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Abstract: The digital economy (DE) is characterized by invention, low energy consumption, cross-
sector integration, and open sharing. It can effectively enhance social production methods, influence
consumer behavior, and provide new pathways to enhance total factor energy efficiency (TFEE). This
paper studies 280 Chinese cities, employing the entropy method and data envelopment analysis (DEA)
model to evaluate and analyze urban DE and TFEE. It also constructs a system generalized method of
moments model (SGMM model) and a threshold regression model (TR model) to examine the impact
of the DE on TFEE in China. The main study findings include the following: (1) The regression results
of the SGMM model indicate that the effect of DE on TFEE in Chinese cities shows a U-shaped trend.
(2) The regression results of the TR model further confirm a U-shaped association connecting DE and
TFEE, with the threshold estimated at 0.304. (3) The economic factors and industrial structure have
a major impact on inhibiting the improvement of TFEE, whereas technological advancements and
environmental regulations significantly facilitate its improvement.

Keywords: digital economy; total factor energy efficiency; impact mechanism; threshold regression
model; a U-shaped impact

1. Introduction

In the global fight against climate change and the pursuit of carbon neutrality, improv-
ing energy efficiency has become a key strategy for countries to lower carbon emissions,
thereby helping to mitigate global warming. China holds the distinction of being the
world’s largest carbon emitter, accounting for approximately 34% of global emissions.
Consequently, the level of energy efficiency in China has garnered significant attention [1].
While the Chinese government has taken steps to enhance regional energy efficiency, chal-
lenges related to economic structure and technology have led to energy efficiency levels
that are still lower than those in developed countries [2]. In 2022, China’s energy efficiency
was recorded at 0.132 tons of standard coal per thousand dollars of GDP, substantially
higher than the global average of 0.108 tons. This figure is 1.43 times that of Germany and
1.55 times that of the United States [3].

Since its initial introduction by Canadian scholar Don Tapscott in 1996, the concept
of the “digital economy (DE)” has been the subject of extensive research, focusing on its
relationship with energy efficiency [4]. Existing studies indicate a shift in the evaluation
methods of the DE from a singular indicator approach to a comprehensive indicator frame-
work [5]. However, a unified set of comprehensive evaluation indicators for the DE has
yet to be established [6]. Furthermore, numerous studies suggest that the relationship
between the DE and energy efficiency is linear, with most research concluding that the DE
positively influences energy efficiency [7]. In contrast, a minority of studies have identified
a nonlinear relationship between the two [8]. Additionally, the common method for evalu-
ating regional total factor energy efficiency (TFEE) is the data envelopment analysis (DEA)
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model; however, this model requires improvements regarding undesirable outputs and the
assessment of full efficiency values [9]. According to the China Academy of Information
and Communications Technology, the scale of China’s DE continued to experience rapid
growth in 2022, accounting for over 36% of China’s GDP [10]. The development of the DE
plays a significant role in enhancing energy efficiency in China.

In comparison to the existing research, this study introduces innovations in its indicator
system, research methods, and research perspective. The evaluation indicator system
for the development of the digital economy (DE) in Chinese cities is based on the “Four
Transformations Framework” outlined in the “China Digital Economy Development Report
(2020)” published by the China Academy of Information and Communications Technology.
Additionally, the study employs an improved data envelopment analysis (DEA) model,
specifically the Super-SBM-Undesirable model, to evaluate the TFEE of 280 cities in China.
Finally, it utilizes the system generalized method of moments model (SGMM model) with
the inclusion of the squared term of the DE and threshold regression model (TR model) to
empirically analyze the nonlinear relationship between the DE and energy efficiency.

The structure of this paper is organized as follows: Section 2 reviews the existing
literature. Section 3 provides a theoretical analysis and presents the research hypotheses.
Section 4 outlines the evaluation indicator system, research methods, and data sources.
Section 5 presents the empirical analysis, and Section 6 discusses it. Finally, Section 7
summarizes the research conclusions and offers policy recommendations.

2. Literature Review

In summarizing the existing research on energy efficiency, we classify it into single-
factor energy efficiency (SFEE) and TFEE based on the number of input factors [11]. The
measurement of SFEE generally involves calculating the proportion of output to energy
usage. However, this measure overlooks the influence of technology, capital, labor, and
environmental factors, leading more scholars to focus on TFEE [12]. For instance, Filippini
and colleagues used the SFA model to calculate the TFEE across 49 states in the United
States [13]. Nikbakht, aiming to avoid underestimating energy efficiency, employed the
DEA model to assess the TFEE of countries in the Gulf region [14]. Similarly, Li et al.
calculated the TFEE of 30 provinces in China based on an improved DEA model [15].

The primary factors influencing regional TFEE include economy, industry, technol-
ogy, urbanization, openness to international markets, and environmental regulations.
For instance, Ohene-Asare studied African countries and employed a three-stage frame-
work model to reveal a bidirectional causal relationship between TFEE and the economic
level [16]. Yu et al. employed a spatial model to analyze the factors of energy efficiency in
China, concluding that optimizing the industrial structure significantly enhances regional
TFEE. Conversely, due to China’s relatively low rate of technology transfer, investments
in technological invention have not had a notable impact on regional TFEE [17]. Cheng
et al. employed the DID model to assess both the direct and indirect effects of new urban-
ization on urban TFEE, finding that new urbanization significantly boosts urban TFEE by
promoting innovation, industrial, and structural effects [18]. Additionally, Wu et al. chose
the spatial Durbin model to reveal that environmental regulations have a U-shaped impact
on China’s TFEE [19].

Among the existing research results, only a few scholars have studied regional TFEE
from the perspective of the DE. Initially, scholars measure the level of the regional DE
through single indicators such as the size of Internet users, online consumption, and digital
finance to examine the correlation between the DE and regional energy efficiency. For
example, Wu et al. employed the Durbin model to discover that the development of
regional Internet not only directly enhances local energy efficiency, but also improves the
energy efficiency of neighboring areas [20]. Yang et al. found that digital finance has
facilitated effective resource allocation, resulting in more than a 15% increase in regional
energy efficiency [21]. With growing interest in the DE, scholars have begun directly
constructing regional DE evaluation indicator systems to study its impact on regional
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TFEE. Most of these studies conclude that the DE promotes regional TFEE. Liu et al., using
the Tobit model and quantile regression model, found that the DE significantly improves
China’s TFEE, although notable regional differences exist [22]. Xu et al. found that the
DE can significantly enhance green TFEE. Furthermore, in more economically developed
cities with relatively scarce natural resources, the DE plays an even more beneficial role
in improving green TFEE [23]. Shahbaz et al., using panel data from 72 countries, studied
the DE’s impact on green energy production and consumption. Their results indicate that
the DE positively affects energy transition and promotes renewable energy adoption by
enhancing governmental governance capabilities [24]. Conversely, some studies suggest
that the DE may inhibit regional TFEE. Zhang et al. analyzed the mutual influence paths
between the DE, energy efficiency, and carbon emissions. The results show that the growth
of the DE does not contribute to promoting energy efficiency and may even inexplicitly
increase carbon emissions [25]. Chen’s research also found that as the development of
the DE continues, there will be a rebound effect on energy consumption. This results in
increased energy use while diminishing regional energy efficiency [26]. Some scholars have
discovered that the DE exhibits nonlinear characteristics in relation to regional TFEE. Zhou
et al. examined energy consumption per unit of GDP as a measure of energy efficiency
and discovered a double-threshold effect in the relationship between the DE and energy
efficiency. This finding indicates an “N-shaped” pattern; while there are fluctuations in the
middle, the overall impact is positive [27].

To sum up, the exploration of the relationship of the DE on regional TFEE is still in
its infancy, with the DE emerging as a new driver for regional economic growth. Current
research indicates a shift from single-index methods to comprehensive-index methods for
evaluating DE levels. However, the comprehensive evaluation index system for the DE
remains exploratory, and no widely accepted system has yet been developed. Furthermore,
existing studies suggest that the DE’s impact on regional TFEE is generally considered
linear, with most studies indicating a positive effect on regional TFEE. The DEA evaluation
model is commonly used to assess regional TFEE, yet it requires enhancements to address
issues such as accounting for unexpected outputs and achieving full efficiency values.

In light of the above, this paper aims to build an index system for China’s urban DE by
drawing on the China Digital Economy Development Report (2020) issued by the Chinese
government. This system will encompass four dimensions: digital industry, industrial
digitization, digital governance, and data valorization. Furthermore, leveraging Tone’s
SBM model and Andersen’s super-efficiency evaluation model, this paper proposes the
construction of a DEA model tailored to evaluating the TFEE of Chinese cities—the Super-
SBM-Undesirable model [28,29]. Additionally, the paper will employ the SGMM model
and TR model to study the nonlinear effect of the DE on TFEE, thereby broadening the
perspective on enhancing urban TFEE. Finally, this research aims to assist the government
in formulating and adjusting DE development policies, maximizing its positive effects on
energy efficiency, and promoting regional sustainable development.

3. Theoretical Analysis and Research Hypothesis

From existing research and development practices, the impact of the DE on energy
efficiency encompasses two contrasting effects: a suppressive effect and a promotive effect.
The specific impact mechanism is shown in Figure 1.

Firstly, the DE can positively influence regional TFEE by optimizing resource alloca-
tion, reducing transaction costs, enhancing management precision, and enabling informed
decision-making. By optimizing resource allocation and improving production efficiency,
information economics suggests that through big data analytics, cloud computing, and
IoT technologies, enterprises can more accurately align resources with production needs,
thereby minimizing energy waste [30]. For instance, shared mobility platforms like Didi
Chuxing employ big data technology and geolocation systems to analyze passengers’ de-
mand hotspots and travel patterns, enabling highly efficient matching between vehicles
and users. This resource allocation method minimizes vehicle idle time, optimizes capacity
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distribution, and reduces the total energy consumption and carbon emissions per trip.
Secondly, the reduction in transaction costs plays a crucial role. Transaction cost theory
suggests that the functioning of firms and markets incurs various transaction costs, such as
those associated with information search, negotiation, supervision, and enforcement [31].
However, in the DE, advancements in information technology have significantly reduced
these costs. For example, traditional offline market transactions require a significant amount
of time and effort to gather information about products, prices, and quality. This increases
transaction costs for both consumers and merchants. In contrast, e-commerce platforms
such as Taobao and JD.com provide extensive product information and convenient price
comparison features, which greatly reduce the time and costs associated with searching
for information. Furthermore, refined management theory posits that by focusing on
details and precise data management, the efficiency of an organization or system can be en-
hanced [32]. Digital technologies facilitate this refined management in critical areas—such
as transportation, buildings, energy, and environmental protection—through smart city
platforms, effectively reducing energy consumption and pollution emissions. For exam-
ple, in smart agriculture, digital technologies allow for the precise management of water,
fertilizers, and pesticides. This is achieved by monitoring factors such as soil moisture,
weather conditions, and crop growth. Unlike traditional management methods, which
often take a broad approach, this precision strategy significantly reduces the waste of water
and pesticides. As a result, it conserves resources and decreases the energy consumption
associated with agricultural activities. Lastly, data-driven decision theory suggests that
making decisions based on extensive objective data can effectively reduce subjective biases
and enhance the scientific rigor of decisions [33]. Thus, in the manufacturing sector, big
data analytics is crucial in implementing predictive maintenance, which helps companies
minimize resource waste due to equipment failures. For instance, automotive manufac-
turers leverage big data to monitor the operational status of their production equipment.
This allows them to detect early signs of faults and schedule maintenance in advance.
By adopting this approach, they effectively prevent production interruptions and reduce
energy waste caused by equipment downtime, ultimately enhancing the overall energy
efficiency of the production line.
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Secondly, the DE may negatively impact regional TFEE through increased infrastruc-
ture development, heightened energy consumption, and exploratory failures in application
scenarios. Initially, input–output theory indicates that in the early stages of emerging
industry development, the high costs of infrastructure investment can raise total factor
production costs [34]. In particular, deploying a smart grid involves significant equipment
investments, which can result in high energy consumption during the initial construction
and testing phases. In Shanghai, for instance, the implementation of a smart grid project
included the installation of smart meters for every household and commercial user. This
led to a temporary increase in overall energy consumption within the power system. Dur-



Sustainability 2024, 16, 10088 5 of 20

ing the construction phase, before the full-scale adoption of the smart grid, this surge in
energy demand limited improvements in the region’s Total Final Energy Efficiency (TFEE).
Additionally, the energy rebound effect theory suggests that although technological ad-
vancements can improve energy use efficiency, they may also result in an overall increase
in energy consumption [35]. For instance, a smart city project has installed thousands of
sensors to monitor traffic, environmental conditions, and energy usage. However, the oper-
ation and maintenance of these devices require a continuous power supply, which increases
the energy demands of urban infrastructure. This, in turn, negatively impacts the region’s
Total Final Energy Efficiency (TFEE). Moreover, the energy demands of these new digital
infrastructures are significantly higher than those of traditional industry infrastructures.
Finally, the theory of innovation failure posits that unsuccessful technological innovations
can result in wasted resources and financial losses [36]. As an emerging industry, the
DE requires extensive exploratory applications. However, the failure of new application
models or technologies—such as smart grids or energy-saving management systems—may
lead to ineffective investments that not only fail to achieve energy-saving goals but also
contribute to inefficient energy consumption. For example, in a smart street lighting project,
Nanjing experimented with different sensors and control systems. However, due to a
flawed design, the system did not respond effectively to the actual demand. As a result,
many streetlights remained on when they were not needed, leading to unnecessary en-
ergy consumption. The subsequent removal and replacement of the equipment further
exacerbated the energy waste.

In summary, this paper proposes the following research hypothesis: In China, the DE
has a significant impact on urban TFEE, and a potential nonlinear relationship may exist
between the two.

4. Research Design
4.1. DE Evaluation
4.1.1. Evaluation Index System for Urban DE

This paper draws on the Four Modernizations framework proposed by the Chinese
government in the China Digital Economy Development Report and constructs an evalua-
tion index system for the DE. The evaluation index system covers four dimensions: digital
industry, industrial digitization, digital governance, and data valorization, and considers
the availability of data. The chosen variables are indicated in Table 1 [37].

Table 1. The evaluation index system of China’s urban DE.

Target Layer Dimension Layer Indicator Layer

Digital economy

Digital industry

Scale of digital industry practitioners
Per capita telecommunications business volume
Number of electronic information manufacturing enterprises
Number of broadcasting and television industry enterprises
Number of Internet and related service enterprises

Industrial digitization
Agricultural Digitalization Index
Industrial Digitization Index
Service Industry Digitization Index

Digital governance Government Website Development Index
Number of pilot projects for smart cities

Data valorization
Number of data trading institutions
Number of open government data platforms

4.1.2. Evaluation Method for DE

Drawing upon the established literature, the entropy method emerges as a commonly
adopted approach for assessing the extent of the DE. As an objective weighting technique,
the entropy method remains uninfluenced by subjective biases, thereby yielding outcomes
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of relatively high accuracy and reliability [38]. Hence, this paper opts to employ the entropy
method in evaluating the DE status across 280 Chinese cities. The computational procedure
of the entropy method is delineated as follows.

First, standardize each indicator in the DE evaluation index system, as shown in
Formulas (1) and (2).

x,
ij =

xij − min(xj)

max
(
xj
)
− min(xj)

(x is a positive indicator.) (1)

x,
ij =

max
(
xj
)
− xij

max
(
xj
)
− min(xj)

(x is a negative indicator.) (2)

Secondly, calculate the entropy estimate of each variable according to Formula (3).
Here, pij represents the ratio of the j-th data under variable i, and N represents the total
number of samples. Entropy is used to measure the uncertainty of the value of the indicator
to be evaluated.

Ei = −
pijln(pij)

ln(N)
pij =

x,
ij

∑n
i=1 x,

ij
(3)

Thirdly, calculate the weights of each indicator according to Formula (4). Here, k
represents the number of indicators included in the evaluation index system.

wi =
1 − Ei

k − ∑k
i=1 Ei

(4)

Finally, normalize the weights of all indicators.

4.2. TFEE Evaluation
4.2.1. Evaluation Index System for TFEE

This paper draws on the urban TFEE evaluation index system by Honma and Borozan,
selecting seven major evaluation indicators around the “energy-economy-environment”
triple system [39,40]. Furthermore, the evaluation indicators are classified according to
the inputs, desired outputs, and undesired outputs, as shown in Table 2. The aim is
to objectively evaluate the TFEE level of Chinese cities by using inputs and outputs as
the mainline, with energy, labor, capital, economy, and pollutant emissions as the basic
elemental units.

Table 2. The input–output index of TFEE.

Target Layer Criterion Layer Indicator Layer

Input
Energy Total energy consumption

Labor force Employment scale
Capital fixed capital stock

Output

Expected output GDP

Unexpected output
Industrial CO2 emissions
Industrial SO2 emissions

Discharge amount of industrial waste water

4.2.2. Evaluation Method for TFEE

This paper expands on Tone’s SBM-Undesirable model by incorporating the super-
efficiency DEA model created by Andersen and Petersen to formulate the Super-SBM-
Undesirable evaluation model. The SBM-Undesirable evaluation model proposed by Tone
is illustrated in Equation (5).
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minρ =
1 − 1

m ∑m
i=1

s−i
xik

1 + 1
q1+q2

(∑
q1
r=1

sg+
r

yrk
+ ∑

q2
t=1

sb−
t

ytk
)

(5)

s.t.


Xλ + s− = xk

Ygλ − sg+ = yg
k

Ybλ + sb− = yb
k

s−, sg+, sb−, λ ≥ 0

In Equation (5), ρ represents the TFEE value of the decision-making unit (DMU). λ
denotes the weight vector, while k signifies the k-th evaluated city. m represents the total
number of cities being evaluated. The variables q1 and q2 indicate the total number of
expected output indicators and undesirable output indicators, respectively. Additionally,
x, yg, and yb represent the input values, expected output values, and undesirable output
values, accordingly. The slack variables s−, sg+, and sb− correspond to inputs, expected
outputs, and undesirable outputs, respectively.

The numerator and denominator of the objective function reflect the actual input and
output values of the DMU, scaled proportionally to the production frontier, representing in-
put inefficiencies and output inefficiencies. As shown in Equation (5), the SBM-Undesirable
model directly incorporates slack variables for both inputs and outputs into the objective
function. This allows for a direct measurement of the gap between variable slackness and
the optimal production frontier. This approach addresses the slackness issues of inputs
and outputs present in traditional DEA models, while also resolving the comprehensive
technical efficiency evaluation problem under undesirable outputs.

The core idea of the super-efficiency DEA evaluation model developed by Andersen
and Petersen is to exclude the evaluated DMU from the reference set. This means that the
efficiency of a DMU is derived from the frontier constituted by other DMUs. As a result, the
efficiency value of an efficient DMU will be greater than 1, allowing for the differentiation
of efficient DMUs. Based on this principle, the Super-SBM-Undesirable model, derived
from the SBM-Undesirable evaluation model and the super-efficiency evaluation model, is
presented in Equation (6). The meanings of the characters in Equation (6) are consistent
with those in Equation (5).

minρ =
1 + 1

m ∑m
i=1

s−i
xik

1 − 1
q1+q2

(∑
q1
r=1

sg+
r

yrk
+ ∑

q2
t=1

sb−
t

ytk
)

(6)

s.t.



n
∑

j=1,j ̸=k
xijλj − s−i ≤ xik

n
∑

j=1,j ̸=k
yg

rjλj + sg+
r ≥ yg

rk

n
∑

j=1,j ̸=k
yb

tjλj − sb−
t ≤ yb

tk

1 − 1
q1 + q2

(
q1
∑

r=1

sg+
r

yrk
+

q2
∑

t=1

sb−
t

ytk
) > 0

s−, sg+, sb−, λ ≥ 0
i = 1, 2, . . . , m; r = 1, 2, . . . , q; j = 1, 2, . . . n(j ̸= k)

From the above, it is evident that the Super-SBM-Undesirable evaluation model con-
structed in this paper possesses three notable characteristics. First, it effectively measures
the slack variables of inputs and outputs. Second, it fully considers and effectively ad-
dresses the issue of undesirable outputs. Lastly, it allows for the further evaluation and
analysis of efficient DMUs. Therefore, compared to traditional DEA models, the Super-SBM-
Undesirable model provides a more authentic and accurate assessment of regional TFEE.
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4.3. Model Settings
4.3.1. Determine Variables

Through the organization of research results on TFEE, we have found that various
factors influence TFEE, including economics, population, industry, technology, energy,
policy, etc. [41,42]. Considering the common characteristics of TFEE development in
Chinese cities, this paper selects five major influencing factors, as shown in Table 3.

Table 3. Explanation of regression model variables.

Variable Variable Definition Symbol

Interpreted variable Total factor energy efficiency Evaluation results of urban TFEE. TFEE

Core explanatory
variable

Digital economy level Evaluation results of the urban DE. DEL

The square of digital economy level The square of the evaluation results of the urban DE. DEL2

Control variables

Economic development Per capita GDP. PGDP

Industrial structure The portion of the secondary industry. IS

Technological innovation The proportion of scientific and technological
expenditures to fiscal expenditure. TL

Environmental regulations The comprehensive index of pollutant emissions. ER

Interpreted variable: TFEE is selected as the dependent variable. The TFEE of 280 Chi-
nese cities is evaluated based on the aforementioned urban TFEE evaluation index system
and the Super-SBM-Undesirable model.

Core explanatory variable: DEL and DEL2 are selected as the core explanatory variable.
The DEL of Chinese cities are evaluated based on the aforementioned urban DE evaluation
index system and the entropy method.

Control variables: (1) Choose PGDP to reflect the economic conditions of the city. The
effect of economic advancement on urban TFEE includes both promoting and inhibiting
effects. A higher economic level is usually accompanied by more technological investment
and innovation activities, making it easier to optimize resource utilization and develop
alternative energy sources. There is also a higher awareness and requirement for environ-
mental protection and sustainable development, effectively promoting urban TFEE [43]. On
the other hand, economically developed areas may have high energy-consuming traditional
industries, higher levels of consumption, and lifestyles that lead to more environmental
pollution issues, thus inhibiting urban energy efficiency to some extent [44]. (2) The portion
of the secondary industry is chosen to indicate the features of the city’s industrial structure.
Compared to agriculture and service industries, industrial production requires more energy
consumption and emits more pollutants. By vigorously developing clean energy and high-
technology industries and weakening the growth of energy intensive firms, urban TFEE
can be effectively improved [45]. (3) Select the indicator of the share of scientific and tech-
nological expenses to fiscal expenses to evaluate the level of urban technological invention.
IS is pivotal in developing the TFEE of cities by improving production efficiency, energy
utilization, and reducing pollution emissions, thereby achieving continuous improvement
in urban energy efficiency [46]. (4) Using a comprehensive index of pollutant emissions to
reflect the intensity of ER. The appropriate intensity of ER can urge enterprises to reduce
energy consumption, suppress high energy-consuming industries, accelerate technological
innovation, improve enterprise management levels, and stimulate market demand, all of
which have significant impacts on improving urban TFEE [47].

4.3.2. SGMM Model

The system generalized method of moments model (SGMM model) effectively ad-
dresses the endogeneity issue between explanatory variables and the error term in panel
data. It overcomes the biases that may arise from ordinary least squares and fixed effects
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models, while also enhancing estimation efficiency by estimating both the differenced
and level equations. Therefore, this paper constructs a SGMM model using the variables
presented in Table 3 to analyze the relationship between the DE and TFEE [48]. As shown
in Formula (7), i denotes the i-th city and t represents the t-th year. αi indicates the intercept
term, µit is the error term, εit represents the city effect, and δit denotes the time effect. The
meanings of TFEE, DEL, DEL2, PGDP, IS, TL, and ER are consistent with those in Table 3.

TFEEit = αi + β1TFEEit−1 + β2DELit + β3DEL2
it + β4PGDPit + β5ISit + β6TLit + β7ERit + µit + εit + δit (7)

4.3.3. TR Model
To strengthen the examination of the hypothesis regarding the nonlinear relationship

of the DE on TFEE, this paper adopts Hansen’s TR model to investigate how the DE
influences TFEE across various developmental stages. The model employs the DEL as the
threshold indicator to construct the TR model, as represented by Equations (8) and (9) [49].
Here, η represents the threshold value of the model.

TFEEit = αi + β1DELit + β2PGDPit + β3ISit + β4TLit + β5ERit + µit + εit + δit(DEL ≤ η) (8)

TFEEit = αi + β1DELit + β2PGDPit + β3ISit + β4TLit + β5ERit + µit + εit + δit(DEL > η) (9)

4.4. Data Interpretation

This paper selects a research sample comprising 280 Chinese cities spanning from
2011 to 2022 (excluding Hong Kong, Macau, Taiwan, and Tibet due to data limitations).
Interpolation methods are applied to address a small amount of missing data. We obtained
enterprise-related data based on the CSMAR data base. Other data sources include the
following: China Urban Statistical Yearbook, China Statistical Yearbook, China Economic
Net, etc. Table 4 presents a comprehensive list of various statistical indicators for the sample
data, including the mean, standard deviation, minimum, and maximum values. These
statistics offer insights into the basic characteristics and distribution of the sample data.

Table 4. Variable description statistical results.

Variable Mean Std. Dev. Maximum Minimum

TFEE 0.531 0.153 1.217 0.074
DEL 0.175 0.105 0.783 0.046
DEL2 0.126 0.086 0.613 0.002
PGDP 0.354 0.312 2.569 0.058

IS 0.458 0.117 0.914 0.089
TL 0.005 0.022 0.064 0.000
ER 0.136 0.197 0.682 0.000

To avoid false regression, this article uses three testing methods to perform unit root
tests on all variables, as shown in Table 5 [50]. The stability of ER is poor and did not pass
the 1% significance test. After first-order differencing, ER passed the 1% significance test
and was found to be a stationary sequence. Therefore, this paper utilizes the processed
stationary variables for the calculations of the SGMM model and the TR model to ensure
the reliability of the model estimates. Furthermore, to maintain consistent sequence lengths
for all variables, we apply lagging to the remaining variables.

Table 5. Unit root test results.

Variable LLC Test ADF Test IPS Test

TFEE 0.0000 0.0000 0.0000
DTFEE 0.0000 0.0000 0.0000

DEL 0.0000 0.0000 0.0000
DDEL 0.0000 0.0000 0.0000
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Table 5. Cont.

Variable LLC Test ADF Test IPS Test

DEL2 0.0000 0.0000 0.0000
DDEL2 0.0000 0.0000 0.0000
PGDP 0.0000 0.0039 0.0000

DPGDP 0.0000 0.0000 0.0000
IS 0.0007 0.0022 0.0000

DIS 0.0000 0.0000 0.0000
TL 0.0000 0.0000 0.0000

DTL 0.0000 0.0000 0.0000
ER 0.0552 0.0681 0.0000

DER 0.0000 0.0000 0.0000

5. Results
5.1. Multicollinearity Test

This study employs the variance inflation factor (VIF) method to examine the multi-
collinearity among the explanatory variables [51]. The results of the analysis are presented
in Table 6. The findings indicate that the mean VIF is 2.62 (0 < VIF < 10, suggesting the
absence of multicollinearity). Moreover, the VIF values for both core explanatory variables
and control variables remain below 10. Therefore, it can be concluded that there is no
multicollinearity issue among the explanatory variables in this study.

Table 6. Results of multicollinearity test.

Variable VIF 1/VIF

DEL 2.17 0.46

DEL2 2.54 0.39

PGDP 2.96 0.34

IS 2.31 0.43

TL 3.42 0.29

ER 2.33 0.43

Mean VIF 2.62

5.2. Results of the SGMM Model

The regression results of the SGMM model are presented in Table 7. First, the p-value
of the AR(1) test is less than 0.05, while the p-value of the AR(2) test is greater than 0.1.
This indicates the presence of first-order autocorrelation and the absence of second-order
autocorrelation. The SGMM model passes the autocorrelation tests. The Hansen test yields
a p-value greater than 0.1, suggesting that there are no issues of over-identification. Thus,
employing the SGMM model to study the impact of the DE on TFEE is valid.

Table 7. SGMM model regression results.

Variable Coefficient

DEL −0.764 ***
DEL2 1.347 ***
PGDP −0.874 ***

IS −0.632 ***
TL 1.628 **
ER 1.247 ***

Hansen Test 0.147
AR(1) Test 0.000
AR(2) Test 0.217

*** p < 0.01, ** p < 0.05.
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The impact coefficients of DEL and DEL2 on TFEE are −0.764 and 1.347, respectively,
indicating a “U-shaped” effect of DEL on TFEE. The influence of the DE level on TFEE
varies across different stages, which can be divided into four distinct phases, as illustrated
in Figure 2.
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Firstly, there is a stage of inhibitory effect. In the budding stage of the DE, the
rapid expansion of the digital industry and industrial digitization has resulted in a rapid
growth in the scale of electronic infrastructure, and energy consumption has also increased
accordingly. Additionally, the enhancement of DE necessitates substantial energy usage,
including the energy consumption of digital equipment, the energy demands of data
centers, the energy use of information and communication networks, data transmission,
and the energy consumption associated with cloud computing. Finally, DE technology
applications are in the exploration stage, and only a few scenarios for improving energy
efficiency have been discovered. Therefore, in the budding stage of the DE, the inhibitory
effect of the DE on urban TFEE significantly outweighs its promoting effect [52].

Secondly, there is a stage of a promoting effect. After the initial development stage of
the DE, basic digital infrastructure and technological foundations are gradually established,
and traditional industries are better able to adapt to digital transformation. At this point,
the scale of the DE is approaching the critical point, and the promoting effect of TFEE
gradually exceeds the inhibitory effect. Mainly, industrial digitization promotes enterprises
to achieve intelligent production and supply chain management, optimize production plans
and supply chain scheduling, and avoid energy waste and resource idleness. Moreover,
industrial digitization provides support for big data analysis and artificial intelligence
technology, helping enterprises optimize energy utilization strategies and production
decisions. Finally, industrial digitization promotes supply–demand matching and energy
sharing among enterprises, avoiding urban energy surplus and imbalance, and improving
urban TFEE [53].

Thirdly, there is a stage of an expanding promoting effect. With the continuous
development of industrial digitization, urban digital industries are gradually improved,
promoting rapid improvement in urban TFEE. The digital industry provides technology,
products, services, and solutions for industrial digitization, accelerating the construction
of urban industrial digitization. On the other side of the shield, the electronic industry
can ensure the transformation of production structures from high energy consumption
to environmentally friendly practices. Furthermore, it drives the shift in urban industrial
focus towards technology-intensive industries, optimizes the urban industrial structure,
and achieves improvements in energy efficiency. Finally, the digital industry, with techno-
logical upgrading as the key path, has strong penetration and multiplier effects, which can
significantly drive urban economic growth [54].
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Fourthly, there is a stage of slowing down the promoting effect. With the gradual
maturity of industrial digitization and digital industries, their promoting effect on TFEE
gradually weakens. However, the rise of digital governance and data monetization further
promotes the improvement of urban TFEE. First and foremost, the construction of digital
government and smart cities enhances urban planning and development. It facilitates
intelligent traffic management and optimization, along with the real-time monitoring of
urban energy consumption and emissions, effectively reducing energy use and pollutant
emissions in urban operation and management. Furthermore, data monetization refers
to the process of converting data into commercial value. By analyzing and applying data
effectively, it can be utilized profitably. Data monetization can significantly enhance urban
energy efficiency and sustainability by developing personalized energy-saving strategies,
fostering innovation in the energy market, and other methods [55].

Further exploration revealed that when the value of DEL was equal to 0.284, the
relationship between DEL and TFEE reversed. That is, when DEL exceeds 0.284, TFEE
increases with the rise in DEL. A spatio-temporal analysis of 280 prefecture-level and higher
cities in China found that since 2011, cities like Shenzhen, Dongguan, Shanghai, Beijing, and
Guangzhou have surpassed a DEL of 0.284. Subsequently, cities like Hangzhou, Nanjing,
Suzhou, Ningbo, Xiamen, Zhuhai, and Urumqi also exceeded this level. According to the
Digital Economy Blue Book published by the Chinese Academy of Social Sciences, from
2011 to 2022, China’s DE grew at an average annual rate of 11.2%. In the early stages, the
demand for new digital infrastructure in cities expanded significantly, with few digital
technology conversion results and limited practical applications, leading to a decline in
urban TFEE. However, as infrastructure improved and application scenarios matured, the
DE effectively prevented urban energy waste and resource idleness, even enhancing the
urban industrial structure. For example, in 2011, Wuxi’s DEL was 0.201 and its TFEE was
0.725. As the DE continued to develop, TFEE fluctuated and declined. By 2014, Wuxi’s
DEL had increased to 0.341 and its TFEE had dropped to 0.607. Subsequently, Wuxi’s TFEE
increased continuously with the growth of DEL. By 2022, Wuxi’s DEL had risen to 0.472
and its TFEE had increased to 0.929.

Specifically discuss the impact of the four control variables on TFEE. Firstly, the
coefficient of PGDP is −0.874, suggesting that PGDP significantly inhibits TFEE. The
improvement of urban economic levels often requires more industrial activities and en-
vironmental pollution, resulting in a decrease in TFEE. The coefficient of IS is negative,
meaning that if IS rises by a unit, TFEE will reduce by 0.632 units. Prove that the impact of
IS on TFEE is negative. The more emphasis is placed on the development of the secondary
industry, the more high energy-consuming enterprises within the city and the more pollu-
tants are emitted. The coefficient of TL is positive, which means that if TL enlarges by a unit,
TFEE will rise by 1.628 units. Prove that TL can promote the improvement of TFEE. The
more advanced technology is, the less the energy consumption per unit output, effectively
reducing fossil energy consumption and improving urban TFEE. The coefficient of ER is
also positive, meaning that if ER grows by a unit, TFEE will improve by 1.247 units. This
demonstrates that ER can effectively promote the improvement of TFEE. The more com-
plete the environmental laws and regulations are, the more attention the government pays
to urban environmental quality. Therefore, implementing stringent environmental laws
can effectively enhance the energy efficiency of organizations and reduce waste emissions.

5.3. Robustness Test

To assess the robustness of the SGMM model, this paper conducts several robustness
checks by modifying the measurement methods for the explanatory variable, incorporating
additional control variables, and refining the sample range [56]. Firstly, the measurement
method for the DE is changed from the entropy method to principal component analysis.
The regression results are presented in column (1) of Table 8. Secondly, foreign direct
investment (FDI) is included as an additional control variable, with the corresponding
regression results shown in column (2) of Table 8. Finally, data from municipalities directly
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under the central government and provincial capitals are excluded from the sample, and the
regression results for this adjustment are displayed in column (3) of Table 8. The findings
from all three robustness tests indicate a U-shaped relationship between the DE and TFEE,
which aligns with previous conclusions. This suggests that the SGMM model developed in
this paper offers a stable explanation of the relationship between the DE and TFEE across
various conditions.

Table 8. The robustness test results of the SGMM model.

Variable

(1) (2) (3)
Change the Measurement Method

of the Explanatory Variable
Add Control

Variable
Narrow the Sample

Range
TFEE TFEE TFEE

DEL −0.431 *** −0.915 *** −0.652 ***
DEL2 0.857 *** 1.703 *** 1.219 ***
FDI −0.272 **

Controls Yes Yes Yes
Hansen Test 0.176 0.203 0.139
AR(1) Test 0.000 0.000 0.000
AR(2) Test 0.187 0.237 0.207

*** p < 0.01, ** p < 0.05.

5.4. Results of the TR Model

To enhance the reliability of the conclusions drawn from the aforementioned SGMM
model, this paper employs a more sophisticated econometric method for hypothesis testing,
specifically the TR model [57]. The objective is to investigate whether the variable DEL
exhibits a significant threshold effect, thereby determining the nonlinear relationship
between DEL and TFEE. The advantage of this method lies in its ability to identify different
threshold points within the data, thereby providing a more detailed depiction of the
complex relationships between variables. Initially, this paper uses the Bootstrap method for
threshold effect testing, obtaining more robust statistical results through multiple sampling.
The resulting F-statistic and p-value are presented in Table 9. According to the results,
the threshold variable DEL fails to pass the double and triple threshold tests at the 1%
significance level, indicating that the correlation of DEL and TFEE does not meet the
significance criteria across multiple threshold values. However, DEL shows significance
in the single threshold test, indicating that at a specific threshold value, DEL significantly
affects TFEE. Specifically, this suggests that when DEL reaches a certain critical point, its
mechanism of impact on TFEE may undergo significant changes.

Table 9. Threshold test (bootstrap = 1000 1000 1000).

Threshold Variable Scenarios Fstat Prob.

DEL
Single 108.55 0.000

Double 32.51 0.171
Triple 24.12 0.328

Table 10 details the single threshold estimates and their 95% confidence intervals,
with a specific estimate of 0.304. This result indicates that when DEL reaches a particular
value, the impact of DEL on TFEE undergoes a significant change, further supporting
our hypothesis of the threshold effect. The provision of the confidence interval enhances
the credibility of this estimate, as it accounts for sample variability, providing a range of
possible values and thus increasing the robustness and interpretability of the outcomes.

Table 10. Threshold estimation results (level = 95).

Scenario Threshold Lower Upper

Single 0.304 0.277 0.327
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Finally, the computational results of the TR model are presented in Table 11. These
results clearly illustrate the complex relationship between DEL and TFEE, confirming the
significant impact of DEL on TFEE under specific conditions.

Table 11. Single threshold regression results.

Variable Coefficient

PGDP −0.316 **
IS −0.211 ***
TL 2.033 ***
ER 0.418 **

DEL (DEL ≤ 0.304 ) −1.224 ***
DEL (DEL > 0.304) 1.407 ***

Cons 0.262 ***
R-squared 0.873
Prob > F F = 0.000

*** p < 0.01, ** p < 0.05.

Considering the computational results of the TR model as demonstrated in Table 11,
significance tests at the 1% level are passed regardless of whether the threshold variable is
above or below 0.304. This indicates that the model possesses high statistical reliability and
significance. Specifically, this means that whether the chosen threshold variable is above or
below 0.304, the model robustly explains the impact of DEL on TFEE.

Furthermore, when DEL is below 0.304, the coefficient is −1.224, suggesting a negative
correlation between DEL and TFEE. Specifically, within this range, as DEL increases, TFEE
decreases gradually, indicating that an increase in DEL negatively affects TFEE, thereby
diminishing efficiency. This negative correlation suggests that at lower levels of DEL, an
increase in DEL may lead to inefficient resource utilization or other adverse effects, thereby
restraining TFEE.

However, when DEL is above 0.304, the coefficient changes to 1.407, indicating a
positive correlation between DEL and TFEE within this range. In other words, as DEL
increases in this interval, TFEE gradually rises. This positive correlation suggests that at
greater levels of DEL, an increase in DEL positively impacts TFEE, potentially enhancing
TFEE through improved resource utilization efficiency, technological advancements, or
other positive effects. This finding indicates that DEL may play different roles at various
stages of economic development. For economies with high DEL, increasing DEL could
indeed contribute to enhancing TFEE.

Overall, both the SGMM and TR models indicate a U-shaped association connecting
DEL and TFEE. Such a U-shaped association reveals the complexity and nonlinear nature
of DEL’s impact on TFEE. For policymakers, this conclusion provides crucial insights,
highlighting the need to carefully consider the different levels of DEL and their varying
impacts on TFEE when formulating policies. This approach ensures that appropriate
measures are taken to optimize TFEE levels in urban settings.

6. Discussion

We conducted a multi-faceted analysis of the mechanisms by which the DE affects
TFEE using the SGMM and TR models. The study reveals a “U-shaped” relationship
between the DE and TFEE. To enhance the generalizability and practical value of our
research, we compared our findings with the existing literature to uncover differences and
analyze their underlying causes. Based on this analysis, we propose rational hypotheses to
expand the application scenarios of the DE in enhancing energy efficiency.

Firstly, a comparison and analysis of the results reveal that in the SGMM model, the
impact of the DE on TFEE exhibits a significant “U-shaped” relationship. This finding is
further supported by the results from the threshold regression model, which identifies a
specific threshold value of −2.08. Beyond this threshold, the positive effect of Digital Expe-
rience (DE) on total factor energy efficiency (TFEE) begins to emerge. Methodologically, the
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system generalized method of moments (SGMM) model emphasizes dynamic characteris-
tics, making it well suited for exploring causal relationships in time series data. In contrast,
the threshold regression model pinpoints the nonlinear turning point in the DE’s impact on
TFEE. The consistent results from both models validate each other, confirming that the turn-
ing point effect of DE in enhancing TFEE is both significant and robust. Furthermore, our
research provides a new perspective on the nonlinear relationship between DE and TFEE,
contrasting with previous studies. For example, Zhang et al. found that the digital economy
(DE) can enhance China’s total factor energy efficiency (TFEE) by promoting economic
growth, urbanization, and investment in research and development, based on a mediation
effect model [58]. However, Zhao et al., using dynamic panel models and the Durbin
model, discovered that the DE has negative effects and spatial spillover effects on China’s
green TFEE [59]. The “U-shaped” relationship offers a meaningful explanation for these
conflicting conclusions and provides valuable support for the development of the digital
economy (DE). For instance, cities like Shenzhen and Shanghai, which have reached a high
level of DE development, have already surpassed the threshold value, making the positive
effects of the DE on total factor energy efficiency (TFEE) evident. In contrast, regions with
relatively lower levels of development may still fall on the left side of the “U-shaped” curve,
where energy efficiency has not yet experienced significant improvements. Finally, based
on the “U-shaped” relationship between the DE and TFEE, we propose the following three
hypotheses. These hypotheses integrate relevant theories to further explore the applicability
of this relationship in various scenarios and its performance under different conditions.
This approach will enhance the generalizability and explanatory power of our conclusions,
as well as clarify how varying conditions affect our research findings. Ultimately, this will
provide valuable insights for policy-making. (1) We propose a hypothesis regarding urban
development, suggesting that cities at different stages of development occupy various
positions on a “U-shaped” curve and experience differing levels of impact. Developed
cities, which exhibit higher levels of development effectiveness (DE), may be positioned in
the ascending phase on the right side of the curve. In contrast, smaller cities might still be
located on the left side or at the bottom of the curve. This hypothesis facilitates a deeper
analysis of regional differences in the relationship between DE and total factor energy
efficiency (TFEE). For example, developed cities, with their advanced digital infrastructure,
may have already made strides in energy efficiency. In contrast, smaller cities may need
to accelerate their digital economic development in order to enter the phase of efficiency
enhancement. This hypothesis can inform policy-making in various cities, encouraging
smaller ones to expedite their digital transformation to improve energy efficiency. (2) The
hypothesis regarding differences in industrial structure suggests that a city’s industrial
composition can affect the “U-shaped” relationship between digital economy (DE) and total
factor energy efficiency (TFEE). For instance, cities with a higher proportion of industrial
activities may require more time and a greater level of DE development to move from
the lower part to the ascending phase of the “U” curve. In highly industrialized cities,
an initial decline in energy efficiency may occur due to digitization. However, as smart
manufacturing and the industrial internet advance, the development of DE will ultimately
lead to improvements in energy efficiency. This hypothesis can inform industrial upgrading
policies tailored to different types of cities. Heavy industrial cities should prioritize the
development of the industrial internet and smart manufacturing. In contrast, cities with
a significant service sector need to enhance energy efficiency management within their
digital service industries. (3) Hypotheses based on the level of policy support demonstrate
that the strength of government policy support influences the curvature of the “U-shaped”
relationship. High-intensity policy support (such as financial subsidies and technical assis-
tance) can shorten the bottom phase of the “U” curve, enabling energy efficiency to rise
more quickly. In environments with strong policy support, the negative effects of the DE
are mitigated, while its positive effects accelerate. For example, government investment in
digital infrastructure can speed up a city’s transition from the bottom to the right side of the
“U” curve. This hypothesis provides valuable guidance for policymakers, suggesting that



Sustainability 2024, 16, 10088 16 of 20

policy interventions can shorten the efficiency downturn phase and expedite the positive
impact of the DE on energy efficiency.

7. Conclusions and Policy Implication
7.1. Conclusions

The DE is a product of the information society and the network era, characterized by
innovation, low energy consumption, and sharing. It provides a new pathway to enhance
TFEE. Existing research has predominantly explored the linear relationship between the
DE and TFEE [60]. This research broadens the perspective by examining the influence of
the DE on TFEE through a linear lens. Empirical analysis using sample data from 280 cities
in China reveals the following findings: (1) Results from the SGMM model indicate a
U-shaped association connecting the DE and TFEE across Chinese cities. (2) The TR
model further confirms the U-shaped impact of the DE on TFEE, identifying a threshold at
0.304. (3) Economy and industrial structure significantly inhibit TFEE improvement, while
technology and environmental regulations significantly promote TFEE. These findings
underscore the complex dynamics involved in how the DE influences TFEE, highlighting
the need for nuanced policy considerations that account for both inhibitory and promoting
factors across different urban contexts.

7.2. Policy Implications

Recently, the Chinese government has been actively promoting the development of the
DE. Key measures include advancing information infrastructure construction, introducing
supportive digital industry policies, accelerating the openness of government data, and
enhancing information security infrastructure. However, the impact of the development
of the DE on the TFEE of cities varies at different stages, so the government should de-
velop policies tailored to the specific stages of the DE [61]. In the initial stage, emphasis is
placed on supporting the establishment of information structure and exploring electronic
technology application scenarios [62]. In the later stage, more focus is placed on indus-
trial digitalization upgrades, expanding the digital industry, data governance, and data
valorization [63].

In the initial phases of development, due to the rapid expansion of demand for in-
formation infrastructure and the early stage of digital technology application scenarios,
the inhibitory impact of the DE on TFEE outweighs its promotional effects. Therefore, for
cities like Guyuan, Dingxi, and Liupanshui that are still in the nascent stages of the DE, it is
crucial for the government to expedite the establishment of urban information structure
and explore the practical applications of electronic technologies. First, it is not possible to
rely solely on the government to complete the construction of information infrastructure.
The government, enterprises, and society should work together to form a joint force. Social
capital needs to be introduced to accelerate urban information infrastructure construction,
enabling it to quickly enter the promoting effect stage. Secondly, in the construction of
information infrastructure, energy-saving and environmentally friendly technologies and
equipment should be adopted and intelligent monitoring systems and energy-saving equip-
ment should be introduced to reduce energy consumption. Furthermore, the reasonable
planning of the layout and design of data centers and the adoption of technologies, such as
distributed data centers or edge computing, can reduce data transmission distances and
energy loss. Finally, by establishing a digital energy innovation fund, strengthening the
industry–university–research cooperation mechanism, and promoting talent training and
exchange, the effective promotion of the application of digital technology in improving
energy efficiency and the transformation of industry–university–research can be achieved.

In the later stages of digital economic development, industrial digitization, the digi-
tal industry, digital governance, and data valorization effectively promote enterprises to
achieve intelligent production and supply chain management, promote urban industrial
structure transformation, and accelerate the planning and construction of smart cities. The
promoting effect of the DE on TFEE far outweighs the inhibitory effect. Firstly, accelerate
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industrial digitization upgrade. The government needs to formulate policies to support
industrial digitization, including tax incentives, financial subsidies, etc., to encourage en-
terprises to increase digital investment and innovation. Establish industrial digitization
service platforms and promote industry–university–research cooperation to provide enter-
prises with information consultation, technical support, and training services for digital
transformation, promoting innovative applications and the implementation of electronic
technology in industries. Secondly, promote the vigorous growth of the electronic industry.
The government needs to build a favorable digital industry ecosystem, including improv-
ing relevant laws, regulations, and policy support. Actively cultivate digital industry
clusters and innovation parks, provide excellent venues and infrastructure, promote the
aggregation of enterprise resources, and innovate development. Strengthen the coordi-
nated cooperation of the digital industrial chain, promote technological innovation and
cooperation between upstream and downstream organizations, and form a solid industrial
ecosystem. Next, promote urban digital governance. Construct a sound digital governance
infrastructure to enhance data collection and processing capabilities. Promote the opening
and sharing of government department data, and establish unified data standards and
platforms. Strengthen the digital governance capacity building of civil servants and gov-
ernment personnel, and conduct training and educational activities to enhance their digital
skills and awareness of information. Finally, promote data valorization. Strengthen data
security and privacy protection measures, establish a sound data management system and
legal framework, use encryption technology, and identity authentication to protect data
security and personal privacy. The government can incentivize enterprises and research
institutions to explore digital technology application scenarios by establishing special funds.
This initiative can facilitate the utilization of data in urban operations, healthcare, tourism,
consumption, and other sectors, thereby unlocking the full potential value of data.

7.3. Limitations

This paper found that the influence of the DE on the TFEE of Chinese cities follows
a “U-shaped” pattern. The study directly determined the control variables in the testing
model by referencing existing research results and did not conduct an evaluation of the
impacting factors of TFEE in China. Additionally, our team did not compare China with
developed countries or other developing countries. The impact of the DE on TFEE may vary
depending on the development environment and level of different countries. Particularly
for developed countries, the effect of the DE on TFEE may signify a double threshold effect.
Hence, the DE may primarily have an inhibitory influence on TFEE, then transition to a
promoting effect, and finally revert to an inhibitory effect.

In the next stage, our team will focus on emerged countries such as the United
States, Germany, and Japan and will further examine whether the impact of the DE on
TFEE exhibits a double threshold effect by constructing TR models, smooth transition
autoregressive models, and other econometric models. In this process, control variables for
the econometric model will be determined through an evaluation of the impacting factors
of TFEE to ensure the accuracy and interpretability of the testing model.
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