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Abstract: Urban transportation systems, particularly underground interchanges, present significant
challenges for sustainable and resilient urban design due to their complex road geometries and
dense traffic signage. These challenges are further compounded by the interaction of diverse road
users, which heightens the risk of accidents. To enhance both safety and sustainability, this study
integrates advanced driving simulation techniques with machine learning models to improve driving
safety and comfort in underground interchanges. By utilizing a driving simulator and 3D modeling,
real-world conditions were replicated to design key traffic safety features with an emphasis on
sustainability and driver well-being. Critical safety parameters, including speed, acceleration, and
pedal use, were analyzed alongside comfort metrics such as lateral acceleration and steering torque.
The LightGBM machine learning model was used to classify safety and comfort grades with an
accuracy of 97.06%. An important ranking identified entrance signage and deceleration zones as
having the greatest impact on safety and comfort, while basic road sections were less influential.
These findings underscore the importance of considering visual cues, such as markings and wall
color, in creating safer and more comfortable underground road systems. This study’s methodology
and results offer valuable insights for urban planners and engineers aiming to design transportation
systems that are both safe and aligned with sustainable urban mobility objectives.

Keywords: driving behavior; underground interchange; driving simulator; machine learning; traffic
safety evaluation

1. Introduction

With the accelerating process of urbanization and the sharp rise in the number of
motor vehicles, the construction of urban interchanges, particularly underground inter-
changes [1,2], has progressed swiftly. Underground interchanges, with their advantages
of effectively alleviating ground traffic pressure and improving traffic efficiency, have
gradually become an important means of solving urban traffic congestion problems [3,4].
However, the unique environment of underground interchanges has a significant impact on
drivers’ vision, psychology, and driving behavior, which in turn affects driving safety and
comfort [5,6]. Ensuring driving safety in these environments is also crucial for achieving
urban sustainability, as safe and efficient transportation systems reduce accident-related
delays and emissions [7,8]. Therefore, studying how to improve the driving safety and
comfort of underground interchanges has become an important topic in the current field of
urban infrastructures.

In recent years, with the continuous increase in urban traffic pressure, underground
interchanges, as one of the important means to alleviate traffic congestion, have garnered
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widespread attention regarding their driving safety and comfort issues [9]. Many scholars
have conducted extensive research in this field [10–12], mainly focusing on the setting of
traffic signs and markings [13,14], driving simulation [15,16], road safety evaluation [17,18],
and driving behaviors [19,20].

(1) The setting of traffic signs and markings: underground interchange spaces are
enclosed, and the environment is relatively monotonous, with driving being significantly
affected by the side walls [21]. For systematic multi-point entry and exit underground roads
in particular, a signage system is needed to guide exits; due to the special environment of
underground interchanges, drivers have a strong reliance on signs, making the setting of
traffic signs more demanding than above ground. Hsu et al. studied the setting of traffic
signs and markings in underground interchanges, optimizing the placement positions and
spacing of signs based on drivers’ reaction time and visual recognition distance [22]. Zhang
et al. examined and optimized the visibility of underground roads through analytical meth-
ods, emphasizing the importance of properly setting signs to enhance driving safety [23].
These studies, through theoretical deduction methods, proposed critical strategies for the
proper placement of signs in underground interchanges to enhance driving safety.

(2) Driving simulation: driving simulators have extensive applications in the field of
road research [24]. Driving simulators can obtain traffic operating characteristics of drivers
under various road and traffic conditions [25], such as speed, acceleration, lane deviation,
and steering wheel angle, offering robust support for driving behavior analysis with
comprehensive data. Sun et al. studied car-following and lane-changing behaviors in the
diverging areas of tunnel-interchange connection segments using a driving simulator [26].
The study explored the effects of road characteristics, sign information volume, and traffic
conditions on driver behavior, analyzing the driving performance of 25 participants in
72 simulated road models, and found that connection distance and sign information volume
significantly affect driving behavior. Liu et al. employed driving simulation and data
mining methods to investigate the impact of safety facilities in underground interchanges
on driving safety and comfort [27]. The research found that properly shortening the length
of deceleration segments, installing reasonable warning signs at merging points, and
adjusting wall colors can significantly enhance driving safety and comfort. However, the
data processing in these studies is relatively complex, and automated evaluation of driving
safety has not been realized.

(3) Road safety evaluation: underground interchange spaces are enclosed, and the
environment is relatively monotonous, with driving being significantly affected by the
side walls [28]. He et al. found that optimized tunnel wall luminance and uniform
lighting conditions improve driver visual stability and reduce visual load, enhancing
driving safety in highway tunnels [29]. Yeung and Wong, through analyzing traffic accident
data of urban underground roads, found that the accident rate at tunnel entrances is the
highest, indicating that optimizing tunnel entrance design and improving driver attention
are crucial for reducing accidents [30]. Su et al. improved traffic safety by optimizing
the light environment in highway tunnels [31]. This study systematically considered
multiple influencing factors, optimized tunnel lighting quality, and improved drivers’
visual performance, thereby elevating the driving safety level in tunnel areas. Unfortunately,
there is currently a lack of clear evaluation criteria for driving safety and comfort in
underground interchanges.

(4) Driving behaviors: when driving in an underground interchange environment,
drivers’ physiological and psychological states are influenced by the surrounding environ-
ment, leading to fluctuations [32]. Szydłowski et al. investigated drivers’ psychomotor
reaction times and developed a standardized testing method to assess drivers’ reaction
times to various external stimuli [33]. The research found that reaction time is a crucial
factor influencing driving safety; proper road design and driver assistance systems can
significantly enhance driving safety. These physiological and psychological fluctuations can
impact drivers’ ability to perceive information from the surrounding environment, thereby
affecting their driving behavior and easily causing them to make incorrect decisions.
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In summary, significant progress has been made in research on the safety and comfort
of driving on underground roads both domestically and internationally, but there are still
some urgent issues to be addressed. Firstly, the standards for traffic signs and marking
placement need to be further refined to suit the complex underground road environment.
Secondly, there is no clear process and method for safety evaluation based on driving
simulators, and the standardization and scientific nature of driving simulation tests also
need to be further studied. In addition, data processing and evaluation methods lack
advanced technical means. Research on risk assessment and early warning systems based
on driving behavior needs to be strengthened to enhance drivers’ safety awareness and
reaction capabilities. This study will integrate the research findings and utilize driving
simulation and machine learning methods to systematically analyze the impact of under-
ground road environments on driving safety and comfort, thereby providing a scientific
foundation for the planning and design of underground roads.

This study has the following three contributions:

(1) Developed an evaluation model for driving safety and comfort in underground roads
based on driving simulation experiments.

(2) Investigated the combined effects of various traffic signs and markings, tunnel wall
colors, and speed bump lengths on driving behavior.

(3) Utilized machine learning methods to classify and predict driving safety and comfort,
offering a scientific foundation.

The rest of this paper is organized as follows: Section 2 describes BIM modeling
driving simulation and machine learning methods; Section 3 discusses experimental details,
prediction results, and findings; finally, Section 4 concludes this study.

2. Methodology
2.1. Modeling and Transformation

The construction of the underground interchange two-dimensional CAD graphics is
the basis of the 3D model. As shown in Figure 1, firstly, the modeling target road section
was determined according to the original design data of the underground interchange
and combined with the aerial photography results. The 2D plan of the underground
interchange was drawn in AutoCAD, and the size of each area unit was calibrated, followed
by 3D modeling.
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Figure 1. Flow chart for analysis of meteorological conditions and characteristics.

To transform the 2D CAD underground interchange graphics into a high-precision
BIM 3D model, the operation needed to be performed in 3ds Max. First, the established
2D CAD underground interchange DWG drawing was opened in 3ds Max, and the line
type was added as a new project line-type pattern. After modeling, textures and materials
needed to be added to the model. The material editor in 3ds Max was used to adjust
the color, brightness, reflectivity, and other properties of materials and textures to make
the buildings more realistic. Real road wall photos were used for mapping, as shown in
Figure 2, making the model appear closer to the actual road in the driving simulator.
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Figure 2. Texture map of the model.

After creating the model, the scene was rendered using the 3ds Max renderer. The
renderer’s settings were adjusted, including ray tracing depth, reflection, refraction, and
other parameters to obtain more realistic effects. Afterward, the model needed to be
imported into the SCANeR STUDIO platform for driving simulation. SCANeR STUDIO
was used as the control software, providing five main modules to restore tunnel details, as
shown in Figure 3.
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(1) Vehicle module: this module was used to create a mathematical model of the test
vehicle, simulating realistic vehicle dynamics and response. The vehicle’s specifications,
such as acceleration, braking, and handling characteristics, were configured to match the
typical performance of vehicles commonly used in underground interchanges.

(2) Terrain module. in this module, we designed the road networks with all necessary
logical information, including signage, traffic lights, and speed limits, to recreate realistic
underground interchange scenarios. This setup allowed us to test driver reactions to
common features within underground interchanges, such as entry and exit signs and
deceleration zones.

(3) Scene module: this module was essential in constructing a detailed 3D model of
the tunnel environment, including vehicles, terrain, and road infrastructure. By creating an
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immersive scene, we could simulate a realistic underground interchange to evaluate driver
responses in a controlled yet realistic environment.

(4) Analog module: we used this module to control and monitor the entire simulation
process, managing the synchronization of the simulation’s elements and ensuring that
the test conditions were consistent across participants. The analog module helped us
systematically manage the tests and ensure repeatability of the simulation environment.

(5) Analysis module: this module was utilized to process and analyze the data collected
during the simulation. Key parameters, such as vehicle speed, acceleration, lateral offset,
and steering angle, were extracted to assess driving safety and comfort. Additionally, this
module allowed us to visualize the results using 3D animations and data tables, supporting
a detailed analysis of driver behavior in response to various scenarios.

2.2. Driving Simulator Scheme
2.2.1. Working Condition Design

The driver needs to decelerate before entering the tunnel. To address this issue,
longitudinal deceleration markings in the driving direction and entrance signs are set at
the tunnel entrance to remind the driver. Additionally, prolonged driving in a tunnel can
cause driver fatigue, leading to inattention and distraction, which increases the accident
rate. Therefore, the choice of tunnel wall color is essential. Considering the impact of
these factors on the driving safety of the underground interchange, four areas have been
addressed: the entrance and exit, the approach road, the tunnel walls, and the diversion
and confluence sections. Based on the existing traffic signs and markings, a basic scheme
meeting the norms and preliminary traffic needs of the passageway was established to
verify the impact of traffic signs and markings on driving. Nine optimization schemes were
developed to improve different aspects, including the color of the tunnel wall, entrance
deceleration lines and signboards, exit warning boards, and two merge warning boards, as
shown in Table 1.

Table 1. Summary of working conditions.

Scheme Number Details

1 # Default scheme (The walls are white, blue and white, and the top is black)
2 # The wall color is white at the top, and the wall is white blue white
3 # The wall color is black at the top and white blue at the wall
4 # Speed bump type is landscape (default is portrait)
5 # Length of speed bump is 80 m (default is 60 m)
6 # Length of speed bump is 40 m (default is 60 m)
7 # The entrance signs are marked in Chinese pinyin
8 # Add a sign 250 m from the exit
9 # Add road information at the diversion 1
10 # Add a side arrival reminder at confluence 2

2.2.2. Simulation Process

Using the 3ds Max and SCANeR software platforms, an immersive simulated driving
environment was researched and built according to the above-mentioned underground
interchange design scheme and combined with on-site research. This environment had a
high degree of restoration and perfect, adjustable working parameters. A total of 24 volun-
teers participated in the experiment voluntarily, with 80% of the subjects being men and
20% being women, reflecting the statistical characteristics of Chinese drivers.

The driving simulator was set to record vehicle operating parameters at a frequency of
20 Hz, including speed, acceleration, lateral offset, accelerator, brake, steering wheel angle,
clutch, and vehicle coordinates. This frequency was more conducive to capturing changes
in drivers’ driving behavior details and obtaining richer experimental data.

Before the official experiment started, there were about 5 min of driving practice.
During the formal experiment, each person conducted ten groups of experiments in a
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random order, with each scene lasting about 3 min. The prepared tunnel model was
imported into the simulator, and once ready, the experimenter entered the cockpit to start
the simulation test. The starting point of the test was far enough from the tunnel entrance
to allow driving through the tunnel at a speed of less than 60 km/h.

The set-up scene in SCANeR STUDIO is shown in Figure 4. After completing the
driving simulation, the file location can be selected, and the data can be exported for further
analysis. The final specific design parameters of the underground interchange model are
as follows: the total length of the model is 2.5 km, the speed limit is 60 to 80 km/h, the
model has six two-way lanes (each lane width is 3.75 m), and the net boundary height of
the building is 5 m.
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2.2.3. Evaluation Index

(1) Driving Behavior and Its Indicators

Driving behavior is a multi-dimensional concept, encompassing both longitudinal and
lateral parameters. Longitudinal and lateral parameters were derived from the vehicle’s
speed and position data, measuring control over speed (acceleration and deceleration) and
lateral positioning within the lane. For instance, steering wheel torque data were used to
assess the driver’s steering response, while lateral acceleration was calculated to evaluate
stability during maneuvers.

(2) Safety indicators

The index evaluation mainly revolves around the driving performance of the car. This
traditional method primarily regards the car as a mass point or a rigid body and uses driving
speed to evaluate driving safety. The first approach is based on the evaluation standard
of vehicle speed, where design quality is judged according to the range of the difference
between the design speed and the operating speed. The second approach evaluates the size
of the acceleration, considering both acceleration and deceleration scenarios. Additionally,
the accelerator pedal is a crucial means for the driver to control the vehicle’s power system.
Its position, depth, and usage have a significant impact on driving safety and should be
included in the safety control index.

(3) Comfort indicators

To evaluate driving comfort, lateral acceleration is a vital evaluation index. Accel-
eration disturbance is defined as the standard deviation of vehicle acceleration from the
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mean acceleration, as shown in Equation (1). It reflects the degree of change in vehicle
acceleration, indicating the fluctuation of acceleration during vehicle operation.

σ =

√√√√∫ T
0

[
(a(t)− a)2

]
dt

T
(1)

where σ represents the disturbing acceleration (m/s2); T denotes the total observation
time (s); a(t) denotes the acceleration at time t (m/s2); α represent the average acceleration
(m/s2).

Steering wheel torque is an important index for measuring driving comfort. It refers
to the torque required to manipulate the steering wheel and is also one of the direct tactile
sensations between the driver and the vehicle. When the actual characteristic or expected
characteristic is a continuous curve, the average value of the function L(y) in a specific
interval [a, b] is taken as the comfort loss of the steering wheel torque characteristic in this
interval, as shown in Equation (2) where l is the comfort loss; k is the loss factor; y(x) and
m(x) are the steering wheel torque properties preferred by the driver and actually provided
by the vehicle, respectively.

l =
1

b − a

∫ b

a
k[y(x)− m(x)]

2

dx (2)

2.2.4. Data Preprocessing

The vehicle driving behavior data were exported through the analysis module of the
SCANeR STUDIO software (version 2021), which included speed, acceleration, lateral offset,
accelerator, brake, steering wheel angle, clutch, vehicle coordinates, and other parameters.
Initially, the experimental data were collected in an irregularly sorted TXT format and
could not be processed directly. Before data processing, the data needed to be preliminarily
organized and imported into Excel for classification. Subsequent analysis operations could
only be carried out after orderly sorting, as shown in Table 2.

Table 2. Parameters, values and their description.

Index Data Type Details

(X, Y) Position coordinates To determine the driver’s position in the model

Distance from key point Position coordinates To describe the driver’s distance from the key point, which is
positive when not reached and negative after passing (m)

Steering wheel torque Comfort indicator The torque applied to the steering wheel per unit time (N·m)

Lateral acceleration Comfort indicator Lateral acceleration applied to the vehicle (m/s2)

acceleration Safety indicator The acceleration of the vehicle in the driving direction (m/s2)

Disturbing acceleration Comfort indicator The size of the velocity swing (m/s2)

Velocity Safety indicator The speed of the vehicle in the driving direction (m/s)

Gas pedal Safety indicator To describe throttle efficiency with a minimum value of 0 and a
maximum value of 1 (%·s)

2.3. Machine Learning Analysis

Gradient Boosting Decision Tree (GBDT) is a commonly used machine learning classi-
fication model. Its basic idea is to use weak classifiers (decision trees) to obtain the optimal
model for iterative training [34,35]. GBDT has the advantage of a good training effect
and is not easy to over fit. LightGBM has been improved on its basis so that it has faster
training speed, lower space consumption, higher accuracy, and XGBoost (eXtreme Gradient
Boosting) for the weakness and overfitting problems when dealing with extensive data. The



Sustainability 2024, 16, 9601 8 of 18

problems mentioned above are solved by LightGBM adopting the distributed processing
method. Its core modules are as follows.

2.3.1. Histogram-Based Decision Tree

In the traditional decision tree algorithm, each time the optimal feature was selected
for splitting, all the features needed to be sorted, and each feature’s information gain or
Gini index was calculated [36]. The problem with this approach is that when the number
of features is large, the computation can be extensive, resulting in a long training time.
LightGBM uses the histogram algorithm to solve this problem. The basic idea is to discretize
the continuous floating-point eigenvalues k into integers and simultaneously construct
a histogram with a width of k. As the data are traversed, statistics are accumulated in
the histogram based on the discretized value as an index. After traversing the data once,
the histogram accumulates the required statistics [37]. Then, it traverses the histogram
to find the optimal segmentation point according to the discrete values, as shown in
Figure 5. After the features are discretized, the two most direct benefits are reduced
memory usage and lower computing costs, which lay the foundation for LightGBM to
handle big data efficiently.
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On the other hand, LightGBM has also improved the original histogram algorithm to
optimize the running speed. Specifically, LightGBM-adopted difference acceleration. The
histogram of a leaf node can be obtained by the difference between the histogram of its
parent node and the histogram of its brother. In the process of building the tree, LightGBM
can also use the histogram to make differences to obtain the leaf node with a large histogram
to obtain the histogram of its brother leaf at a minimal cost. These optimizations can make
LightGBM more efficient and accurate when training large-scale data, as shown in Figure 6.
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2.3.2. A Leaf-Wise Strategy with a Depth Limit

LightGBM has been further optimized based on the histogram algorithm. Compared
with the level-wise decision tree growth strategy adopted by most GBDT tools, LightGBM
adopts the leaf-wise growth algorithm with depth limitation. The algorithm can more
efficiently search for the node with the maximum gain for splitting so that the depth of
the tree is smaller, the model complexity is lower, and it is less likely to be overfitted.
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LightGBM was selected over other models like XGBoost due to its unique advantages
in handling large-scale data with high efficiency [38]. Unlike XGBoost, which employs a
level-wise tree growth strategy, LightGBM’s leaf-wise approach allows it to converge faster
and achieve higher accuracy, particularly for datasets with numerous features. Additionally,
LightGBM supports histogram-based decision tree methods, reducing memory usage and
computational time. These advantages make LightGBM well-suited for our study, where
processing large volumes of simulation data efficiently is essential.

As shown in Figure 7, compared with the traditional level-wise growth strategy, the
leaf-wise strategy of LightGBM selects the leaf with the most significant splitting gain from
all the current leaves for splitting, thus avoiding the waste of useless splitting. Compared
with level-wise, leaf-wise can reduce errors and get better accuracy with the same number
of splits, but it may lead to overfitting. Therefore, LightGBM adds a maximum depth limit
to prevent overfitting and improve the model’s accuracy while ensuring high efficiency.
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2.3.3. Gradient-Based One-Side Sampling

Gradient-based One-Side Sampling (GOSS) algorithm, after adding the traditional
GBDT algorithm, referred to as GOSS technology, can only retain extensive gradient data
with a significant information gain when collecting data samples, thereby improving
sampling efficiency. At the same time, to discard the influence of some data overall, GOSS
adopts the means of expansion to compensate for the data with a slight gradient in the
gain sorting.

Specifically, GOSS first sorts of the data according to the absolute value of the gradient,
selects the first a ∗ 100% data with the most considerable absolute value, and then randomly
selects b ∗ 100% data from the remaining data. Then, when calculating the information
gain, the sampled small gradient data samples are multiplied by the constant (1 − a)/b, and
the total data is still 100%. The algorithm pays more attention to under-trained instances
and does not change the distribution of the original dataset too much.

2.3.4. Exclusive Feature Bundling

Finally, LightGBM uses the exclusive feature bundling EFB (Exclusive Feature Bundling)
algorithm to reduce dimensionality when collecting data to improve the calculation speed.
Specifically, bundling two features that are not mutually exclusive reduces the number
of features without affecting the final accuracy, thereby reducing the time consumed by
LightGBM when processing high-level, complex data sets. The conflict ratio is usually used
to measure the degree to which two features are not mutually exclusive. When this value is
small, the two features can be bundled.

2.3.5. Model Evaluation

To evaluate the driving safety and comfort evaluation model of the underground
interchange based on LightGBM, it is necessary to use common evaluation indicators
in machine learning classification tasks. The most common binary classification task is
taken as an example. The results can be divided into four cases [38]: true positive (True
Positive, TP), false positive (False Positive, FP), false negative (False Negative, FN), and
true negative (True Negative, TN); they can be represented by a 2 × 2 order confusion
matrix. There are two types of descriptions for the prediction results: one is the description
of whether the prediction results are correct or not, the same as the actual results are true
(True), and the difference is false (False); the other is the description of the prediction results
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in themselves, where the results of a value of 1 is positive (Positive), and a result of 0 is
negative (Negative) [39,40]. According to the different situations of the confusion matrix,
the classification task also has several evaluation indicators to illustrate:

(1) Accuracy: accuracy indicates the proportion of correctly classified results to the total
number of samples, i.e., the proportion of TP and TN in the matrix to the total samples,
as shown in Equation (3).

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100% (3)

(2) Precision (Precision): the precision rate indicates the proportion of correct predictions
in all samples with positive prediction results, also known as the precision rate, as
shown in Equation (4).

Precision =
TP

TP + FP
∗ 100% (4)

(3) Recall rate (Recall): the recall rate indicates the proportion of correct predictions in all
samples whose accurate results are positive, also known as the recall rate, as shown
in Equation (5).

Recall rate =
TP

TP + FN
∗ 100% (5)

(4) F1 score: due to the interaction between the precision rate and the recall rate, in order
to comprehensively evaluate the two, the F1 value is generally used for reconciliation,
as shown in Equation (6).

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
∗ 100% (6)

(5) ROC curve and AUC value: the ROC curve is a curve drawn with the false positive
rate (False Positive Rate) as the abscissa and the actual positive rate (True Positive
Rate) as the ordinate, as shown in Equation (7). The AUC value is the area under the
ROC curve used to measure the classifier’s performance. The more significant the
ROC value, the better the classification effect.

TRR =
TP

TP + FN
∗ 100%, FPR =

FP
FP + TN

∗ 100% (7)

Compared with the P-R curve, the ROC curve is not sensitive to whether the sam-
ples are balanced, and its shape does not change significantly with the distribution of
positive and negative samples. Therefore, the ROC curve is used here to evaluate the
classification task.

2.4. Experimental Design
2.4.1. Experiment and Data

In the traditional decision tree algorithm, each time the optimal feature was selected
for splitting, all the features needed to be sorted, and each feature’s information gain or
Gini index was calculated.

Model training and evaluation were completed in the Win10 system, configured with
Intel (R) Core (TM) i5-9300H CPU @2.40GHz; the memory was 16 GB; and model code was
compiled on Pycharm, Python version 3.8.

In view of LightGBM’s features such as more efficient parallel training, faster pro-
cessing of large amounts of data, and low memory consumption [41], this paper chooses
to use it to establish a classification model of driving safety and comfort levels based on
multi-factor indicators. A total of 12 independent variable indicators were selected, and the
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evaluation grade fitted in the first section was taken as the output variable. The specific
distribution of each variable is shown in Table 3. According to the sampling frequency
set by this study, a total of 257,543 samples were generated from 240 sets of experimental
data from 24 drivers (the age distribution between 18 and 45). Of these, 12,944 were in the
entrance section, 15,675 were in fractional confluence Section 1, 14,386 were in fractional
confluence Section 2, 12,404 were in the exit section, and the rest were in the basic section.
Then, 80% of all samples were used as the training set and 20% as the test set.

Table 3. Input and output for machine learning models.

Type Parameters Variable Details Number

Input

Driving behavior
α Lateral (αLa) and Longitudinal (αLo) 2

Swt Steering wheel torque 1

Traffic safety facilities

Speed bump Length (SbL) and type (Sbt) 2

Sign Entrance (SEn), exit (SEx), diverting (Sd),
and confluence (Sc) sections 4

Wall color Wc 1

Vehicle location

Time t 1

D
Distance from the Entrance (DEn), exit
(DEx), diverting (Dd), and confluence

(Dc) sections
1

Output Safety and comfort Evaluation grade Low grade = 1, moderate grade = 2, high
grade = 3 1

2.4.2. Model Parameters

After the database is built, the input parameters of the model need to be set. In
LightGBM, there are several model parameters, including boosting, objective, num_class,
seed, num_leaves, learning_rate, n_estimators, max_depth, and so on. Among these
indexes, num_leaves, max_depth and learning_rate have a great influence on the final
precision and accuracy of the model. To ensure the accuracy of the model and prevent
overfitting, the recommended values of different combinations are set as follows:

(1) num_leaves: 5, 10, 15, 20, and 25;
(2) max_depth: 3, 4, 5, 6, and 7;
(3) learning_rate: 0.03, 0.05, 0.07, 0.1, and 0.12.

GridSearchCV module of the machine learning tool library scikit-learn was used for
parameter traversal search to obtain the optimal parameter setting values.

3. Results and Discussion
3.1. Prediction Results of Driving Safety Level
3.1.1. Evaluation Results of Prediction Model

According to the input model parameters and database, the LightGBM machine
learning model is used to classify and evaluate the driving simulation data of the entrance,
diversion, confluence, exit, and basic sections. The indicators for evaluating driving safety
and comfort levels are then output. Table 4 compares the results of the LightGBM model
with those of other mainstream models, with the evaluation index being the average
of the five sections. The classification results of the LightGBM model are significantly
higher than those of other mainstream models, with each index value exceeding 90%. This
is because this model allows it to handle complex patterns in the data more efficiently.
Unlike traditional classifiers like Random Forest or Logistic Regression, which utilize
a level-wise approach, LightGBM’s leaf-wise method enables it to better capture high-
dimensional interactions within the driving behavior data, resulting in faster convergence
and improved accuracy.
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Table 4. Evaluation results of four classification models.

Model Accuracy Presidion Recall Rate F1 Score

LightGBM 97.2% 96.4% 92.9% 94.6%
WEIGHTEDClassifier 96.5% 92.5% 89.5% 90.8%

LRClassifier 91.5% 91.4% 87.5% 88.2%
RFClassifier 87.6% 85.8% 81.8% 83.5%

Furthermore, the classification results of the LightGBM model under the five sections
are statistically analyzed. The results are shown in Figure 8, and the confusion matrix is
shown in Figure 9. It is evident that LightGBM has strong classification performance across
all indicators, with average accuracy, F1 score, and precision reaching 97.06%, 94.5%, and
96.42%, respectively. Among them, LightGBM performs best in the classification task of
the exit section, achieving the highest scores in all parameters. This may be due to the
significant changes in driving safety and comfort in the exit section, specifically reflected
in the greater impact of changes in traffic safety facilities and more noticeable changes in
driving behavior data. This provides distinct data patterns for LightGBM to learn and
classify effectively. Therefore, LightGBM can better capture these changes, resulting in
better classification performance. In contrast, in the basic segment, there is a large amount of
data with less noticeable changes in evaluation levels, and many features require attention,
making it difficult to identify key quantities. The classification ability of LightGBM is more
intuitively reflected in the ROC curve and AUC value, as shown in Figure 10.
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3.1.2. Feature Importance Ranking

Reasonable index selection is vital for building a high-accuracy, high-precision model.
To study the influence of each parameter on the model’s performance, the model importance
output function from the LightGBM library was used to analyze the 12 items of the dataset
for the entrance and exit sections of the underground interchange, the dataset for the
separation and confluence sections, and the dataset for the basic section. The importance of
variable indicators was output and sorted, with the specific feature importance rankings
shown in Figure 11. LightGBM model calculates importance based on the contribution of
each feature to model accuracy. This is achieved by assessing the total gain of each feature,
which represents how much the feature improves model prediction when used for a split
in the decision tree. Features with higher total gains are ranked as more important, as they
have a stronger influence on model predictions.
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For the entrance section’s dataset, the length of the deceleration section, the driver’s
driving time, and the type of deceleration section were the three most important indica-
tors affecting the model. This played a significant role, further verifying the success of
optimizing the entrance deceleration markings. Additionally, the driver’s driving time
ranked second, indicating that over time, the driver’s driving safety and comfort changed
significantly after entering the tunnel. This demonstrated that the simulation in this study
successfully replicated the impact of illumination at the entrance on the driver’s natural
driving behavior.

For the diverging and merging sections, the top three indicators were acceleration,
steering wheel torque, and warning signs. This indicates that, from the perspective of driv-
ing behavior, drivers controlled the vehicle’s speed more frequently and paid more attention
to the information on the notice boards in these sections. Therefore, to improve driving
safety and comfort in the diverging and merging sections of underground interchanges, it
is essential to optimize the setting of warning signs.
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Figure 11. Feature importance ranking diagram of LightGBM model.

There was little difference in the importance of ranking of various factors for the exit
section, indicating that these factors collectively played a specific role in classifying the
driving safety and comfort evaluation grades of the exit section. This shows that the driving
safety and comfort of the exit section results from the joint action of multiple factors, which
need to be comprehensively considered for evaluation.

Similarly, for several special sections of the underground interchange, there was
little difference in the importance ranking of various factors, indicating that the driving
safety and comfort of these special sections were influenced by multiple factors. Therefore,
when considering the influencing factors, it is necessary to conduct a careful analysis of
multiple aspects to obtain a comprehensive evaluation and better optimization plan. When
designing the setting plan for traffic safety facilities, it is essential to develop each special
section comprehensively and consider various factors, such as markings and wall colors, to
improve driving safety and comfort in the underground interchange.

For the basic segment, acceleration was the only significantly important influencing
factor. This result can be attributed to the relatively stable driving conditions in the basic
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section, where traffic safety facilities do not have a significant impact as in other special
sections. In this case, drivers only need to pay attention to speed changes in the driving
direction. Therefore, acceleration has become a crucial indicator in evaluating driving
safety and comfort in the basic segment.

Understanding the feature importance rankings provides valuable insights for traffic
engineers focused on optimizing safety and comfort in underground interchanges. For
example, high-ranking features like entrance signage and deceleration zones indicate that
these elements significantly impact driving behavior. Traffic engineers can prioritize these
areas for improvements, such as optimizing sign placement and enhancing deceleration
markings, to better guide drivers through underground sections. Lower-ranked features,
while still relevant, may require less immediate focus, allowing engineers to allocate
resources more effectively based on the identified priorities.

4. Conclusions

This study utilized driving simulators and machine learning models to assess the
safety and comfort of underground interchanges. Key safety indicators such as speed, accel-
eration, and accelerator pedal usage, along with comfort indicators like lateral acceleration,
acceleration disturbance, and steering wheel torque, were used to build a comprehensive
database from 12 multimodal indices obtained through driving simulation tests. The
LightGBM model demonstrated strong classification performance, achieving an average
accuracy of 97.06%, significantly outperforming other mainstream models. The results
also showed that entrance signage and deceleration sections had the greatest impact on
driving safety and comfort, while basic road sections were less influential. These findings
underscore the importance of optimizing visual cues, including markings and wall colors,
in critical areas of underground interchanges. However, the relatively small sample size
may limit the generalizability of the results, suggesting the need for further validation with
larger datasets in future research.
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