.957930 | 0.969004 | ||
T(9,55) | 0.988405 | 0.986404 | 0.991583 | 0.984642 | ||
Optimal size and location of SVC–TCSC | ||||||
svc(13) | 17.3838 | svc(35) | 8.28284 | |||
svc(14) | 11.2275 | svc(38) | 6.5553 | |||
svc(35) | 12.2902 | svc(50) | 2.08968 | |||
svc(38) | 16.354 | svc(53) | 1.7785 | |||
svc(50) | 11.123 | svc(54) | 0.6111 | |||
svc(53) | 6.240 | |||||
Tcsc(9,12) | 0.0573 | Tcsc(9,12) | 0.0269 | |||
Tcsc(1,16) | 0.0308 | Tcsc(1,16) | 0.0042 | |||
Tcsc(30,31) | 0.3034 | Tcsc(47,48) | 0.0039 | |||
Tcsc(47,48) | 0.0175 | Tcsc(13,49) | 0.1356 | |||
Tcsc(13,49) | 0.1465 | Tcsc(56,42) | 0.0228 | |||
Tcsc(38,48) | 0.0371 | Tcsc(38,48) | 0.0347 | |||
Cost (USD/h) | 10,979.12 | 10,154.82 | 10,269.41 | 10,198.18 | ||
RPL (MW) | 18.7160 | 17.7299 | 16.3981 | 16.8366 | ||
TVD (pu) | 1.5782 | 1.5298 | 1.9708 | 1.6799 | ||
VSI (pu) | 0.2766 | 0.2759 | 0.2468 | 0.2593 |
Control Variables | Base Case | Scenario 1 | Scenario 2 | BCS | ||
---|---|---|---|---|---|---|
Pg1 | 198.3536 | 545.1541 | 425.9918 | 519.1516 | ||
Pg2 | 19.6385 | 42.6645 | 39.6999 | 57.4019 | ||
Pg3 | 136.582 | 110.9823 | 118.1849 | 96.2114 | ||
Pg6 | 94.5306 | 14.0295 | 58.4176 | 0.0000 | ||
Pg8 | 319.912 | 239.4711 | 224.5698 | 262.5789 | ||
Pg9 | 199.070 | 171.4433 | 199.999 | 182.9161 | ||
Pg12 | 209.994 | 164.5253 | 209.999 | 168.6121 | ||
Vg1 | 1.074194 | 1.04032 | 1.02062 | 1.02712 | ||
Vg2 | 1.067047 | 1.02816 | 1.01073 | 1.02244 | ||
Vg3 | 1.061879 | 1.02422 | 1.00583 | 1.02102 | ||
Vg6 | 1.063364 | 1.00302 | 1.00025 | 1.00153 | ||
Vg8 | 1.075176 | 1.02873 | 1.02203 | 1.03107 | ||
Vg9 | 1.051757 | 1.01095 | 1.01148 | 1.01119 | ||
Vg12 | 1.040481 | 1.01479 | 1.00556 | 1.00799 | ||
T(4,18) | 1.042820 | 0.97587 | 0.955661 | 0.97037 | ||
T(4,18) | 0.969822 | 1.04991 | 1.05236 | 1.04938 | ||
T(21,20) | 1.00078 | 0.96580 | 0.96297 | 0.96335 | ||
T(24,25) | 0.946581 | 0.96748 | 0.96883 | 0.97148 | ||
T(24,25) | 0.962140 | 0.96013 | 0.98919 | 0.98409 | ||
T(24,26) | 1.025195 | 1.03451 | 1.02960 | 1.03335 | ||
T(7,29) | 0.991647 | 0.95720 | 0.96383 | 0.95958 | ||
T(34,32) | 0.943693 | 0.92014 | 0.95538 | 0.95523 | ||
T(11,41) | 0.922844 | 0.900000 | 0.92422 | 0.90000 | ||
T(15,45) | 0.982334 | 0.93812 | 1.02301 | 0.98128 | ||
T(14,46) | 0.963354 | 0.98081 | 1.00294 | 0.99451 | ||
T(10,51) | 0.975757 | 0.99571 | 0.99637 | 0.99666 | ||
T(13,49) | 0.937087 | 0.90023 | 0.90764 | 0.90000 | ||
T(11,43) | 0.975505 | 0.97609 | 1.00385 | 1.00178 | ||
T(40,56) | 1.003564 | 1.02057 | 0.92593 | 0.94376 | ||
T(39,57) | 0.962797 | 0.90000 | 0.94573 | 0.95405 | ||
T(9,55) | 0.988405 | 0.98505 | 1.01831 | 0.98132 | ||
Optimal size and location of SVC–TCSC | ||||||
svc(14) | 21.585 | |||||
svc(21) | 12.785 | |||||
svc(35) | 30.907 | svc(35) | 28.511 | |||
svc(44) | 7.757 | |||||
svc(53) | 5.156 | |||||
svc(54) | 9.580 | |||||
Tcsc(19,20) | 0.3155 | Tcsc(19,20) | 0.3472 | |||
Tcsc(21,22) | 0.0936 | Tcsc(21,22) | 0.0657 | |||
Tcsc(37,39) | 0.0303 | Tcsc(37,39) | 0.0216 | |||
Tcsc(36,40) | 0.0373 | Tcsc(36,40) | 0.0199 | |||
Tcsc(56,42) | 0.1961 | |||||
Tcsc(38,49) | 0.1416 | |||||
Cost (USD/h) | 10,979.12 | 8102.0217 | 7546.581 | 8671.4377 | ||
TFcost($/h) | — | — | 237.380 | 73.0604 | ||
Emission | 17.7160 | 37.4701 | 26.0637 | 36.0721 | ||
RPL (MW) | 1.5782 | 0.6842 | 0.2138 | 0.3436 | ||
TVD (pu) | 0.2766 | 0.29440 | 0.2945 | 0.29601 |
Control Variables | Base Case | Scenario 1 | Scenario 2 | BCS | ||
---|---|---|---|---|---|---|
Pg1 | 320.9496 | 552.3335 | 402.9396 | 516.5286 | ||
Pg2 | 44.2970 | 100.000 | 32.0975 | 93.31830 | ||
Pg3 | 70.9802 | 76.6229 | 135.201 | 92.04518 | ||
Pg6 | 49.1657 | 99.9997 | 0.45037 | 0.000000 | ||
Pg8 | 271.1674 | 50.5656 | 295.800 | 196.9922 | ||
Pg9 | 197.0577 | 199.998 | 200.000 | 180.3202 | ||
Pg12 | 152.410 | 209.999 | 208.955 | 210.000 | ||
Vg1 | 1.076947 | 1.099834 | 1.037665 | 1.038911 | ||
Vg2 | 1.064682 | 1.092973 | 1.021399 | 1.029121 | ||
Vg3 | 1.040932 | 1.070328 | 1.021756 | 1.021645 | ||
Vg6 | 1.035024 | 1.043710 | 1.008789 | 1.006930 | ||
Vg8 | 1.050021 | 1.034728 | 1.031409 | 1.029410 | ||
Vg9 | 1.030837 | 1.027750 | 1.014471 | 1.011513 | ||
Vg12 | 1.023650 | 1.037090 | 1.018090 | 1.014264 | ||
T(4,18) | 0.9726 | 1.008410 | 1.022652 | 1.017152 | ||
T(21,20) | 1.07613 | 0.986867 | 0.901523 | 0.922051 | ||
T(24,25) | 0.98528 | 1.012262 | 1.069454 | 1.017742 | ||
T(24,25) | 0.96546 | 0.939723 | 0.998648 | 1.007304 | ||
T(24,26) | 1.04711 | 0.937514 | 0.992255 | 0.997993 | ||
T(7,29) | 0.959181 | 0.982061 | 1.054628 | 1.084371 | ||
T(34,32) | 0.90985 | 0.959973 | 0.939237 | 0.931607 | ||
T(11,41) | 0.95951 | 0.918400 | 0.900827 | 0.900019 | ||
T(15,45) | 0.97504 | 0.900000 | 0.900589 | 0.900000 | ||
T(14,46) | 0.95079 | 0.988708 | 0.955885 | 0.954432 | ||
T(10,51) | 0.95684 | 0.964576 | 0.935021 | 0.934472 | ||
T(13,49) | 0.90762 | 0.970265 | 0.941255 | 0.939803 | ||
T(11,43) | 0.95171 | 0.934064 | 0.900053 | 0.900661 | ||
T(40,56) | 0.98339 | 0.95915 | 1.053052 | 0.975194 | ||
T(39,57) | 1.09573 | 0.986130 | 1.083148 | 1.058040 | ||
T(9,55) | 1.032468 | 0.954959 | 1.012770 | 1.037772 | ||
0.964379 | 0.989115 | 0.988271 | ||||
Optimal size and location of SVC–TCSC | ||||||
svc(16) | 0.75793 | |||||
svc(21) | 0.66050 | svc(32) | 0.39169 | |||
svc(28) | 0.01766 | svc(28) | 0.00171 | |||
svc(54) | 0.0710 | svc(54) | 0.00202 | |||
Tcsc(18,19) | 0.5480 | Tcsc(18,19) | 0.4040 | |||
Tcsc(24,25) | 0.9840 | Tcsc(24,25) | 0.9840 | |||
Tcsc(25,30) | 0.1616 | Tcsc(25,30) | 0.1616 | |||
Tcsc(30,31) | 0.3952 | Tcsc(30,31) | 0.3964 | |||
Tcsc(37,38) | 0.0807 | Tcsc(37,38) | 0.0807 | |||
Tcsc(11,41) | 0.5992 | Tcsc(11,41) | 0.1752 | |||
Cost (USD/h) | 9193.49 | 5217.74 | 9748.93 | 6993.24 | ||
TFcost(USD/h) | — | — | 62.045 | 10.380 | ||
Emission | 29.635 | 38.719 | 24.645 | 38.4040 | ||
RPL (MW) | 1.4720 | 1.5869 | 1.4312 | 1.3522 | ||
TVD (pu) | 0.2757 | 0.2757 | 0.2018 | 0.2074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abid, M.; Belazzoug, M.; Mouassa, S.; Chanane, A.; Jurado, F. Multi-Objective Optimal Power Flow Analysis Incorporating Renewable Energy Sources and FACTS Devices Using Non-Dominated Sorting Kepler Optimization Algorithm. Sustainability 2024, 16, 9599. https://doi.org/10.3390/su16219599
Abid M, Belazzoug M, Mouassa S, Chanane A, Jurado F. Multi-Objective Optimal Power Flow Analysis Incorporating Renewable Energy Sources and FACTS Devices Using Non-Dominated Sorting Kepler Optimization Algorithm. Sustainability. 2024; 16(21):9599. https://doi.org/10.3390/su16219599
Chicago/Turabian StyleAbid, Mokhtar, Messaoud Belazzoug, Souhil Mouassa, Abdallah Chanane, and Francisco Jurado. 2024. "Multi-Objective Optimal Power Flow Analysis Incorporating Renewable Energy Sources and FACTS Devices Using Non-Dominated Sorting Kepler Optimization Algorithm" Sustainability 16, no. 21: 9599. https://doi.org/10.3390/su16219599
APA StyleAbid, M., Belazzoug, M., Mouassa, S., Chanane, A., & Jurado, F. (2024). Multi-Objective Optimal Power Flow Analysis Incorporating Renewable Energy Sources and FACTS Devices Using Non-Dominated Sorting Kepler Optimization Algorithm. Sustainability, 16(21), 9599. https://doi.org/10.3390/su16219599