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Abstract: Urban metro networks, characterized by their complex systems of interdependent com-
ponents, are susceptible to a wide range of operational disturbances and threats. Such disruptions
can cascade through the system, leading to service delays, operational inefficiencies, and substantial
economic losses. Consequently, assessing and understanding network vulnerabilities have become
crucial to ensuring resilient metro operations. While many studies focus on single-failure scenarios,
comparative vulnerability analyses of various urban metro networks under multiple or simultane-
ous failures remain limited. To address this gap, our study introduces a comprehensive analytical
framework comprising three key components: quantitative indices operating at both network and
node levels, methodological approaches to assess the importance of network components (nodes,
edges, and lines), and systematic protocols for evaluating vulnerabilities across multiple failure
scenarios (stations, tunnels, lines, and areas). A comparative analysis of the Shenzhen Metro Network
(SZMN) and the Zhengzhou Metro Network (ZZMN) validates the proposed methods. The results
indicate that the SZMN demonstrates higher connectivity and accessibility than the ZZMN, despite a
lower network density. Both networks are disassortative and heterogeneous, with edges connecting
multiline transfer stations showing significantly higher edge betweenness centrality compared to
those connecting general stations. In the SZMN, 6.63% of node failures and 4.74% of tunnel failures
exceed a vulnerability threshold of 0.03, compared to 13.74% and 11.27% in the ZZMN. Failures
across different lines and areas yield varying impacts on network performance and vulnerability. This
study provides essential theoretical and practical insights, helping metro safety managers identify
vulnerable points and strengthen the sustainable development of urban metro systems.

Keywords: complex metro networks; importance identification; vulnerability evaluation; multiple
failure scenarios; comparative analysis

1. Introduction

The metro network is a fundamental pillar of modern urban transportation infras-
tructure, facilitating the daily mobility of millions of commuters [1]. Ensuring the reliable
operation of these systems is essential to maintaining urban functionality and promoting
metropolitan sustainability [2]. However, metro networks are highly complex systems,
characterized by intricate interdependencies among their stations and lines, which make
them inherently vulnerable to both intentional disruptions and random failures [3,4].

These systems face a range of threats during daily operations, with common distur-
bances stemming from both internal issues and external factors [5]. Internal issues include
equipment malfunctions and human operational errors [6], such as vehicle breakdowns,
mechanical and signal failures, power outages, and passenger-related incidents. External
factors primarily refer to emergencies caused by environmental conditions and security
concerns [6], such as natural disasters (e.g., severe rainstorms, earthquakes, snowstorms,
heat waves) [7–9], terrorist attacks [10], and public health crises like the COVID-19 pan-
demic [11]. These disruptions and failures can manifest at multiple scales, from individual
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station closures to network-wide interruptions, precipitating not only substantial opera-
tional delays and economic losses, but also posing significant risks to commuter safety and
public health [12]. Given these far-reaching implications, a systematic analysis of metro
network vulnerability under diverse failure scenarios is increasingly critical.

System vulnerability [13] refers to the likelihood that a system will experience degra-
dation or failure when exposed to potential threats, disruptions, or adverse events, em-
phasizing the system’s sensitivity to risk. In the context of metro networks, vulnerability
denotes the extent of performance degradation following a disturbance or attack, with
a focus on the changes in the system before and after the event [14,15]. Scholars have
extensively investigated metro network vulnerability through diverse methodological
approaches, including network modeling, critical node identification, vulnerability index
development, scenario-based analysis, and empirical case studies. This body of research
primarily encompasses five key domains: identifying influencing factors, consequence
analysis, vulnerability assessment, recovery and resilience, and system optimization and
improvement. Identifying influencing factors [16–19] aims to uncover the causes of distur-
bances from perspectives such as topology, redundancy, robustness, capacity, demand, and
response and emergency mechanisms. Consequence analysis [20–22] evaluates the nega-
tive impacts of emergencies on the topology, operation, management, and economy of the
metro network. Vulnerability assessments [23–25] typically involve quantitative modeling
based on impact analysis, utilizing indicators such as failure probability, performance loss,
and robustness to calculate system vulnerability. Recovery and resilience [25–28] studies
focus on post-disturbance recovery strategies and system-wide changes throughout the
entire process, informed by robustness and vulnerability analyses. Finally, optimization
and improvement [29–31] concentrate on developing response measures to reduce sys-
tem vulnerability and enhance inherent resilience in the face of future disturbances. The
methodological framework spanning these five research domains encompasses theoretical
analysis, mathematical modeling, scenario-based simulation, data-driven approaches, and
various hybrid combinations thereof.

Failure scenarios play a critical role in studying the vulnerability of metro networks.
Common failure scenarios are typically categorized into station closures, tunnel inter-
ruptions, line suspensions, and complete network collapses. The impact of disruptions
on the metro network can vary significantly depending on their scale and extent [32].
Contemporary research in this field predominantly examines station-level failures by simu-
lating disruptions according to predetermined protocols and then quantifying the resultant
changes in network performance metrics and vulnerability indices. These simulations
are commonly classified into random and intentional attacks [3,33,34], as well as static
and dynamic conditions [20,24,35–37]. However, much of the existing research is centered
on the vulnerability assessment of single-point failures, with limited attention given to
multiple failure scenarios [5]. Real-world interruptions frequently involve cascading ef-
fects [7,17,38,39] or concurrent incidents [32], which can further complicate a system’s
vulnerability. Thus, examining metro network vulnerability under multiple concurrent
failure scenarios is critical, as such analysis provides fundamental insights for enhancing
the resilience and operational reliability of urban metro systems.

In summary, although existing research on metro network vulnerability has yielded sig-
nificant insights, current studies predominantly examine system performance degradation
under single-failure scenarios, with limited attention to the comparison of vulnerabilities
in metro networks under multiple or simultaneous failure scenarios. To address this issue,
this study presents a comprehensive analytical framework encompassing several key com-
ponents. First, this study constructs a complex metro network model and proposes several
measurement indicators to analyze the topological characteristics at both the network
and station levels. Methods for evaluating the importance of nodes, edges, and lines are
then introduced. The study also presents vulnerability measurement methods for station,
tunnel, line, and area failures through simulation. Finally, to validate the proposed models,
this study conducts an empirical analysis comparing two distinct cases: the Shenzhen
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Metro, which faces frequent typhoon disruptions, and the Zhengzhou Metro, which has
experienced severe rainstorm-induced failures. Through this comparative analysis—both
horizontal across cities and vertical across different failure conditions—this study aims
to identify critical vulnerabilities within complex metro networks. The insights gained
from this research can contribute to the design of more resilient metro systems, enhance
emergency planning, and mitigate losses in the face of unforeseen events.

The remainder of this paper is organized as follows: In Section 2, the methodology is
proposed in detail. In Section 3, the study objects are described. In Section 4, the numerical
analysis results are presented. Finally, in Section 5, the conclusions and future research
are summarized.

2. Methods

Figure 1 presents the methodological framework of this study. Grounded in complex
network theory and resilience principles, the analytical approach comprises three main
components. First, this study constructs a complex network model of urban metro systems
and analyzes their topological characteristics, followed by an evaluation of the relative im-
portance of various network components. Subsequently, it simulates multi-level component
failure scenarios and quantifies the resulting changes in vulnerability indices. Finally, the
framework culminates in a comparative empirical analysis of the Shenzhen and Zhengzhou
metro networks, examining vulnerability variations across different urban contexts and
network components. The detailed methodological procedures for each analytical stage are
elaborated in the following sections.
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2.1. Complex Network Modeling and Basic Topological Indicators

In this study, the widely recognized Space L model is employed to construct the
complex metro network G = (V, E), where N = {vi, i = 1, 2, · · · , N} represents the set
of nodes, and E =

{
eij, i, j = 1, 2, · · · , N, i ̸= j

}
represents the set of edges. Each edge

eij =
(
vi, vj

)
corresponds to a connection between two adjacent nodes (i, j). In this metro

network model, a node represents a station, and the edge between two adjacent nodes
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corresponds to the tunnel connecting the stations. If stations (i, j) are adjacent, an associated
adjacency matrix A =

[
aij

]
is generated, where aij = 1; otherwise, aij = 0.

Based on complex network theory and graph theory, the topological characteristics of
G can be quantified using various measures. In this study, a series of indicators are used
to assess the network’s basic topology. Beyond the most intuitive indicators, such as the
number of network nodes N, the number of edges E, the number of lines L, the average
degree k = 1

N ∑N
i=1 ki provides insights into the network’s structure and scale. Network

connectivity β = E
N is employed to determine whether the network exhibits a loopy-type

structure (β > 1) or a tree-type structure (β < 1). Additionally, the average shortest path
length APL = 1

N(N−1)∑i ̸=j dij and network diameter D = maxdij are used to evaluate the

network’s connectivity and accessibility, while network density ρ = 2E
N(N−1) measures the

degree of interconnectedness within the network.
Global efficiency θ is used to measure how efficiently information is exchanged across

the entire network, defined as the average of the inverse shortest path lengths between
all node pairs. A network with high global efficiency has a small average path length,
indicating that information can be transmitted quickly between any pair of nodes. Local
efficiency δ, on the other hand, assesses the efficiency of information transfer within the local
neighborhoods of the network, evaluating how well the neighbors of a node communicate
with each other in the event that the node is removed. This metric is crucial for gauging
the network’s robustness at a local level. Lastly, assortativity σ measures the similarity of
connections in the graph concerning node degree, indicating whether nodes with similar
degrees are more likely to be connected.

Node centralities [33,40], including degree centrality (DC), eigenvector centrality (EC),
betweenness centrality (BC), closeness centrality (CC), and PageRank (PR), are commonly
used to analyze the topological characteristics of nodes within complex networks. These
centrality measures assess the role and significance of nodes from various perspectives and
are often employed as fundamental indices for determining node importance.

2.2. Importance Evaluation of Complex Network Components
2.2.1. Node Importance Evaluation

By leveraging various node centrality measures, the Multi-Criteria Decision-Making
(MCDM) method can be applied to comprehensively evaluate the importance of nodes.
Common MCDM methods include the Analytic Hierarchy Process (AHP), the Weighted
Sum Model (WSM), the Weighted Product Model (WPM), and the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS), among others. Each method has its
respective strengths and weaknesses. TOPSIS [40,41] is widely used to rank alternatives
based on their distance from an ideal solution (the best possible score) and a nadir solution
(the worst possible score). The optimal alternative is the one closest to the ideal and farthest
from the nadir.

In this study, we utilize normalization to eliminate differences in dimensionality and
magnitude. The improved TOPSIS method is used to evaluate the importance of nodes,
with the weights obtained through the entropy weight (EW) method and the coefficient of
variation (CV) method, which are combined using a preference coefficient. This process
allows for the calculation of the comprehensive importance Ci of each node i within the
network. The detailed steps of this procedure are shown in Algorithm 1.
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Algorithm 1. Determination process of node importance

Input
The raw data of node centralities: Xnm =

[
xij

]
, i = 1, 2, · · · , n; j = 1, 2, · · · , m, where n is the

number of nodes, m is the number of evaluation indexes, and xij represents the jth index of the
ith node.

Process
1. Normalize the decision matrix: Pij =

xij

∑m
i=1 xij

, where Pij is the normalized value of xij and xij is
the raw value.

2. Calculate the entropy for each criterion: ej = −k∑m
i=1 Pijln

(
Pij

)
, where k = 1/ln(m), ej is the

entropy of criterion j, and Pij is the normalized value.

3. Calculate the weights of each criterion: wj =
1−ej

∑n
i=1(1−ej)

, where wj is the weight of criterion j

and ej is the entropy of criterion j.
4. Calculate the variation coefficient vj = sj/xj, where sj is the standard deviation and xj is
the mean.
5. Determine the combined weights based on the wj and vj: Wj = φwj + (1 − φ)vj, where φ is the

preference coefficient and φ ∈ (0, 1).

6. Normalize the decision matrix: x∗ij =
xij− min

1≤k≤n
{xkj}

max
1≤k≤n

{xkj}− min
1≤k≤n

{xkj} , where m is the number of evaluation

indexes and xij represents the jth index of the ith node.
7. Determine the ideal solutions Zimax and nadir solutions Zimin for each column Zi:
Z = SWj, zij =

{
sijwj

}
.

8. Calculate the Euclidean distance D+ =

√
∑n

j=1

(
Zimax − zij

)2
and D− =

√
∑n

j=1

(
zij − Zimin

)2

of each alternative from the ideal and nadir solutions.
9. Rank alternatives based on their relative closeness C = D+

D++D− ∈ [0, 1] to the ideal solution.

Output
The comprehensive importance Ci for each node i.

2.2.2. Edge Importance Evaluation

Edge Betweenness Centrality (EBC) is used to evaluate the importance of edges in
complex networks. EBC is defined as the number of shortest paths between node pairs that
pass through a given edge. A high EBC value indicates that the edge serves as a critical
conduit for communication or flow between different regions of the network. For each
pair of nodes s and t, the shortest paths are calculated, and the number of these paths that
traverse the edge e is determined. The EBC is then calculated by summing these values
for all node pairs. EBC can be computed using Equation (1), where V represents the set of
nodes, σ(s, t) denotes the total number of shortest paths between s and t, and σ(s, t|e) is
the number of those paths passing through edge e.

EBCe = ∑
s,t∈V

σ(s, t|e)
σ(s, t)

(1)

The EBC values of all edges can be ranked from highest to lowest. A larger EBC value
signifies a more critical role of the edge within the network. Consequently, edge importance
in the complex metro network can be effectively assessed using this method.

2.2.3. Line Importance Evaluation

A line in a metro network consists of the nodes it passes through and the connecting
links between them. Therefore, the importance of a line can be weighted and measured
based on the importance of its nodes and connecting edges. The calculation formula is
provided in Equation (2). If line l contains nl nodes, with adjacent nodes forming nl − 1
edges, the importance Iline of line l is calculated as the sum of the node importance Inode and
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the edge importance Iedge. The calculation is expressed in Equation (2), where Ci represents
the importance of node i and EBCe represents the importance of edge e.

Iline = γInode + δIedge = γ∑nl
i=1 Ci + δ∑nl−1

e=1 EBCe (2)

2.3. Vulnerability Assessment of Complex Metro Networks

The metro network may experience varying levels of disruption, ranging from micro
to macro events, such as station closures, tunnel interruptions, line failures, or area-wide
failures. When these scenarios occur, the network’s performance degrades, making the
system more vulnerable. In this context, we define the vulnerability of the metro network
as the reduction in network connectivity and the extent of loss following an emergency. To
assess the network performance Q, we employ network efficiency (NE) and the largest con-
nected subgraph ratio (LCR) as indicators, as outlined in Equation (3). Network efficiency
is a metric used to evaluate the effectiveness of information transmission or communication
within the network, and it can be computed using Equation (4).

In a network, a connected component is a subset of nodes where a path exists between
any two nodes within the subset and no node in the subset is connected to any node outside
of it. The largest connected component (LCC) is the connected component containing
the highest number of nodes [42]. Equation (5) defines the largest connected subgraph
ratio (LCR) as the proportion of the largest connected subgraph to the total number of
nodes in the network. The two parameters, α and β, in Equation (3) represent the weights
corresponding to NE and LCR, respectively.

Q = αNE + βLCR (3)

NE =
1

N(N − 1)∑
i ̸=j

1
dij

(4)

LCR = LCC/N (5)

NE and LCR are commonly used to evaluate overall network connectivity. Higher
values for these indicators signify better network connectivity. Additionally, these metrics
are useful for assessing the network’s robustness, where higher values indicate that the
network can remain connected even when some nodes or edges are removed. In the event
of an emergency, the network efficiency and the largest connected subgraph ratio decrease
to NE′ and LCR′, respectively, and the system’s new performance is denoted as Q′ (as
shown in Equation (8)). At this point, the vulnerability (V) of the system is represented by
∆Q, the degree of reduction in Q, which can be calculated using Equation (9).

NE′ =
1

N′(N′ − 1)∑
i ̸=j

1
d′ij

(6)

LCR′ = LCC′/N (7)

Q′ = αNE′ + βLCR′ (8)

V = ∆Q = Q − Q′ (9)

The various failure scenarios that may occur within the metro network are catego-
rized below, and the corresponding vulnerability of the system under each failure type
is evaluated.

2.3.1. Case 1: Node Failure

The most common failure scenario in a metro network is node failure, which in this
study refers to the complete interruption of a station within the network, meaning the
node can no longer transport passengers. The failure of general stations and transfer
stations has different impacts on the network. To illustrate this, we use a simple network
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shown in Figure 2a, consisting of 10 stations and 6 lines, including 7 general stations and
3 transfer stations. Stations I, B, and J serve as two-line, three-line, and four-line transfer
stations, respectively.
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Figure 2b–e depict the failure scenarios of different types of stations, with yellow
indicating the stations that have failed. When the general station H fails, the connections
H-I and H-J are severed, and a similar scenario occurs when the two-line transfer station I
fails. However, when the three-line transfer station B fails, its adjacent stations A, I, and
J become disconnected. In the case of the four-line transfer station J failing, all 7 of its
connecting edges are disconnected from the network. For different types of station failures
in the network, we simulate the impacts by sequentially removing the corresponding nodes
from the network. First, we rank the importance Ci of all nodes from highest to lowest.
Then, we remove one node at a time and calculate the network’s performance, Q′

node, until
all nodes have been assessed. Following this procedure, the network vulnerability Vnode
under the node failure scenario can be determined. The specific simulation process is
illustrated in Figure 2f.

2.3.2. Case 2: Edge Failure

When the metro system is impacted by heavy rain, flooding, or similar events, water
may enter the tunnels and disrupt the normal operation of the transit sections. In this case,
edge failure in the metro network refers to the complete breakdown of a connected edge.

Figure 3a shows the original network. When the connecting edge between stations B
and I fail, as depicted in Figure 3b,c, trains are unable to transport passengers along this
section and must temporarily halt operations or alter the original operation plan. Like node
failure, we simulate edge failure by sequentially removing the connected edges from the
network. Figure 3d illustrates the specific simulation process. Based on the importance of
all connected edges, the failure of a corresponding transit segment is simulated by removing
one edge at a time. The network’s performance, Q′

edge, is recalculated with each removal
until all connected edges have been assessed. This allows us to evaluate the network’s
vulnerability, Vedge, under the edge failure scenario.
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2.3.3. Case 3: Line Failure

Building on the potential node and edge failures caused by emergencies, when the
disruption escalates, a chain reaction may result in the suspension of an entire line, leading
to line failure. As shown in Figure 4b,c, when Line 3 fails, no trains can operate on the line,
leading to the disconnection of the edges connecting stations E, J, H, and I. To simulate
line failure, we remove all connecting edges between the nodes along the affected line
in the network. The detailed simulation process is depicted in Figure 4d. This operation
is performed on each line in the network, one at a time, and the performance of the
updated network is calculated. In this way, the network vulnerability Vline under line
failure conditions in the metro network can be assessed.
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2.3.4. Case 4: Area Failure

As the severity of an incident escalates, multiple connections and nodes within the
metro network may be disrupted, leading to area failures. For instance, an extreme rain-
storm may cause widespread flooding, rendering several stations and tunnels in a region
inoperable. The light blue areas in Figure 5b represent flooded zones where stations B, J, H,
and I are unable to operate normally. The closure of these stations directly prevents vehicle
operations in the sections connecting them to adjacent stations, as illustrated in Figure 5c.
To simulate such area failures, we remove all nodes within the affected area, as illustrated
in Figure 5d. The connecting edges between these removed nodes become isolated, causing
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the affected section to cease functioning. We then recalculate the network’s performance,
Q′

area, based on the changes. Finally, the network vulnerability Varea under the area failure
scenario is determined.
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3. Study Objects

This study integrates relevant theories and real-world cases to select appropriate
research objects. On 13 June 2017, heavy rain from Typhoon Merbok caused flooding at
the entrance and exit of Chegongmiao Station on the Shenzhen Metro. Similarly, on 20 July
2021, the Zhengzhou Metro experienced extreme rainfall, resulting in water flooding the
train tunnels and leading to a complete network shutdown. Given these metro network
failure cases, this study selects the SZMN and ZZMN for case analysis, comparing their
vulnerability under various failure scenarios.

At the end of 2017, the SZMN operated eight lines (L-1/2/3/4/5/7/9/11) with an
operational length of 285.6 km. The network encompassed 166 stations, including one
four-line transfer hub, two three-line transfer stations, and 25 two-line transfer stations. In
comparison, by late 2021, the ZZMN consisted of seven lines (L-1/2/3/4/5/14/cj) covering
215.5 km, with 131 stations, of which 17 served as two-line transfer points. The schematic
diagrams of SZMN and ZZMN are shown in Figure 6.
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4. Results
4.1. Basic Network Topological Characteristics

Based on the complex network models of the SZMN and ZZMN, along with relevant
theories, their basic topological features can be quantitatively assessed, with the results
presented in Table 1. In terms of the number of nodes, edges, and lines, the overall size
of the SZMN is slightly larger than the ZZMN. The average degrees of the two networks
are 2.289 and 2.168, respectively, showing minimal difference. Network connectivity can
be understood by analyzing β, APL, and D. The network connectivity β of the SZMN is
slightly higher than the ZZMN (1.145 vs. 1.084), while the APL of the SZMN is marginally
lower than that of the ZZMN (11.64 vs. 11.77). The network diameter D of the SZMN
is 43, which is 1.23 times that of the ZZMN. However, the ZZMN has a network density
ρ of 0.0167, which is 1.20 times that of the SZMN. These values suggest that while the
network density of the SZMN is slightly lower than that of the ZZMN, its connectivity and
accessibility are higher.

In terms of network efficiency, SZMN demonstrates higher global efficiency θ than
ZZMN (0.1323 vs. 0.1320), indicating that the information transmission speed between node
pairs is faster in SZMN. The higher local efficiency δ of SZMN (0.003 vs. 0.000) suggests that
local communication within the network is also more efficient, and the network exhibits
greater robustness when a node is removed. Both networks have negative assortativity σ,
indicating that they are disassortative and heterogeneous. Specifically, high-degree nodes
tend to connect with low-degree nodes, and vice versa.

Figure 7 illustrates the geographical distribution of node centralities, revealing that the
entire network is concentrated in the city’s economically developed areas. The central areas
are highlighted within two dashed boxes. Stations in these central areas exhibit higher
proportions of CC and EC compared to other node centralities, whereas BC and CC are
more prominent in other regions. In the SZMN network, Chegongmiao Station, a four-line
transfer hub, demonstrates the highest DC, EC, BC and PR across the entire network.
Conversely, Futian Station, a three-line transfer hub, exhibits the highest CC. Within the
ZZMN network, all 16 two-line transfer stations, with the exception of Nansihuan Station,
display the highest DC. Zijingshan Station leads in both EC and CC, while Huanghelu
Station shows the highest BC. The largest PR value is observed at Henan Orthopaedics
Hospital Station. On average, the four centralities, DC, EC, BC, and PR, are higher in ZZMN
compared to SZMN, while CC is higher in SZMN than in ZZMN (0.0915 vs. 0.0903).
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Table 1. Basic topological characteristics of SZMN and ZZMN.

N E L k β APL D ρ δ θ σ

SZMN 166 190 8 2.289 1.145 11.64 43 0.0139 0.003 0.1323 −0.0431
ZZMN 131 142 7 2.168 1.084 11.77 35 0.0167 0.000 0.1320 −0.1055

4.2. Importance Ranking of Network Components
4.2.1. Node Importance Ranking

Using the node importance recognition method proposed in this study, we can deter-
mine the comprehensive importance values for all nodes in the two metro networks. The
importance distributions of the 166 nodes in the SZMN and the 131 nodes in the ZZMN are
depicted in Figure 8a,b. Overall, both networks contain a small number of highly important
nodes. In the SZMN, 3.01% of the nodes have an importance value C greater than 0.5,
compared to 4.58% in the ZZMN, while only 1.20% and 2.29% of the nodes in the SZMN
and ZZMN, respectively, have C values exceeding 0.6. This indicates that most nodes hold
low importance, highlighting the prominent network heterogeneity, where a few hub nodes
play crucial roles. In the SZMN, Chegongmiao Station and Futian Station are the top two most
important nodes, with importance values of 0.999 and 0.895, respectively. In the ZZMN,
Zijingshan Station, Dongdajie Station, and Huanghelu Station are identified as the three most
important nodes. The geographical distribution of node importance in the two networks
is shown in Figure 8c,d. The larger the circle, the higher the node importance value C.
Comparing the two networks, it is evident that the high C values in the SZMN are primarily
concentrated in the southern part of the network, around Chegongmiao and Convention &
Exhibition Center. In contrast, the high C values in the ZZMN are mainly located in the
central part of the network, with a more uniform distribution of node importance compared
to the SZMN.
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4.2.2. Edge Importance Ranking

By applying edge importance identification in the metro complex network, we can
determine the EBC values and rankings of 190 edges in the SZMN and 142 edges in the
ZZMN. The histograms of their frequency distributions are shown in Figure 9a,b. Overall,
the frequency distribution of edge importance in the ZZMN follows a right-skewed normal
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distribution, while the SZMN’s distribution is closer to an exponential distribution. In
terms of probability distribution, 53.16% of the edges in the SZMN have importance values
in the range of [0, 0.05]. The proportion of edges with EBC values below 0.1 is 83.16%,
while only 3.16% of the edges have EBC values greater than 0.20. In the ZZMN, 73.24% of
the edges have EBC values less than 0.1, while only 4.93% of the edges have EBC values
greater than 0.20. These findings indicate that in both networks, most edges demonstrate
low importance (EBC < 0.1), with only a small fraction of edges holding high EBC values
and occupying critical positions within the network’s structure.
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Figure 9c,d visualize the geographical distribution of edge importance in the SZMN
and ZZMN, respectively. In the SZMN, edges with high EBC values are predominantly
concentrated along L-4 and L-11, with the edge connecting Chegongmiao and Futian having
the highest EBC value (0.356). In the ZZMN, L-2 contains more edges with high EBC
values, with the edge between Zijingshan and Huanghelu having an EBC of 0.261. Addition-
ally, multi-line transfer stations in both networks exhibit higher EBC values compared to
general stations.

4.2.3. Line Importance Ranking

Based on the line importance calculations, we obtain the importance values Iline for
the 8 lines in SZMN and 7 lines in ZZMN. The detailed results are presented in Figure 10,
showing significant variation in line importance across both networks. In SZMN, L-3
has the highest Iline, with a value of 7.12, while L-1, L-2, and L-11 all have Iline values
exceeding 5. The average Iline for all lines in SZMN is 4.90, whereas in ZZMN it is slightly
higher at 5.15. Notably, L-2 and L-5 in ZZMN have the highest Iline values, at 8.83 and 8.37,
respectively, while L-14 has the lowest Iline value of only 0.17.

Comparing the Iline values of each line reveals that the status difference among lines
in the SZMN is smaller than in the ZZMN. This may be attributed to the SZMN’s earlier
opening in 2004, resulting in a more balanced long-term development. In contrast, the
ZZMN, which opened in 2013, is still in the early stages of rapid expansion, and the devel-
opment planning for its different lines remains uneven. Understanding the ranking of line
importance is valuable for assessing the status discrepancies between metro lines, especially
in terms of planning, management, and operations. Furthermore, during emergencies that
may cause service disruptions, the vulnerability and post-event resilience of various lines
can differ significantly.
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4.3. Vulnerability Assessment under Multiple Failure Cases

Based on the calculation of metro network vulnerability, the initial network efficiency
for the SZMN and ZZMN is NE0

SZ = 0.1323 and NE0
ZZ = 0.1320, respectively. The initial

largest connected subgraph ratios are both LCR0
SZ = LCR0

ZZ = 1.00. Since it is difficult
to accurately determine the weights for these two indicators, we simplify Equation (3)
by setting α = β = 0.5. As a result, the initial network performance values are Q0

SZ =
0.5662 and Q0

ZZ = 0.5660. Next, we assess the vulnerability of each network under different
failure scenarios.

4.3.1. Station Failure

The vulnerability results for the two metro networks under station failure are presented
in Figure 11. The status of each node in the network determines the extent of the network’s
vulnerability when a failure occurs. Only a few node failures have a significant impact on
network performance. In the SZMN, 6.63% of the nodes exhibit a vulnerability greater than
0.03 following failure, while 13.74% of the nodes in the ZZMN show such vulnerability. In
previous studies [43], vulnerability was defined as the reduction in NE, leading to different
results. In this study, we calculate vulnerability V based on both NE and LCR, and changes
in these two metrics result in different vulnerability outcomes.
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In the SZMN, the node with the lowest NE following failure is Chegongmiao Station
(ID = 10), with an NE value of 0.1159. However, the node with the lowest LCR is Buji
Station (ID = 69), whose failure reduces the LCC from 166 to 151. Consequently, the
scenario with the greatest vulnerability (0.0502) arises from the failure of Buji Station, where
network performance drops to 0.5159. In the ZZMN, the failure of Zijingshan Station



Sustainability 2024, 16, 9603 14 of 19

(ID = 17) results in the lowest NE value (0.1258), while the lowest LCC occurs with the
failure of Nanwulibao Station, reducing the LCC to 114. As the change in LCR is greater
than the change in NE, the failure of Nanwulibao Station, rather than Zijingshan Station,
results in the highest performance degradation and the greatest vulnerability (0.0741). By
comprehensively analyzing the geographical distribution of failed nodes in both networks,
we find that the failure of Buji Station in the SZMN results in the disconnection of a
portion of L-3 from the entire network. Similarly, the failure of Nanwulibao Station in the
ZZMN causes the separation of part of L-2 and L-cj from the network. Both scenarios
significantly disrupt the connectivity and accessibility of the respective networks, leading
to the emergence of the most vulnerable failure scenarios.

4.3.2. Tunnel Failure

By applying the edge failure scenario analysis method proposed in this study, we
can assess the system performance and vulnerability of metro networks under tunnel and
section failures. Figure 12 presents the frequency distribution histogram of vulnerability V
obtained from the edge failure simulations for the SZMN and ZZMN. In both networks,
80.53% and 76.76% of edge failure scenarios, respectively, have a vulnerability V less than
0.01, indicating that most tunnel failures result in relatively low vulnerability. Only 4.74% of
edge failures in the SZMN and 11.27% in the ZZMN yield a network vulnerability greater
than 0.03. Specifically, in the SZMN, the failure of the section linking Buji Station and
Muminawan Station leads to the lowest network performance, with a drop to 0.5193, and
the maximum vulnerability reaching 0.047. In the ZZMN, the failure of the edge between
Nanwulibao Station and Huazhai Station results in the highest network vulnerability (0.0687).
Notably, these two stations also rank as the top two with the highest vulnerability under
the node failure scenario.
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4.3.3. Line Failure

When the metro network faces an emergency, such as a communication signal break-
down or power supply interruption, cascading failures can lead to the failure of an entire
line. Using the line failure simulation method proposed in this study, we can assess the
impacts of different line failures on the metro network, as shown in Figure 13. In the SZMN,
the failure of L-1 results in the largest network vulnerability (0.0822), followed by L-3. In
contrast, the failure of L-4 causes the smallest change in network performance, with the
lowest vulnerability (0.0350). In the ZZMN, the failure of L-2 produces the highest network
vulnerability (0.1311), while the failure of L-14 has the least impact, with a vulnerability of
only 0.0090. The average network vulnerability of the SZMN’s 8 lines under line failure is
0.0655, compared to 0.0863 for the ZZMN’s lines.
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4.3.4. Area Failure

For the failure of an area consisting of multiple stations and connecting edges, two
regions, shown in Figure 14, are selected for simulation experiments. The selection is based
on the basic topological characteristics of the two metro networks and actual passenger
flow during operation. Figure 14a depicts failure area A in the SZMN, which includes
Chegongmiao, Futian, Shopping Park, and Xiangmihu, as well as the links between adjacent
stations. This area is chosen because it features a four-line transfer station, a three-line
transfer station, a two-line transfer station, and a regular station, representing all station
types in the SZMN and offering significant research value. In Figure 14b, failure area B
in the ZZMN consists of Zijingshan, Renminlu, Erqiguangchang, Xidajie, Dongdajie, and the
connecting edges between adjacent stations. The three vertices of the triangular region
formed by these five stations are two-line transfer stations, underscoring this area’s critical
role in information transmission within the ZZMN.
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Based on the area failure simulations, we can assess the changes in network perfor-
mance and vulnerabilities for the two subnetworks, with detailed results presented in
Table 2. In comparison to the initial network characteristics shown in Table 1, the number
of connected edges in the SZMN is reduced by 15 following the failure of area A. APL
increases from 11.64 to 14.99, and D rises from 43 to 46. Global network efficiency θ de-
creases by 15.65%, from 0.1323 to 0.1116. LCC decreases to 162, resulting in an LCR of 0.976.
Consequently, network performance Q declines from 0.5662 to 0.5438, with a network
vulnerability V of 0.0224. For the ZZMN, the number of connected edges decreases by nine
after the failure of area B. APL increases from 11.77 to 13.16, and D rises from 35 to 40. NE
drops to 0.1218, representing a 7.71% reduction from the initial condition. LCR is 0.962,
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and the network vulnerability is 0.0242. Comparatively, the failure of area B has a slightly
stronger impact on the ZZMN’s performance than area A’s failure has on the SZMN.

Table 2. Network characteristics of SZMN and ZZMN under area failure.

N E APL D θ LCC LCR Q’ V

SZMN 162 175 14.99 46 0.1116 162 0.9759 0.5438 0.0224
ZZMN 126 131 13.16 40 0.1218 126 0.9618 0.5418 0.0242

4.3.5. Overall Comparison

Based on the four failure scenarios, we conducted a comparative analysis of the
similarities and differences between the SZMN and ZZMN. A summary of results for both
networks is presented in Table 3. Overall, the ZZMN exhibits higher overall vulnerability
than the SZMN across node, edge, line, and specific area failure scenarios, with 13.74%
of node failures and 11.27% of edge failures in the ZZMN resulting in vulnerabilities
greater than 0.03. In comparison, the SZMN exhibits similar vulnerability levels in 6.63%
of node failures and 4.74% of edge failures. Although the SZMN demonstrates lower
average vulnerability than the ZZMN, it has a higher percentage of nodes with V > 0.03,
indicating that the SZMN features a greater number of vulnerable nodes and edges. This
suggests that if these critical components fail, the consequences for the SZMN could be
more severe. Therefore, it is essential for metro management to enhance safety supervision
of these components.

Table 3. Vulnerability changes under various failure scenarios.

Scenario
Vulnerability (V)

Index SZMN ZZMN

Node failure
V_avg 0.0091 0.0132

V ≥ 0.03 6.63% 4.74%

Edge failure V_avg 0.0054 0.0088
V ≥ 0.03 13.74% 11.27%

Line failure V_avg 0.0655 0.0863
Area failure V 0.0224 0.0242

Empirical analysis of both metro networks reveals that disruptions to critical nodes
generate more substantial impacts on network vulnerability compared to essential edge
failures. Vulnerability impacts intensify as the scope of failure expands, with line-level
disruptions demonstrating particularly significant effects. However, shorter lines—such as
L-4 in the SZMN and L-14 in the ZZMN—contribute proportionally less to overall network
robustness. The impact magnitude of area-based failures exhibits significant variation,
primarily contingent upon the spatial distribution of the affected zones. Although typical
areas in both networks were selected for simulation and analysis in this study, further
examination of network performance under different regional failure scenarios is necessary.
In general, node, edge, line, and area failures each have distinct effects on a given urban
metro network, and different networks respond uniquely to identical failure scenarios.
These dynamic interactions warrant further exploration from a dynamic perspective.

5. Conclusions and Future Works

This study proposes a method for identifying the importance of various network
components (nodes, edges, and lines) based on complex metro network modeling and
topological feature analysis. It also introduces vulnerability assessment methods for four
failure scenarios: station, tunnel, line, and area. These methods are practically applied
and comparatively analyzed in the SZMN and ZZMN networks, yielding the following
key findings:
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(1) Despite exhibiting lower network density, the SZMN demonstrates superior con-
nectivity and accessibility metrics compared to the ZZMN. The higher global and
local efficiency values found in the SZMN indicate enhanced information transmis-
sion capabilities and greater systemic robustness. Notably, both networks manifest
disassortative mixing patterns and heterogeneous structural properties.

(2) Regarding network nodes, the values of DC, EC, BC, and PR for the ZZMN are
consistently higher than those of the SZMN, while CC of the SZMN exceeds that
of the ZZMN. Both networks exhibit a small number of high-importance nodes,
indicating prominent network heterogeneity, with a few hub nodes playing crucial
roles in the network structure. Concerning network edges, the importance frequency
distribution in the ZZMN approximates a right-skewed normal distribution, while
that of the SZMN more closely resembles an exponential distribution. The proportion
of edges with importance values greater than 0.20 is merely 3.16% in the SZMN,
compared to 4.93% in the ZZMN. Multi-line transfer stations consistently demonstrate
higher EBC values than general stations. Line importance varies significantly between
the two networks, with the average Iline being 4.90 in the SZMN and 5.15 in the ZZMN.
These disparities in network component criticality can be attributed to the distinctive
infrastructure planning approaches and development trajectories adopted by each
metro system.

(3) Network performance exhibits high sensitivity to disruptions among a small subset
of critical nodes. In the SZMN, 6.63% of node failures result in a vulnerability greater
than 0.03, while this proportion rises to 13.74% for the ZZMN. The failure of Buji
Station has the most substantial impact on the SZMN’s network performance, whereas
Nanwulibao Station’s failure induces the highest vulnerability in the ZZMN. Edge
failures causing network vulnerability to exceed 0.03 are limited to 4.74% and 11.27%
of cases in the SZMN and ZZMN, respectively. Network vulnerability peaks with
the failure of Line-1 in the SZMN and Line-2 in the ZZMN. The impact of area A
failure on the SZMN’s vulnerability is marginally less severe than that of area B on
ZZMN’s performance. In general, different failure scenarios yield varying impacts on
the performance and vulnerability of urban metro networks, underscoring the need
to capture these dynamic changes.

Based on complex metro network topology, this study identifies the importance of
various network components and evaluates network vulnerability under four failure
scenarios across two urban metro systems. The research findings offer valuable insights
for traffic planners and metro safety managers regarding the overall development of
urban metro networks, the relative importance of the different components, and network
performance changes under various failure scenarios. It can also assist in enhancing
the safety supervision of vulnerable points during route operations and implementing
effective measures during significant emergencies, ultimately improving the resilience
and sustainability of metro network systems. However, this study has certain limitations.
Future research endeavors should expand the analytical framework to incorporate key
operational factors, specifically ridership patterns and environmental conditions, into
vulnerability assessments. Moreover, subsequent investigations will focus on bridging
theoretical frameworks with empirical scenarios to enhance the model’s validity and
practical applicability.
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