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Abstract: In recent years, concerns regarding the environmental impact of microplastics (MPs) have
led to increased international attention on these pollutants. Although the initial focus was largely
directed toward marine environments, land-based pollution sources, including MP release, have
been recognized to directly affect marine ecosystems. Therefore, soil-, atmosphere-, groundwater-,
and river-based research is ongoing. However, when considering sources of MP, it is necessary to
examine the circular system of plastic in terms of raw materials, production, consumption, discharge,
and disposal (recycling). Accordingly, the present study proposes a strategy to effectively manage
MPs using this circular system. First, the factors influencing MPs in the circular system were
identified, and MPs at the system’s final stage, i.e., at the waste treatment facility, were subsequently
investigated. Using the concept of MP waste (MPW), strategies were then developed for effective
MP management within the circular system. Applying the proposed theoretical strategy to the
Korean waste management system revealed that the new policy framework improves the current
MP management system. Overall, this study provides fundamental data for establishing new or
improved MP management schemes from a waste sector perspective.

Keywords: microplastic; policy framework; circular system; theoretical strategy; waste management

1. Introduction

Microplastics (MPs) are artificially or naturally fragmented micro-sized plastics in
the range of 1 nm to 5 mm. MPs comprise a mixture of polymers and additives and are
typically acknowledged to pose a threat to ecosystems [1–3]. MPs can be categorized
into primary and secondary MPs based on their origin [4]. Primary MPs are intentionally
manufactured at sizes < 5 mm, such as microbeads and plastic pellets. Secondary MPs
are generated via the fragmentation of plastics in the environment, including textile fibers
and tire dust, to sizes < 5 mm through processes such as photodegradation, abrasion, and
decomposition [2,5].

In recent years, numerous studies have reported the harmful effects of MPs on ecosys-
tems, highlighting their physicochemical properties, bioaccumulation, and toxicity. Smaller
MPs can be ingested by marine organisms, with their impact extending to birds and marine
mammals [6–8]. Hydrophobic substances, such as polychlorinated biphenyls, persistent
organic pollutants, and heavy metals, likely adhere to MP surfaces and bioaccumulate
through the food chain, affecting the overall ecosystem, including seawater, freshwater,
and soil [9]. Furthermore, additives used in plastic manufacturing, such as plasticizers and
flame retardants, may leach into the environment, acting as toxic agents [10,11]. In terms of
harmful effects on human health, MPs can affect all organs, potentially traversing cellular
barriers, such as the blood–brain barrier, leading to cerebral ischemia and reperfusion
injury [12,13].
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The UN Environment Assembly has adopted a resolution on marine plastic waste and
MPs; accordingly, they recommend investigating the origins of MPs entering the oceans,
developing management measures to minimize their entry, and creating international,
national, and regional management strategies to strengthen international coordination [14].
Discussions on implementation are underway at the international level, involving the
establishment of groups of experts from various countries, aiming for concrete measures
and internationally binding agreements to reduce marine waste. The Organization for
Economic Cooperation and Development has suggested conducting national surveys to
identify MP sources in land and oceans as well as developing policies to minimize plastic
use in each country [15,16]. At the G7 Summit, the G20 Action Plan on Marine Litter
was discussed, a plan aiming to investigate marine litter (including MPs) impacts on the
environment, develop measures to protect the environment from marine litter, and apply
these measures in a circular system considering the life cycle of plastics [17,18].

Although initial international concern over MP pollution focused primarily on marine
environments, the lack of land-based plastic management is now recognized as one of the
major direct contributors to marine pollution [19]. Specifically, waste plastics, the source
of MPs, are discharged directly into the ocean from land, or MPs generated on land are
washed into the ocean [20]. The direct impact of land-generated MPs on marine environ-
ments as well as terrestrial flora and fauna, nature overall, and humans, is particularly
concerning. Consequently, investigations are underway in many countries, generally priori-
tizing research on MP contamination throughout the environment, including soil, air, coast,
and rivers [21–29]. However, when considering sources of MP, a circular system approach
is required for investigation, including examining the industrial system producing plastic
products from raw plastics, the household system consuming and discharging the plastic
products, and the waste treatment system collecting and processing waste [30]. The present
study aimed to identify the causes of MP pollution in the circular system, from plastic
product manufacturing to waste processing, with the objectives of reducing MP occurrence
and effectively managing generated MPs.

2. Factors Influencing MPs in the Circular System: From Plastic Product Manufacturing
to Waste Management

With the increasing use of plastic, considerable plastic waste is generated, threatening
the environment and human life. Thus, one possible solution is to consider the concept
of circular economy. This concept aims to protect the environment from plastic pollution
and promote the growth and innovation of industry and humans through overall changes
in every step of designing, producing, using, and recycling plastic. Considering that
plastics are the origin of MPs, the flow of plastic in a circular system also has a high impact
on the generation, movement, accumulation, and diffusion of MPs into the surrounding
environment. Therefore, understanding MPs in this circular system of plastic can be
an effective management strategy for MPs. In this section, to understand the factors
influencing MPs within the circular system, a schematic diagram of the cyclical system,
beginning from the manufacturing of plastic products to waste treatment, was examined
(Figure 1). Within the circular system, seven material factors (MFs) potentially causing
MP pollution were identified. First, the raw material (MF-1) required for plastic product
manufacturing is supplied for production. The manufactured plastic product (MF-2) is
then supplied for human use or economic gain, and the waste generated during production
(MF-3) is transferred to the waste treatment facility. Discarded plastic products (MF-4), as
well as sewage, rainwater, groundwater, and other waters containing plastic substances
from human usage or economic activities (MF-5), are disposed of through sewage treatment
facilities. Recyclable waste may be separated and incorporated back into the product
manufacturing process (MF-6). Finally, the risk of plastic materials leaking from each part
of the circular system into the environment must be considered (MF-7).
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Figure 1. Factors influencing MPs within the circular system range from plastic product manufactur-
ing to waste treatment facilities. (MF-1: raw material (raw plastic), MF-2: plastic product, MF-3: waste
generated during production, MF-4: discarded plastic product, and MF-5: sewage, rainwater, ground-
water, and other waters containing plastic substances from human usage or economic activities,
MF-6: recyclable waste, MF-7: leaked plastic materials from the circular system into the environment;
CA-1: manufacturing plastic products, CA-2: using plastic products, and CA-3: disposing of waste).

The areas where MFs are provided and where they may occur or cluster are called
causative areas (CAs). We categorized the CAs into manufacturing plastic products (CA-1),
using plastic products (CA-2), and disposing of waste (CA-3). Depending on the nature of
the plastic product, CA-1 includes intentional MP production through crushing, grinding,
and screening of solid plastic raw materials as well as unintentional generation during
manufacturing, with all being especially relevant to businesses producing plastic beads
and pellets, make-up products, synthetic rubber and tires, and plastic fibers, among other
products [31–34]. When MPs are generated, they are also present in the dust in the capture
facility or in sludge and wastewater from the process. CA-2 includes products that contain
or comprise MPs, making them an important MP source, given the ease with which they
wear, corrode, or degrade. Products containing MPs include skin exfoliators, cosmetics, face
washes, body scrubs, toothpaste, lip balms, moisturizing creams, makeup, and detergents,
among others [32,35]. Products comprising MPs include plastic bead products, antislip
powder products, and fillers [32,36,37]. Products with potential (stealth) MPs include
tires, synthetic clothing, tennis balls, laundry and dishwasher pods/tablets, cigarette
butts, glitter, wet wipes, tea bags, paints, and takeaway cups [32,38–42]. Regarding CA-3,
MPs may be generated during waste processing at recycling facilities, incinerators, and
sewage treatment facilities [34,43–45]. Additionally, MP generation may occur artificially
or naturally during landfilling, or they may be introduced from external sources [46–48].

3. Investigation of MPs in Waste Treatment Facilities

MPs at CA-1 and CA-2 can be effectively controlled if management practices are
improved at specific manufacturing steps as well as in the use, discharge, and collection of
certain products. In contrast, managing MPs at CA-3 is challenging as various nonplastic
waste types are processed at treatment facilities along with plastic waste. Therefore, before
addressing strategies to effectively manage MPs (Section 4), this section examines MPs
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at representative facilities relevant to CA-3, i.e., landfill sites and incineration, sewage
treatment, and recycling facilities.

3.1. Materials and Methods

To investigate MPs at the waste treatment facilities, the facilities were selected and
sampled based on their representativeness, types of substances treated, main processes,
throughput, and characteristics and amount of waste discharged following treatment
(Table 1). One incineration facility that incinerates municipal waste (Facility A) and another
that incinerates waste from recyclers (Facility B) were selected, both handling a high
proportion of plastic waste. For sewage treatment, two facilities (Facilities C and D), one
located in Seoul and one in Busan, two of South Korea’s largest cities, were selected,
considering the size of the city, the amount of sewage, and the generation of sewage
sludge. Landfill sites were selected based on the processing scale. For recycling, four
facilities (Facilities E–H) were selected, considering facilities primarily recycling waste
plastic products (e.g., household products, automobiles, and construction sites) and waste
tires. Overall, samples were prepared from 14 waste types from 8 facilities. More details
can be found in the Supplementary Information, Figure S1.

Table 1. Characteristics of the four facility types.

Facility Type Material Carried into Facility Main Process
Waste Generated After Process

Type Particle Sample Code

Incineration

A facility (1)
Plastic waste and waste plastic
products 20 (wt.%), rubber 1.3

(wt.%), fiber 5 (wt.%)

Incinerator with grate
combustion furnace

Bottom ash Various IAB

Fly ash Very fine
(<0.1 mm) IAF

Fly ash
(medicated)

Very fine
(<0.1 mm) IAFm

B facility (2) Plastic waste and waste plastic
products > 30 (wt.%)

Incinerator with
fluidized bed furnace

Bottom ash Various IBB

Fly ash Very fine
(<0.1 mm) IBF

Sewage
treatment

C facility (3) Sewage (9)

Dewatering process
with polyacrylamide

coagulant
Sludge

Usually
fine

(<5 mm)
SCW

Drying process with
polyacrylamide

coagulant
Sludge

Usually
fine

(<5 mm)
SCD

D facility (4) Sewage (9)

Dewatering process
with polyacrylamide

coagulant
Sludge

Usually
fine

(<5 mm)
SDW

Drying process with
polyacrylamide

coagulant
Sludge

Usually
fine

(<5 mm)
SDD

Landfill Mixture of municipal solid
waste and construction waste Landfill sites Landfilled

waste Various LW

Intermediate
treatment

E facility (5) Waste plastic products Melting, electric heater,
and cutting processes

Process
residues Various RE

F facility (6) Waste plastic products Melt mixer process Process
residues Various RF

G facility (7) Waste plastic products
(scrap cars)

Crushing,
cutting process

Process
residues Various RG

H facility (8) Waste tire Crushing,
cutting process

Process
residues Various RH

(1) A facility for incineration of municipal solid waste. (2) B facility for incineration of residues generated from
intermediate treatment facilities. (3) C facility located in Seoul metropolitan city. (4) D facility located in Busan
metropolitan city. (5) E facility manufacturing plastic chipping. (6) F facility manufacturing plastic popcorn. (7) G
facility manufacturing plastic flake. (8) H facility manufacturing recyclable tire raw material. (9) Sewage with
wastewater, rainwater, groundwater, etc., containing plastic materials in human life or economic activities.
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Prior to MP analysis, all samples were pretreated to separate foreign substances
(nonplastic) and remove organic materials (Figure 2) [49–53]. Samples weighing 0.1–2.0 g
(Table S1) were subjected to a float–sink process using a separatory funnel to separate
foreign substances. Given that typical plastics have a density of approximately 1.41 g/cm3

(Table S2), ZnCl2 was used as it has a density of 1.6 g/cm3 (Table S3). Following density
separation, primary filtration was conducted using a 20 µm diameter metal filter (Table S4),
and residual organic matter was removed using H2O2 solution (30%) (Table S5). Following
acid treatment, samples were subjected to second filtration under the same conditions as
the first filtration and subsequent drying. MPs were then analyzed via Fourier transform
infrared spectroscopy (FT-IR; LUMOS II, Bruker, USA) (Figure S2) [54,55]. Analytical results
were obtained through focal plane array mapping, and MP components were confirmed if
the concordance rate with library data exceeded 70%.
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3.2. MPs in Landfill Sites, Incineration, Sewage Treatment, and Recycling Facilities

Table 2 shows the number of MPs (≤5 µm) in the samples from each facility. High
levels of polypropylene, polyethylene, and polyethylene terephthalate were detected, along
with polyvinyl chloride, polyamide, polyurethane, and polymethyl methacrylate. Fly
ash (sample code: IBF) from municipal incinerators with a high plastic waste proportion
presented with the highest MP levels, and process residues (sample codes: RF and RG)
from facilities involved in intermediate treatment for recycling had higher levels compared
with samples from other facilities. The average value for all samples was 333.5 ea/g. The
FT-IR spectrum and image in Figure 3 support the results provided in Table 2.

In Table 3, the results of this study are compared with those of previous studies con-
ducted in various suspected contamination areas [45,56–62]. Our findings have revealed
higher MP levels, partly because most previous studies were conducted before the coron-
avirus pandemic of 2019; increased plastic waste generated from packaging and disposable
products during the pandemic likely affected the results of our study [63–66]. Additionally,
differences in MP conditions, sample pretreatment methods, analysis methods, particle
size ranges, target facility or region characteristics, and environmental factors (e.g., climate
and season) may also have contributed to these discrepancies. Table 3 includes results from
investigations conducted in specific soils, coasts, rivers, oceans, and air with suspected
MP contamination [21–29]. Comparing these data reveals that MPs from waste treatment
facilities can contaminate the environment through external runoff.
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Table 2. Number of MPs (≤5 µm) in the samples from incineration, sewage treatment, landfill facility,
and intermediate treatment. The experiments were repeated. Each data point was determined in
triplicate, and standard deviations of the data were estimated for each case (Table S6).

Sample Code
ea/g

PP (1) PE (2) PET (3) PVC (4) PA (5) PU (6) PMMA (7) Total

Incineration

IAB 40 10 30 - - - - 80
IAF - 12 - - - - - 60

IAFm 40 130 10 - - - - 180
IBB 80 140 20 - - 20 - 260
IBF 270 720 30 - 10 - 10 1040

Sewage
treatment

SCW 232 142 6 - - - - 380
SCD 38 6 62 - - 3 1 114
SDW 160 66 16 - 46 - - 288
SDD 12 - - - - - - 12

Landfill LW 208 138 22 12 8 12 12 412

Intermediate
treatment

RE 116 21 2 - 1 2 - 142
RF 5 1 850 - - - - 856
RG 497 32 4 - - - - 533
RH 309 1 2 - - - - 312

(1) PP: polypropylene. (2) PE: polyethylene. (3) PET: polyethylene terephthalate. (4) PVC: polyvinyl chloride.
(5) PU: polyurethane. (6) PA: polyamide. (7) PMMA: polymethyl methacrylate.
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Table 3. Abundance of MPs in various suspected contamination areas.

Location Particle Plastic Type Abundance Range References

Incineration
Seoul, Korea <5 mm PA, PE, PET, PMMA, PP, PU 60–1040 ea/g This paper

Wuhan, China <5 mm PA, PE, PMMA, PP, PS, PVC 11.2 ± 0.5 ea/g [56]
Eight different cities in China 50 um–1 mm PE, PET, PP, PS, ABS 0.6 ± 0.2 ea/g [45]

Sewage
treatment

Seoul and Busan, Korea <5 mm PA, PE, PET, PMMA, PP, PU 12–380 ea/g This paper
Northern Italy 10 um–5 mm AN, PE, PET 113 ea/g [58]

Oldenburg and Holdorf, Germany <500 um PE, PET, PP 1–24 ea/g [59]
11 provinces of China 37 um–5 mm PA, PE, PO, PS 1.6–56.4 ea/g [57]

Landfill
Incheon, Korea <5 mm PA, PE, PET, PMMA, PP, PU, PVC 420 ea/g This paper

Shanghai, China 0.23–4.97 mm EPM, PE, PEUR, PP, PS 20–91 ea/g [62]
11 landfill sites in Thailand <330 um PE, PET, PP 0.1–2.3 ea/g [60]

Coastal soil Shandong, China <5 mm PE, PEU, PP, PS <0.1–14.7 ea/g [28]

Floodplain soil Swiss <5 mm PE, PP, PS, PVC 0.59 ea/g [24]

Typical soil Beijing, Shandong, and
Xinjiang, China <5 mm PA, PE, PP, PS, UF 18.3–40.2 ea/g [23]

River
Beijing, China <2 mm PE, PET, PP, PS 0.1–0.6 ea/g [27]

Seoul, Korea 0.1–5 mm PE, PFTE, PTEE 0–234.5 ea/m3,
1–48 ea/fish [22]

Coastal

South India 0.3–6.7 mm PET, PTFE, PVE, PVDF Wet sediment 0.1–1.6 ea/g,
Dry sand < 0.1–1.5 ea/g [25]

Southeast Iran 0–4.75 mm PE, PET, PTE 0.2 ea/g [21]

Xiangshan Bay, China <330 um RY, PE, PET, PP, PS, PVC Water 0.17 ea/m3,
Sediment 0.1 ea/g [26]

Airborne Beijing, Tianjin, Shanghai,
Nanjing, and Hangzhou, China <0.1–9.6 mm RY, PAA, PAN, PE, PES, PET Northern 358 ± 132 ea/m3,

Southeast 230 ± 94 ea/m3 [29]

4. Theoretical Strategy for Effective Management of MPs

To minimize the impact of MPs on the surrounding environment from the circular
system (Figure 1) encompassing plastic product manufacturing and waste treatment, three
key measures should be implemented. First, the input of plastic raw materials (MF-1)
should be reduced; this can be achieved by maximizing recycling systems to reduce
landfilling and using plastic alternatives or minimizing production volumes to reduce
the total amount of plastic within the circular system.

Second, microplastic leakage (MF-7) from the circular system into the environment
should be curbed. For example, generated MPs may leak from the system during produc-
tion. During consumption and discharge, MPs may leak when products comprising or
containing them are dumped by users or disposed of illegally or unintentionally. In the
disposal phase, the current processing system often overlooks MP management, leading to
unintentional losses due to inadequate MP processing methods, facility limitations, and
lack of management awareness.

Third, a strategic plan to effectively manage MPs within the circular system must be
enforced. To this end, certain wastes or waste products impacting MPs were categorized as
MP waste (MPW). The concept of MPW was applied to each part of the circular system,
as shown in Table 4. During production, specific plastic manufacturing processes with
high MP generation rates are targeted; waste from the processes is denoted as MPW-1.
The consumption and discharge phases target specific products that comprise, contain,
or exhibit a high potential to generate MPs. Moreover, MPW-2 is defined as the state
in which such products are disposed of after use. During disposal, dedicated landfill
facilities manage MPW-1 and MPW-2 separately from general waste, as shown in Figure 4.
Waste managed at dedicated landfill facilities is referred to as MPW-3. For incinerators,
sewage treatment plants, and intermediate treatment plants, regular MP analysis should
be monitored to determine the extent of MP contamination. If MP levels exceed a certain
threshold, the waste should be transferred to a dedicated landfill facility for disposal. If
monitoring at a general landfill facility reveals high MP content, a separate treatment
method for MP management should be applied, or the establishment of a dedicated
management facility should be considered.
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Table 4. Applying the concept of MPW to each part of the circular system.

Circular System Range
Related Factors

Type of MPW
Material Factor (MF) Causative Area (CA)

Production

• Field: production field of plastic product
• Input: raw material and recyclable waste
• Output: manufactured plastic products and

waste generated during production

MF-1, MF-2, MF-3,
MF-6, and MF-7 CA-1

During production, waste from
specific plastic manufacturing

processes with high MP generation
rates is denoted as MPW-1.

Consumption and
Discharge

• Field: consumption and discharge fields of
plastic product

• Input: manufactured plastic product
• Output: discarded plastic product

MF-2, MF-4,
and MF-7 CA-2

MPW-2 is defined as the state in
which specific products are disposed
of after use; such products comprise,
contain, or exhibit a high potential to

generate MPs.

Disposal

• Field: disposal field of waste or
waste product

• Input: waste generated during production,
discarded plastic products, and sewage

• Output: recyclable waste

MF-3, MF-4, MF-5,
MF-6, and MF-7 CA-3

Waste, including MPW-1 and MPW-2,
managed at dedicated landfill

facilities is referred to as MPW-3.
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5. Applying the Theoretical Strategy: A Case Study in South Korea

As a case study, the theoretical strategy associated with the MPW concept presented
in Section 4 was applied to the Korean waste management system to confirm the feasibility
of the MP management approach in a circular system. To apply MPW-1, a total of three
separate steps can be implemented (Figure 5). First, the industries that intentionally and
directly produce MPs are identified, including those with high waste plastic emissions
and specific MP-generating processes (e.g., shredding, grinding, and cutting). To achieve
this, the Korean Standard Industrial Classification, which categorizes and codes industrial
activities for all companies in South Korea according to their nature and can be uniformly
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applied to compile various industry-related statistics, can be used [67]. Korean industrial
sectors are categorized in the classification table as sections (21 types), divisions (77 types),
groups (232 types), classes (495 types), and sub-classes (1196 types), with the industrial
sectors generating MPW-1 also identified in this table. In the second step, the waste types
generated by the industries identified in the first step are determined using the “List of
Waste Types” stipulated in the Korean Wastes Control Act [68]. In the third step, data from
the first and second steps are used to provide industry guidelines and determine waste
types defined as MPW-1.
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MPW-2 can be categorized into three waste product types: waste products containing
MPs, those composed of MPs, and those with a potentially high incidence of MPs (the prod-
ucts categorized into each type are described in Section 3.1). Therefore, it is necessary to list
the waste products for each of the three MPW-2 types and provide guidelines for separating
them from other waste products during discharge [69]. Figure 6 presents the flow chart
from waste discharge to treatment, illustrating the route for MPW-2-type waste separation
and discharge to an MPW-dedicated landfill facility. If MPW-2 types are recyclable or more
suited to incineration, they may be exempt from MPW-dedicated landfills.

To effectively manage MPs in landfills, several factors should be considered. First, the
decomposition of buried MPs must be accelerated. Typically, plastic in the surroundings
decomposes through a process from aerobic biodegradation of organic waste to methane
fermentation [46,47,70]. Taking this into account, using various indigenous microorgan-
isms, such as bacteria and fungi, can help accelerate MP degradation [71–75]. Second,
MP-specific filtration must be installed to prevent MPs from escaping through leachate
treatment facilities [46,76]. Third, various physical sorting techniques, including flotation,
air flotation, and magnetic separation using hydrophobic Fe nanoparticles, should be
applied to separate and recover MPs [77–85]. Recovered MPs can be reused as a plastic
raw material or converted into hydrocarbon feeds through thermochemical processing
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techniques or as an adsorbent for polyaromatic hydrocarbons and heavy metals [86–90].
In South Korea, over 300,000 tons of waste plastics are sent to landfills annually [91]. As
shown in Table 2, a substantial amount of MPs will be generated in landfills over time due
to weather (e.g., wind, rain, and snow), seasonal changes, and diverse waste types [46,47].
Furthermore, all landfills have the risk of leakage as they do not account for MPs [92].
Hence, monitoring is required to determine MP contamination levels, and, if necessary,
facilities should be reinforced for MP management. Most importantly, implementing
dedicated MP management landfills is crucial.
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6. Conclusions

There is still considerable debate regarding the direct impact of MPs on human health.
Because plastics are generally inert, the mechanisms underlying their absorption into an-
imals or humans are difficult to determine. Moreover, indications suggest that overall
environmental contamination from plastic dust remains relatively low. However, the ur-
gency of addressing MPs is underscored by several factors, which does not exempt them
from the general rules: Large amounts of plastics in the environment contribute to their
continued generation; the additives used in plastic product manufacturing are extractable
and toxic chemicals; MPs can become contaminated by their surroundings and turn into
a source of pollution if present in the environment improperly; MPs can gradually enter
leachate after landfilling and affect groundwater; and inhalation of MPs can cause lung
disease. Considering these factors, a new national MP management system is necessary.
This may include institutionalizing MP management, establishing new regulations, im-
proving existing versions to prevent MP release into the environment, and identifying and
controlling MP sources. To this end, the present study explored a new policy framework
to manage MPs effectively in the circular system, from plastic product manufacturing to
waste treatment. We proposed a theoretical strategy to establish a management system
for MPs and confirmed its feasibility through its application to the Korean waste manage-
ment system. Notably, tracking MPs throughout the circular system facilitates effective
MP management in waste management systems. Governments, industry managers, and
researchers in other countries can use this theoretical approach to evaluate and modify
their own management systems as necessary.
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