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Abstract: The integration of railway stations into urban environments necessitates a detailed exami-
nation of their vitality and influencing factors. This study assesses urban vitality around four major
railway stations in Beijing utilizing a variety of analytical models including Ordinary Least Squares,
Geographically Weighted Regression, Multi-Scale Geographically Weighted Regression, and machine
learning approaches such as XGBoost 2.0.3, Random Forest 1.4.1.post1, and LightGBM 4.3.0. These
analyses are grounded in Baidu heatmaps and examine relationships with spatial form, functional
distribution, and spatial configuration. The results indicate significant associations between urban
vitality and variables such as commercial density, average number of floors, integration, residential
density, and housing prices, particularly in predicting weekday vitality. The MGWR model demon-
strates enhanced fit and robustness, explaining 84.8% of the variability in vitality, while the Random
Forest model displays the highest stability among the machine learning options, accounting for 76.9%
of vitality variation. The integration of SHAP values with MGWR coefficients identifies commercial
density as the most critical predictor, with the average number of floors and residential density
also being key. These findings offer important insights for spatial planning in areas surrounding
railway stations.

Keywords: station-city synergetic; spatial form; street function; street vitality; railway stations

1. Introduction

As global urbanization accelerates, urban transportation hubs—such as train and
subway stations—play a pivotal role in urban development. These hubs serve not only as
central nodes in transportation networks but also as key elements in the spatial organization
of cities. The redevelopment of these hubs increasingly influences urban growth [1–3].
Recently, the station-city synergetic model has become a significant strategy in urban
planning worldwide. For instance, Transport for London’s 2021 Sustainable Development
Framework highlights the importance of effectively linking transportation hubs with urban
areas to promote sustainable urban growth. Similarly, the Chinese government’s “14th Five-
Year Plan for the Development of a Modern Integrated Transportation System” emphasizes
the synergistic effects between transportation hubs and urban development [4].

In the context of these policies and strategies, the promotion and implementation of
Transit-Oriented Development (TOD) models become particularly crucial. TOD enhances
the utilization of public transportation systems by encouraging high-density, multifunc-
tional urban space configurations around transit hubs, which not only optimizes public
transport usage but also boosts the vitality and quality of life in surrounding areas [5,6].

Railway stations, compared to traditional public transportation modes, possess a
stronger capacity for passenger aggregation and spatial radiation, making them more
applicable to TOD theory. This aggregation effect of railway stations leads to higher
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land-use density and more intensive spatial development in the areas surrounding train
stations [7]. With the large-scale construction of railways, the spatial morphology and
functional structure of areas surrounding railway stations have fostered new development
models [8]. The role of railway hubs has expanded from solely being transportation nodes
to incorporating multiple functions, such as consumption and residential activities [9,10].
This transformation encourages the public to perceive train stations not merely as transit
points but as vibrant, multifunctional urban spaces [11].

As a typical example of China’s rapid urbanization, railway passenger stations in
Beijing hold a significant position in urban planning. Although the implementation of TOD
around train stations is not yet fully realized, its potential in urban planning is gradually
becoming evident. As illustrated in Figure 1, passenger volumes at Beijing’s train stations
steadily increased from 2000 to 2019, dropped significantly in 2020 due to the pandemic,
and rebounded notably in 2021. This trend underscores the need to further advance the
integration of station areas with urban development to support future economic growth
and urban vitality.
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Research on the vitality of railway stations and their surrounding areas remains limited.
Traditional methods for measuring vitality struggle to capture its dynamic nature, but
emerging technologies and methods now enable more comprehensive, multi-dimensional
studies of spatial vitality around railway stations. While previous studies have mainly
examined how the presence of stations leads to significant changes in spatial structure and
land-use patterns [12], less attention has been given to exploring the relationship between
spatial vitality and form within various station influence zones. Space syntax, as a tool
for analyzing spatial structures, helps quantify the geometric and topological properties
of street networks, revealing the potential influence of spatial form on vitality [13]. Most
existing studies on vitality rely on either Ordinary Least Squares (OLS), geographically
weighted regression, or machine learning methods in isolation or in pairs to assess factors
influencing vitality [14]. However, the vitality of railway station areas is a multi-faceted
concept, involving aspects such as spatial form, functional distribution, and transportation
connectivity. To gain a comprehensive understanding of the combined influence of these
factors, this study integrates OLS, Geographically Weighted Regression (GWR), Multi-Scale
Geographically Weighted Regression (MGWR), and machine learning techniques (XGBoost,
Random Forest, and LightGBM), offering a comparative analysis of their performance. This
combined approach not only uncovers the diverse factors affecting vitality around railway
stations but also identifies consistent influences across different methods.
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In response to these research gaps, this study applies an integrated analytical frame-
work to examine the relationship between vitality, spatial form, and function in areas
surrounding four special-grade railway stations in Beijing. The primary contributions
of this study are (1) a comprehensive analysis of the relationship between spatial form,
functional distribution, and urban vitality in railway station areas; (2) the integration of
spatial configuration metrics with OLS, GWR, MGWR, and machine learning approaches,
offering an innovative methodology for examining factors influencing urban vitality; and
(3) the identification of consistent factors that affect the vitality of special-grade railway
station areas in Beijing across different analytical methods, providing valuable insights
for urban planners and policymakers in the context of station area development and
urban renewal.

The remainder of this paper is structured as follows: Section 2 reviews the relevant
literature on station area development and urban vitality. Section 3 details the research
methodology. Section 4 presents the empirical results of the analysis. Section 5 discusses
the broader implications of the findings. Finally, Section 6 concludes the study and offers
directions for future research.

2. Literature Review
2.1. The Vitality of Railway Station Areas

Urban vitality is a product of the interaction between human activities and spatial
environments, serving as a crucial indicator of a city’s developmental capabilities [15].
Therefore, urban vitality is often measured by the spatial concentration of human activi-
ties [16]. Urban vitality involves multiple scales and types of cities. Currently, the research
object of urban vitality has gradually shifted from the macro spatial scale to the meso and
micro spatial scales, such as urban parks, commercial centers, community centers, and
waterfront spaces [17–19]. Research on the vitality of railway stations has gradually evolved
into a significant subfield with the development of the TOD model. However, the aspect
of vitality has received relatively little attention. Various methods have traditionally been
employed to measure and analyze urban vitality, including travel surveys, observational
interviews, and statistical data analysis [20–23]. However, the dynamic nature of vitality
means traditional data often fall short in capturing its nuances. With advancements in
information and communication technologies, new data sources such as POI, public review
data, and mobile signaling data have become available, providing novel ways to measure
urban vitality [24–27]. This study utilizes Baidu heatmap data to illustrate the vitality
of areas surrounding Beijing’s special-grade stations. Baidu heatmaps provide real-time
data on population density, offering a dynamic and convenient means of capturing human
activity patterns [28–30].

2.2. Factors Influencing the Vitality of Railway Station Areas

The planning and development of railway station TODs have reshaped the original
urban structure, leading to a high concentration of commercial, residential, and recreational
facilities. Studies have shown that spatial form [31–33] and function [34–36] are key factors
influencing vitality.

Theoretically, urban vitality is closely linked to spatial form and function (i.e., the
built environment) [36]. An optimized functional layout can enhance the attractiveness
and convenience of railway passenger stations, promote their role as transportation hubs,
attract large crowds for consumption, and effectively boost station vitality [37]. Research
indicates that in the 26 railway stations of the Yangtze River Delta urban agglomeration,
these stations, as significant large-scale infrastructure, facilitate the development of various
industries such as commercial services, communication, entertainment, retail, real estate,
and tourism through efficient transportation networks. This, in turn, drives industrial
structure adjustment and population mobility [38]. When examining functional layout and
vitality, the focus is often on the density and diversity of functions [39].
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Spatial form provides the foundation for understanding the factors influencing ur-
ban vitality. TOD highlights how these elements enhance vitality by optimizing public
transportation systems and improving the pedestrian environment. Specifically, urban
morphology shapes the quality of daily life and promotes urban vitality by determining the
availability of space, density, and accessibility [40,41]. However, various studies employ
different calculation methods and indicators, with single indicators often failing to capture
the complexity of urban morphology [42,43]. Therefore, it is essential to utilize multiple
variables in analysis, including floor area ratio, building density, building height, road
connectivity, street greening, and regional location [44–48]. Given China’s extensive railway
network and the numerous stations linking cities, assessing and analyzing the development
status and spatial form of station areas is crucial. Such evaluations can optimize the spatial
layout and design of passenger stations, enhance their vitality, and inform urban planning
and traffic management, thereby promoting sustainable urban development [49]. Addi-
tionally, current empirical analyses tend to draw lessons from exemplary foreign stations,
lacking comprehensive reviews of the status and challenges of domestic mega-city cases.

Space syntax is a set of theories and techniques used to analyze spatial configuration
in buildings, urban areas, and other environments [50]. In addition, space syntax has been
extensively applied in various morphology-related studies [51]. Scholars, building on road
network structures, have developed a space syntax-based network analysis method to
explore network configurations [52]. As transportation hubs, railway passenger stations
connect different regions. Their high accessibility allows more people to conveniently
reach the stations, thereby increasing foot traffic and transportation efficiency [53]. Factors
such as station accessibility and transportation network connectivity significantly influence
the vitality and development of railway station areas [54–56]. Moreover, by improving
transportation accessibility, railway stations and their surrounding areas play a crucial
role in promoting urban economic development [57–62]. Integrating space syntax analysis
with node location models is essential for assessing the accessibility and attractiveness of
railway stations, providing key insights into the dynamic mechanisms of vitality [63]. In
general, urban spatial organization, particularly the street network, is a critical factor in
shaping both urban diversity and vitality.

2.3. Methods for Studying the Factors Influencing Vitality in Railway Station Areas

Earlier research has frequently employed OLS models to examine the relationship
between vitality and the factors influencing it due to the models’ simplicity and ease of
interpretation, making them widely favored by researchers [64–67]. Recently, scholars
have turned to geographically weighted models to investigate these connections. These
models have proven effective in analyzing spatiotemporal differentiation patterns and
offer researchers a more nuanced spatial analysis perspective [68]. For instance, the Multi-
scale Geographically Weighted Regression (MGWR) model allows researchers to examine
the relationship between urban vitality and various influencing factors across different
geographic scales. This approach is particularly useful for datasets that display signifi-
cant spatial variations or non-stationarity [69]. Beyond geographically weighted models,
machine learning methods have opened new pathways for exploring the nonlinear rela-
tionships between urban vitality and its determinants [70,71]. Tree-based algorithms such
as Extreme Gradient Boosting (XGBoost), Random Forest Regression (RF), and LightGBM
are particularly adept at revealing the complex interactions between influencing factors
and dependent variables [72,73]. Previous studies have primarily relied on single methods
or combined OLS with GWR for analysis.

Overall, when researching urban vitality issues, using a multifaceted analysis frame-
work that includes Multiple Linear Regression, Geographically Weighted Regression (GWR
and MGWR), and machine learning models (such as Random Forest, XGBoost, and Light-
GBM) provides a comprehensive approach. Multiple Linear Regression is extensively
applied in many studies on urban vitality, offering a macroscopic view and quickly iden-
tifying key factors. However, its linear assumptions may lead to oversimplifications or



Sustainability 2024, 16, 10102 5 of 31

incorrect calculations of the actual impact of the built environment, failing to elucidate
the interactions between environment and behavior [74]. Furthermore, some variables
may only show their impact after reaching a certain threshold, and their effect might
saturate beyond that threshold [75]. Machine learning models excel in capturing complex
non-linear relationships and spatial heterogeneity. However, models like Random Forest
have limitations: they are prone to overfitting, leading to conclusions that are restricted and
non-logical; they lack significant statistical indicators like those found in linear regression;
and as global models, they do not recognize spatial heterogeneity [76]. Using spatially
weighted regression models like GWR or MGWR can reveal spatial heterogeneity in the
data. Therefore, integrating these models can achieve a complementarity of strengths,
providing more comprehensive and accurate analysis results and offering a scientific basis
for urban planning and policy-making.

In this context, this paper selects four top-grade railway stations in Beijing as case
studies to explore the similarities and differences in their development conditions through
comparative analysis. First, the spatial form of the railway station areas is quantitatively
analyzed by calculating indicators such as block density and floor area ratio. Second, the
functional distribution of streets is examined using POI data, and the spatial distribution
of vitality is presented through Baidu heatmaps. Subsequently, an urban street network
model is constructed based on spatial syntax theory, and multiple models are introduced
for comparative analysis to explore their complex relationships with vitality. Based on
these findings, relevant policy recommendations for urban planning are proposed.

3. Data and Methods
3.1. Study Area and Data Sources

Beijing, the birthplace of China’s railway industry, holds significant historical im-
portance and is home to one of the country’s largest railway hubs—the Beijing Railway
Hub [77]. This study examines four premium railway stations in Beijing: Beijing Station,
Beijing West Station, Beijing South Station, and Beijing Fengtai Station. These special-grade
stations are large in scale and handle significant passenger volumes. Figure 2 illustrates
the passenger flow trends for the four special-grade stations in Beijing from 2011 to 2020.
During this period, Beijing West Station consistently had the highest passenger volumes,
peaking at 55.76 million passengers in 2019. Beijing South Station, which was renovated
after China entered the high-speed rail era in 2008, saw its passenger flow steadily increase
from 2011 and exceed 50 million passengers in 2019. In contrast, Beijing Station’s passenger
flow remained relatively stable, while Beijing Fengtai Station’s passenger flow dropped to
zero after it ceased passenger services in 2010. All these stations are located near the city
center and exhibit a strong interaction with the surrounding urban areas [78]. Based on the
concentric zone theory and considerations of walking speed [79,80], this study focuses on a
2000 m radius around each station as the core research area (Figure 3). To further clarify the
study area, an 800 m service zone centered on each station is also defined. These stations
vary in size, age, and location, providing a representative sample of stations in the urban
core (Table 1).

Table 1. Basic information of the four major first-class stations.

Station Names First Time
of Use

Renovation
Completion Time Ranking

Distance from
Station to City

Center

Beijing Railway Station 1903 2004 First-class station 3.6 km
Beijing West Railway Station 1996 2005 First-class station 8.0 km
Beijing South Railway Station 1897 2008 First-class station 8.1 km
Beijing Fengtai Railway Station 1895 2022 First-class station 14.6 km
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The research data include population heat map data based on Baidu Huiyan, 2023
POI data for Beijing, 2023 road network data for Beijing, and 2022 building vector data for
Beijing (Table 2).
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Table 2. Data source statistics.

Data Type Data Name Data Source Year Link

Basic geographic data

Vector data of Chinese
maps

National Geospatial
Information Center 2022 http://www.ngcc.cn/

Road network data Official website for publicly
available street maps 2023 https://www.

openstreetmap.org/

Open-source data on the
Internet

POl data Gaode Map crawler 2023 https:
//ditu.amap.com/

Baidu heatmap Baidu Map crawler 2023 https:
//map.baidu.com/

Building height and
floorcount data Gaode Map crawler 2023 https:

//ditu.amap.com/

(1) Road Network Processed with Space Syntax

The pedestrian network data processed using space syntax were sourced from OSM
maps. Initially, the Depthmap 1.0 software was employed to analyze the CAD road network
through space syntax, converting the axial map into a segment model. This model then
underwent preliminary generation and verification. Various configurational metrics were
computed next. To ensure comparability, global and local configurational values were
measured using NACH_Rn (choice), NACH_R1000m (choice), NAIN_Rn (integration),
and NAIN_R1000m (integration). Building outline data were extracted from Gaode maps
and converted into point features within GIS. These points were aligned with the nearest
segment model and intersected to attach segment values to the point features. Finally,
these points were linked with building outline data and visualized. Figure 4 illustrates
the distribution of configurational measurement values within a 2 km radius around the
four premium stations in Beijing. The color values indicate the degree of configuration in
different areas, revealing significant spatial configuration differences across regions.
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(2) POI Data Reclassification

Considering the characteristics of the areas surrounding railway stations, the original
POI data were reclassified. The final functions are shown in Figure 5.
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(3) Baidu Heatmaps

This study collected Baidu heatmap data from 27 March to 2 April 2023 at 60 min
intervals yielding a total of 168 heatmaps. Additionally, to better quantify urban vitality,
the study area was divided into 300 m × 300 m grid cells.

3.2. Methods

The research framework, as shown in Figure 6, comprises two main components:
(1) quantifying spatial form using the floor area ratio and building density, and measuring
vitality through multi-source spatial big data and (2) introducing and comparing five
multivariable analysis models: Ordinary Least Squares (OLS), Geographically Weighted
Regression (GWR), Multi-Scale Geographically Weighted Regression (MGWR), Random
Forest (RF), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine
(LightGBM). This includes a comparative analysis of Multiple Linear Regression, Geo-
graphically Weighted Regression, and machine learning methods.

The geographically weighted regression model allows regression coefficients to vary
spatially via a geographical weight function, capturing local effects. Machine learning
models leverage their robust global predictive capabilities to assess the overall impact
of independent variables on dependent variables. These models are evaluated for their
accuracy, complexity, and ability to explain spatial heterogeneity under global and local
effects. The most suitable model is then selected to explore the influence of spatial form and
functional distribution in railway station areas on street vitality, as well as to understand
variable differences under global and local effects.
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This study identifies three primary categories of factors affecting vitality: spatial
form, functional properties, and street network configuration. For calculating various
spatial configuration indicators, different radii were used, including 250 m, 500 m, 1000 m,
1600 m, 2000 m, 5000 m, 10 km, 20 km, 50 km, and N. Table 3 presents the spatial configura-
tion indicators that are significantly related to vitality.
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Table 3. Impact factors and calculation methods table.

Category Explanation Calculation Method N Min Max Mean SD

Spatial Form

Floor Area Ratio Where Fi represents the building floor area (m2) of the i-th block, BAi
represents the built-up area (m2) within the i-th block, and Ai represents

the total area (m2) of the i-th block.

FARi =
Fi
Ai

701 0.000 6.762 1.283 0.866

Building Density BCRi =
BAi
Ai

701 0.000 86.096 22.142 11.116

Average Number
of Floors Average Number of Floors of Buildings

Fi =

n
∑

i=1
Ni

n
701 0.000 22.000 4.874 2.921

Urban
Function

POI Density Density of various functional POIs on streets Dx = −∑n
i=1(pi ln pi), (i1, 2, 3 . . . , n) 701 0.000 1.769 1.040 0.484

Tourism and
Leisure Density Kernel density of Tourism and Leisure POIs

fn(x) =
1

nδ

n
∑

i=1
K
(

distancei

δ

)
,

where K(xdistanceiδ) is the kernel density; δ > 0
is the bandwidth, also known as the search

radius; n is the number of known points; and
distancei represents the distance from the
estimated point X to the sample point Xi.

701 0.000 56.149 12.266 10.040

Transportation Facility
Density Kernel density of POIs related to transportation facilities 701 0.000 132.629 47.567 26.315

Public Service Density Kernel density of Public Service POIs 701 0.000 581.753 104.060 77.364

Enterprise Density Kernel density of Company/Enterprise POIs 701 0.000 284.088 45.923 42.902

Commercial Density Kernel density of Commercial POIs 701 0.000 2455.276 249.745 307.129

Residential Density Kernel density of Residential POIs 701 0.000 52.601 16.125 10.056

Spatial
Configu-ration

Housing prices The average price of a house for sale in a block per unit 701 0.000 0.000 51,654.176 48,702.214

NAIN 5000 m Enables cross-scale comparison between different urban systems.
Length of a geodesic (shortest path) between vertices, considering the

urban system’s tendency to optimize travel distance.

NAINθ(x) = (n+2)1.2

( ∑
i=1

dθ (x,i))
680 0.820 2.216 1.488 0.225

NAIN 50 km 680 1.298 2.546 1.879 0.193

NACH 250 m

Adjusted angular choice measure for cross-scale comparison.
Calculated similarly to ACHB(x) but normalized for cross-scale

comparison and considering the urban system’s optimization of travel
distance and cost of segregation.

NACHB(x) =
log(

n
∑

i=1

n
∑

j=1
σ(i,x,j)+1)

log( ∑
i=1

dθ (x,i)+3) (i ̸= x ̸= j)
680 0.000 1.330 0.793 0.197

MTL 5000m Metric Total Length: This variable calculates the total length of all segments within the entire network, using actual distance
measurements. This reflects the breadth of the network and the range of mobility it provides. 680 690,162.943 1,227,088.147 1,008,602.413 134,380.721

TINT R10K Indicates how integrated or segregated a vertex is from the urban
system. Degree of integration or segregation from the urban system,

both globally and locally.
INTi =

1
RRAi

=
Di

RAi

680 5737.742998 24,266.305 13,451.649 3471.852

TINT R50K 680 45,186.47918 89,824.041 65,149.993 7015.099

MTD R5K This variable measures the total number of nodes reachable within a spatial network based on a specific distance metric
(such as meters or feet). In urban network analysis, nodes usually represent intersections or entrances to buildings. 680 368,013.0000 6,637,732.167 2,693,390.266 953,048.618

MTN R5K
Metric Total Nodes: This variable measures the total number of nodes reachable within a spatial network based on a specific

distance metric (such as meters or feet). In urban network analysis, nodes usually represent intersections or entrances
to buildings.

680 12,640.3 28,517.85 21081.68 4269.267

TTD R10K Total Nodes: Refers to the total number of nodes that are reachable
within a specific threshold. This variable helps analyze accessibility and

the concentration of the network in a particular area.
TDi =

n−1
∑

j=1
dij , i ̸= j

680 213,896.970 634,530.48 400,644.634 77,591.926

TTD R5K 680 51,289.496 151,837.111 91,678.257 19,355.75

TNC R10K Node Count: Simply records the total number of nodes within the network. This count includes all independent nodes
within the analysis boundary, reflecting the scale of the network.

680 40,586.2 96,244.272 71,912.097 13,546.586

TNC R24K 680 234,780.2 365,161.818 309,205.451 32,381.628

TTSL R10K T1024 Total Segment Length: This variable represents the total length of all segments within a certain threshold. It helps
understand the density and connectivity of the road network within the given range. 680 2,294,018.1 4,302,021.055 3,525,273.747 483,289.453
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3.3. Formulas for Each Algorithm Model

(1) Quantification of Vitality in Railway Station Areas

To analyze population concentration in a city over a specific time period, Baidu
heatmaps can be used to visualize dynamic temporal patterns. For this, all heatmaps within
the given period are overlaid, and their average is calculated to derive the population
distribution for that timeframe [81]. The specific formula is as follows:

Vi =

n
∑

i=1
Xi Ai

n × Si
(1)

where Vi represents the average street vitality, Ai represents the vitality of street i during
a specific time period, Si represents the area of street i, and n = 0:00, . . . 0:00 denotes the
24 time periods in a day.

(2) Linear Regression Model

Ordinary Least Squares (OLS)
The expression for the linear regression model is as follows [82]:

Y = a1X1 + a2X2 + a3X3 + b (2)

where Y represents the vitality of the street segment, and X1, X2, and X3 represent the
variables of spatial form, functional attributes, and road network structure, respectively.

(3) Geographically Weighted Regression (GWR) Model

1⃝ GWR
Geographically Weighted Regression (GWR) is a regression analysis method that

considers the impact of geographical locations, capturing spatial heterogeneity and spatial
dependency [69]. The expression for GWR is as follows:

Yi = β0(ui, vi) + ∑
K

βk(ui, vi)Xik + εi (3)

where Yi represents the vitality intensity within the study unit (dependent variable), (ui,
vi) denotes the coordinates of spatial unit i, β0(ui, vi) represents the intercept for unit
i, βk (ui, vi) are the geographically varying coefficients for unit i, and εi represents the
regression residual.

2⃝ Multi-Scale Geographically Weighted Regression (MGWR) Model
Brunsdon introduced spatial location information into regression models, proposing

the GWR model based on the spatial attributes of the data [83]. The GWR model accounts
for spatial variation in the relationship between dependent and independent variables.
However, while GWR addresses spatial heterogeneity, using the same spatial bandwidth
for all independent variables can result in unstable regression outcomes. To resolve this
issue, the MGWR model was developed [84]. This multi-bandwidth approach constructs a
more effective and realistic spatial process model.

yi =
k

∑
n=1

βbwn(µi, vi)xin + εi (4)

where yi is the response variable, xin is the covariate, βbwn is the local regression coefficient
for MGWR bandwidth bw or the n-th variable, (ui, vi) is the spatial location of the sample
point, and εi is the regression residual.
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(4) Machine Learning Models

1⃝ Random Forest (RF)
Random Forest constructs multiple decision trees (tree models) for prediction, then av-

erages or sums the predictions to improve the overall model’s accuracy [85]. The expression
for Random Forest is as follows:

Random Forest constructs multiple decision trees (tree models) for prediction, then av-
erages or sums the predictions to improve the overall model’s accuracy [85]. The expression
for Random Forest is as follows [M3]:

f̂ (xi) =
1
N

N

∑
n=1

fb(xi)yi = f̂ (xi) + εi (5)

where f (xi) denotes the contribution of variable X to the regression model, representing
its specific effect within the overall model structure, xi is the feature vector, N is the total
number of independent trees in the forest, and fb(xi) is the prediction of individual tree b.

2⃝ Extreme Gradient Boosting (XGBoost)
XGBoost is an open-source machine learning framework developed by Tianqi Chen

et al. based on the Gradient Boosting Decision Trees (GBDT) algorithm, and it is robust to
data multicollinearity [86]. The expression for XGBoost is as follows:

Obj =
n

∑
i=1

l(ŷi, yi) +
K

∑
k=1

Ω( fk) (6)

where Obj is the target function optimized, (yi, yi) is the loss function, yi is the true label
of sample xi, yi is the predicted value, Ω(fk) is the regularization term representing model
complexity, fk is the function expression of the k-th tree model, n is the total number of
samples, and K is the total number of base models.

3⃝ LightGBM (Light Gradient Boosting Machine)
LightGBM is a framework that implements the GBDT algorithm using a histogram-

based algorithm, supporting efficient parallel training [87]. The expression for LightGBM
is as follows:

ObjK = ∑
i

L(yi, ŷK
i ) + Ω( fK) + cK−1 = ∑

i
L(yi, ŷK−1

i + fK(xi)) + Ω( fK) + cK−1 (7)

where the Objk function, like the Obj in XGBoost, is designed to be optimized during the
model training process. yi is the observed value, yi is the predicted value after K iterations,
Ω(fk) is the regularization term for the k-th tree, cK−1 is the sum of regularization terms for
the first K − 1 trees, and f is the function for the K-th tree.

4⃝ SHAP (Shapley Additive exPlanations) Framework for Interpretable Machine
Learning

Models such as Random Forest, XGBoost, and LightGBM are inherently difficult to
interpret [88]. Additionally, SHAP can accurately quantify the impact of these variables on
vitality prediction.

ŷi = f0 +
M

∑
i=1

fi (8)

where yi is the model prediction, fi is the marginal contribution value for each feature, f 0 is
the mean prediction of all training samples, and M is the total number of features.

5⃝ Root Mean Squared Error (RMSE)
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RMSE is a common error metric used to evaluate and select models in various types
of model comparisons [89]. The smaller the RMSE, the better the model fit. The calculation
method for RMSE is as follows:

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(9)

where n is the total number of predictions, yi is the true value of the target variable i, and yi
is the predicted value of the target variable i.

6⃝ Coefficient of determination R2

The coefficient of determination (R2) is a statistical metric that quantifies the proportion
of total variance in the dependent variable that can be explained by one or more indepen-
dent variables within a regression model. It serves as a critical indicator for assessing the
goodness of fit of the model, particularly in the context of linear regression [90].

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(10)

where yi represents the observed values, ŷi represents the predicted values, and y is the
mean of the observed values.

7⃝ Adjusted R2

The adjusted R2 is an enhancement of the R2 statistic, which not only measures the
goodness of fit but also adjusts for the number of predictors in relation to the sample size.
By doing so, it penalizes the model for unnecessary complexity, reducing the likelihood of
overfitting [90]. The formula for this metric is as follows:

Adjusted R2 = 1 − n − 1
n − p

(
1 − R2

)
(11)

where n is the sample size, and p is the number of predictors.
8⃝ Standard Deviation

The performance of the regression models was evaluated using the standard deviation,
which measures the dispersion of the data points from the mean.

SD =

√
1

n − 1

n

∑
i=1

(xi − x)2 (12)

where xi represents each data point, and x is the mean of the data points.
9⃝ K-Fold Cross-Validation

K-Fold Cross-Validation is important in machine learning, as it helps reduce overfitting
risks, optimize parameter selection, fully utilize data, and evaluate model stability. It is
a common evaluation method in machine learning. The calculation method for K-Fold
Cross-Validation is as follows:

CVK =
1
K

K

∑
i=1

Li (13)

where CVK represents the cross-validation score using K folds, and Li represents the
performance metric calculated on fold i, where the model is trained on all folds except i.

4. Results
4.1. Spatial Form Morphological Distribution Characteristics

The land use efficiency in the areas surrounding the stations is reflected through two
indicators: building density and floor area ratio (Figure 7). High floor area ratio areas are



Sustainability 2024, 16, 10102 14 of 31

particularly prominent near Beijing Station and Beijing West Station. Specifically, these
high ratios around Beijing Station are primarily found on the north and south sides, which
is influenced by land use strategies. Given the limited land resources in the city center,
especially near the transportation hub of Beijing Station, various buildings have been
constructed to meet residential and commercial needs. Additionally, the “Station-City
Integration” development strategy proposed by the Beijing Municipal Government in
2018 has encouraged high-density land use around this station. At Beijing West Station,
high floor area ratio areas are mainly located to the north, east, and south, forming a
semi-enclosed pattern. To the northwest, numerous schools, hospitals, and other functional
areas have been established, where building height and density are restricted to maintain
open spaces. In contrast, the low floor area ratio areas around Beijing Fengtai Station are
the most prominent. After its reconstruction and reopening in June 2022, the surrounding
area aligns more with modern livable city planning, focusing on a balance between green
space and population density. Urban planning also tends to control building density to
accommodate future city development needs.
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High building density areas are notably significant around Beijing Station, especially
to the northwest, where there is a marked difference in building density. As a landmark
of the capital, Beijing Station, located in the city center, boasts convenient transportation,
numerous business offices, and historical and cultural attractions, drawing significant
foot traffic. In contrast, the buildings around the other three stations are more evenly
distributed, providing residents with a good living environment and opportunities for
social interaction.

4.2. Functional Distribution Characteristics

Figure 8 illustrates the distribution patterns of six types of functions within the two-
level station areas across four cases. The figure reveals significant progress in mitigating
railway-induced urban fragmentation at the Beijing West, Beijing South, and Beijing Fengtai
Stations. Conversely, the accessible area around Beijing Station is skewed, highlighting the
railway’s impact on urban space division. Among the six major functions, commercial and
public service functions have the highest densities, while tourism and leisure functions
have the lowest. Furthermore, there is a notable increase in all functions from the core area
to the outer expansion area. The total POI density at Beijing Station, Beijing West Station,
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and Beijing South Station surpasses that of Beijing Fengtai Station, indicating a trend where
longer renovation periods correlate with more developed functions.
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Analyzing the spatial distribution and connectivity of the six functions reveals sev-
eral insights:

1. Residential Functions: Residential functions are more prevalent around Beijing Station,
forming multiple clusters, predominantly in the outer expansion layer.

2. Commercial Shopping Functions: The core and outer expansion areas of all four
stations are well-covered, indicating good overall connectivity without fragmentation
due to the train stations. However, the commercial coverage at the Beijing South and
Beijing Fengtai Stations is less comprehensive. Beijing Station’s commercial hotspots
are mainly on the southern side of the outer expansion area, whereas Beijing South
Station’s are in the southeastern outer expansion area, extending outward. Due to
Lianhuachi Park and Yuyuantan Park, the commercial activity at Beijing West Station
is less concentrated than at Beijing Station. The Beijing South and Beijing Fengtai
Stations differ in commercial hotspot distribution, with the former concentrated at
the boundary of the core and outer expansion areas, while the latter lacks significant
hotspots. This can be explained by the proximity to the city center and land rent
theory for the first two stations.

3. Public Service Functions: Public service distribution correlates strongly with com-
mercial functions, showing similar trends. Beijing Station and Beijing West Station
exhibit more pronounced hotspots within station buildings due to centralized public
facilities. In contrast, Beijing South and Beijing Fengtai Stations’ service functions are
less developed.

4. Transportation Functions: Beijing Station, Beijing West Station, and Beijing Fengtai
Station have extensive, balanced hotspot coverage, while Beijing South Station shows
weaker connectivity. The connection between transportation functions and Beijing
South Station is mainly in the east-west directions, with the outer expansion area
featuring low-density scattered points, indicating that transportation development
still relies on the station itself, and the surrounding areas have not yet formed a
cohesive system.

5. Office Functions: Beijing Station has a more balanced distribution and better connec-
tivity, while the other stations display lower-density scattered distributions. Office
hotspots at Beijing Station are clustered on the north and south sides, making it the
largest area among the four cases, highlighting its significant business role, closely
linked to its proximity to the city center.

6. Tourism and Leisure Functions: At the Beijing South and Beijing Fengtai Stations,
these functions are distributed on both sides of the station road network, showing a
multidirectional scattered pattern. Beijing West Station’s functions are concentrated in
the southeast outer expansion area. Tourism and leisure functions at Beijing Fengtai
Station are relatively underdeveloped and lack a clear system. The clustering trend
from Beijing Station to Beijing Fengtai Station varies over time, reflecting the ongoing
development of tourism and leisure functions at Beijing Fengtai Station.

4.3. Urban Vitality Changes Around Beijing’s Four Major Special-Class Stations

Figures 9 and 10 demonstrate the spatial and temporal variations in vitality around
the special-grade stations on both weekdays and weekends. Overall, the four stations show
distinct patterns in vitality distribution. Although the vitality distribution on weekdays
and weekends is generally similar, certain areas exhibit noticeable differences. Both on
weekdays and weekends, Beijing Railway Station and Beijing West Railway Station have
more high-vitality areas compared to Beijing South Railway Station and Beijing Fengtai
Railway Station, underscoring the greater activity levels and significance of the former two
stations. Additionally, most of the high-vitality grids are located closer to the city center.
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From a temporal perspective, high-vitality areas are more widespread on weekends
than on weekdays, suggesting that residents engage in more frequent and broader activities
on weekends. Furthermore, the concentration of vitality increases on weekends, with more
regions displaying mid-to-high vitality values (denoted by darker shades), highlighting the
enhancing effect of weekends on urban vitality.

Regionally, high-vitality areas around Beijing Railway Station are more concentrated
during both weekdays and weekends, particularly around commercial and healthcare
facilities, indicating the consistent attractiveness of these amenities throughout the week.
The high-vitality areas around Beijing West Railway Station are centered in the station’s core
on both weekdays and weekends. However, on weekends, these areas extend southeast
towards nearby communities and shopping malls, particularly around Maliandao Road,
reflecting the rise in shopping and leisure activities. Similarly, Beijing South Railway Station
sees an expansion of mid-to-high vitality areas on weekends, especially near Jiahe Park to
the southwest, indicating increased outdoor leisure activities. At Fengtai Railway Station,
mid-to-high vitality areas are more dispersed on weekdays but become more concentrated
on weekends, suggesting a higher concentration of resident activities during the weekend.

4.4. Method Comparison
4.4.1. Comparison of Models Under Local Variables

After standardizing the built environment indicators, Multiple Linear Regression
analysis was conducted using SPSS, with the results displayed in Table 4. Significant
independent variables were identified and used to construct GWR and MGWR models for
the vitality of areas around railway stations across different time periods.

Table 4. Comparison of performance of each model.

Algorithm

Linear
Model

Geographically Weighted
Model Machine Learning Model

OLS GWR MGWR
Global

Random
Forest

XGBooost LightGBM

Adjusted R2
Vitality 0.515 0.807 0.848 / / /

Vitality on weekdays 0.553 0.857 0.887 / / /
Vitality on weekends 0.436 0.835 0.883 / / /

AICc
Vitality 1361.233 1090.66 908.739 / / /

Vitality on weekdays 1395.504 889.478 682.979 / / /
Vitality on weekends 1588.196 993.324 756.137 / / /

Bandwidth
Vitality / 55 (43, 615) / / /

Vitality on weekdays / 58 (43, 206) / / /
Vitality on weekends / 57 (43, 110) / / /

Out-of-Sample R2
Vitality 0.446 0.557 / 0.769 0.674 0.670

Vitality on weekdays 0.625 0.691 / 0.763 0.744 0.679
Vitality on weekends 0.462 0.568 / 0.651 0.657 0.565

Out-of-Sample
RMSE

Vitality 0.146 0.147 / 0.115 0.120 0.231
Vitality on weekdays 0.145 0.149 / 0.124 0.124 0.200
Vitality on weekends 0.145 0.147 / 0.143 0.129 0.323

The results indicate that the adjusted R2 of the MGWR model improved significantly,
while the AICc value decreased, suggesting that the MGWR model provides a better fit
than both the GWR model and OLS, thus enhancing model stability. Specifically, the
MGWR model accounts for 84.8%, 88.7%, and 88.3% of the variation in vitality values for
average periods, weekdays, and weekends, respectively, around railway passenger stations,
indicating a strong model fit. It is worth noting that, in the comparison across the three
models, the R2 for weekdays consistently exceeded that of the overall vitality, which in
turn was higher than that of weekends. Therefore, this study adopts the MGWR model to
analyze the factors affecting vitality under localized effects.
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4.4.2. Comparison of Models Under Global Variables

Utilizing grid search, the optimal parameter combination was determined to optimize
the model. Table 4 presents the out-of-sample results for OLS, GWR, XGBoost, Random
Forest, and LightGBM, obtained through ten-fold cross-validation. Considering the out-of-
sample RMSE and R2 metrics, the global Random Forest model outperforms other models,
whereas LightGBM shows relatively weaker predictive performance. Specifically, Random
Forest excels in the R2 values for average vitality and weekday vitality, surpassing XGBoost
by 0.095 and 0.019 respectively. However, XGBoost slightly outperforms Random Forest in
the R2 for weekend vitality, with a marginal difference of 0.06. Compared to linear models
and GWR, the global Random Forest also achieves higher a R2 and a lower RMSE. Thus, the
Random Forest (RF) model is selected for investigating the nonlinear relationships between
spatial form, street function, and vitality in station areas under global effects, integrating
it with SHAP analysis. For MGWR, the theories and methods regarding out-of-sample
predictions are not yet mature [91], and no public implementation methods are available.
Thus, we do not support out-of-sample prediction for MGWR.

Table 5 displays the optimal parameter combinations for various machine learning
models. In the training process, “Val” represents the validation set used for tuning or model
selection, “Train” refers to the training set for learning data features, and “Test” denotes
the reserved test set used to assess model performance, which is not involved in training or
tuning. The dataset is divided into training, validation, and test sets. The training set is
used for model training, the validation set for tuning (optimal hyperparameters), and the
test set for performance evaluation. Among the parameter combinations, “bootstrap” set
to True, “max_depth” set to 20, “min_samples_leaf” to 1, “min_samples_split” to 2, and
“n_estimators” to 300 performed best on the test set, achieving an R2 score of 0.769.

Table 5. Model parameters.

Model Params train_R2_Score val_R2_Score test_R2_Score

Global Random Forest

Vitality
{‘bootstrap’: True, ‘max_depth’: 20,

‘min_samples_leaf’: 1, ‘min_samples_split’: 2,
‘n_estimators’: 300}

0.906000373 0.768849224 0.665804941

Vitality on weekdays
{‘bootstrap’: True, ‘max_depth’: None,

‘min_samples_leaf’: 2, ‘min_samples_split’: 2,
‘n_estimators’: 200}

0.900778505 0.763400339 0.900992067

Vitality on weekends
{‘bootstrap’: True, ‘max_depth’: 20,

‘min_samples_leaf’: 1, ‘min_samples_split’: 5,
‘n_estimators’: 300}

0.836411732 0.650810857 0.531086753

XGBooost

Vitality

{‘colsample_bytree’: 0.8, ‘learning_rate’: 0.05,
‘max_depth’: 5, ‘min_child_weight’: 10,

‘n_estimators’: 500, ‘reg_alpha’: 0.1,
‘reg_lambda’: 1, ‘subsample’: 0.8}

0.989456264 0.674649991 0.525335069

Vitality on weekdays

{‘colsample_bytree’: 0.8, ‘learning_rate’: 0.1,
‘max_depth’: 3, ‘min_child_weight’: 5,
‘n_estimators’: 1000, ‘reg_alpha’: 0.1,

‘reg_lambda’: 1, ‘subsample’: 0.8}

0.999511538 0.744485954 0.88515299

Vitality on weekends

{‘colsample_bytree’: 0.8, ‘learning_rate’: 0.05,
‘max_depth’: 3, ‘min_child_weight’: 10,

‘n_estimators’: 500, ‘reg_alpha’: 0.1,
‘reg_lambda’: 1, ‘subsample’: 0.8}

0.90138167 0.657759935 0.69574312

LightGBM

Vitality
{‘bagging_fraction’: 0.8, ‘bagging_freq’: 3,

‘feature_fraction’: 1.0, ‘learning_rate’: 0.01,
‘n_estimators’: 300, ‘num_leaves’: 50}

0.720894442 0.67069974 0.40130828

Vitality on weekdays
{‘bagging_fraction’: 1.0, ‘bagging_freq’: 3,

‘feature_fraction’: 0.8, ‘learning_rate’: 0.01,
‘n_estimators’: 200, ‘num_leaves’: 30}

0.804136545 0.679186887 0.788486183

Vitality on weekends
{‘bagging_fraction’: 1.0, ‘bagging_freq’: 3,

‘feature_fraction’: 0.8, ‘learning_rate’: 0.01,
‘n_estimators’: 300, ‘num_leaves’: 30}

0.753907118 0.565776059 0.548275682

4.5. Relationship Between Spatial Form, Street Functions, and Vitality in Station Areas
4.5.1. Ordinary Least Squares Analysis

The regression results, as shown in Table 6, indicate an R2 value of 0.515, sug-
gesting that the selected variables account for 51.5% of the variance in street vitality.
The analysis reveals that commercial density, average number of floors, housing prices,
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NAIN_R5000m, TINT_R10K, MTL_R5K, and residential density significantly influence
street vitality. Among the variables positively correlated with vitality, the strength of the
associations is as follows: TINT_R10K > commercial density > average number of floors.
Conversely, the variables negatively correlated with vitality rank in strength as follows:
NAIN_R5000m > housing prices > MTL_R5K > residential density.

Table 6. Linear regression results of variable.

Variable
Unstandardization

Coefficient Beta
Standardization

Coefficient
Beta

t p Descriptive

B Std. Error Tolerance VIF

(Intercept) 1.286 0.071 18.164 0.000 ***
Commercial density 0.157 0.015 0.400 10.392 0.000 *** 0.795 1.258

Average number of floors 0.072 0.025 0.107 2.851 0.005 ** 0.842 1.188
Housing prices −1.000 × 10−6 0.000 −0.182 −3.946 0.000 *** 0.553 1.808
NAIN_R5000m −0.437 0.043 −0.647 −10.112 0.000 *** 0.288 3.470

TINT_R10K 4.700 × 10−5 0.000 1.116 11.764 0.000 *** 0.131 7.629
MTL_R5K 0.000 0.000 −0.246 −3.702 0.000 *** 0.268 3.737

Residential density −0.001 0.001 −0.096 −2.653 0.008 ** 0.900 1.111

Model summary

R 0.723

R square 0.523

Adjust R square 0.515

Std. Error of the Estimate 0.0977840720

Durbin–Watson 1.998

Dependent Variable: Vitality * p < 0.1, ** p < 0.05, *** p < 0.001.

To more comprehensively consider the impact of the built environment on urban
vitality across different times and to provide more specific, targeted recommendations for
urban planning, Tables 7 and 8 present the results of Multiple Linear Regression analyses
for the predictor variables of weekday vitality and weekend vitality. The results indicate
that the weekday vitality model has an R2 of 0.553, while the weekend vitality model has
an R2 of 0.436. This suggests that the selected variables can explain 55.3% and 43.6% of the
variation in street vitality during weekdays and weekends, respectively, with the weekday
model performing better than both the overall vitality model and the weekend model.
Although an R2 of 0.436 might appear low in other scientific fields, it is still considered a
relatively good performance in this domain. Even if the R2 values are relatively low, such
values are acceptable as long as the predictors or explanatory variables in the model have
statistical significance [92].

The above results indicate that weekday vitality is more predictable compared to week-
ends. This suggests that human activity patterns are more regular on weekdays [93]. The
variables positively correlated with weekday vitality, in order of influence, are as follows:
TINT_R10K, commercial density, and average number of floors. The variables negatively
correlated with weekday vitality, in order of influence, are as follows: NAIN_R5000m,
housing prices, MTL_R5K, and residential density. These results, except for residential
density, are consistent with those in Table 5.
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Table 7. Linear regression results of variables on weekdays.

Variable
Unstandardization

Coefficient Beta
Standardization

Coefficient
Beta

t p Descriptive

B Std. Error Tolerance VIF

(Intercept) 1.258 0.075 16.818 0.000 ***
Commercial Density 0.163 0.016 0.392 10.142 0.000 *** 0.802 1.247

Average Number of Floors 0.067 0.026 0.098 2.622 0.009 ** 0.853 1.173
Housing prices −9.812 × 10−7 0.000 −0.201 −4.341 0.000 *** 0.558 1.791
NAIN_R5000m −0.474 0.045 −0.699 −10.546 0.000 *** 0.272 3.682

TINT_R10K 5.176 × 10−5 0.000 1.195 12.387 0.000 *** 0.128 7.795
MTL_R5K −2.387 × 10−7 0.000 −0.222 −3.364 0.001 *** 0.274 3.650

Residential Density −0.002 0.001 −0.103 −2.816 0.005 ** 0.896 1.116

Model summary

R 0.749

R square 0.561

Adjust R square 0.553

Std. Error of the Estimate 0.0960910489

Durbin–Watson 1.926

Dependent variable: Vitality on weekdays * p < 0.1, ** p < 0.05, *** p < 0.001.

Table 8. Linear regression results of variables on weekends.

Variable
Unstandardization

Coefficient Beta
Standardization

Coefficient
Beta

t p Descriptive

B Std. Error Tolerance VIF

(Intercept) 0.941 0.060 15.777 0.000 ***
Commercial Density 0.168 0.017 0.423 9.687 0.000 *** 0.789 1.267

Average Number of Floors 0.103 0.028 0.157 3.747 0.000 *** 0.857 1.167
Housing prices −7.019 × 10−7 0.000 −0.151 −2.858 0.005 ** 0.543 1.841
NAIN_R5000m −0.088 0.032 −0.137 −2.735 0.007 ** 0.605 1.654

TINT_R10K 7.416 × 10−6 0.000 0.717 7.879 0.000 *** 0.182 5.496
MTL_R5K −2.387 × 10−7 0.000 −0.222 −3.364 0.001 *** 0.274 3.650

Residential Density −0.001 0.001 −0.099 −2.417 0.016 ** 0.906 1.104

Model summary

R 0.668

R square 0.447

Adjust R square 0.436

Std. Error of the Estimate 0.1029961884

Durbin–Watson 1.913

Dependent variable: Vitality on weekends * p < 0.1, ** p < 0.05, *** p < 0.001.

Typically, an appropriate residential density can enhance the vitality of station areas,
as a higher number of residents brings about richer public facilities and commercial ser-
vices. This, in turn, promotes increased pedestrian activity and business opportunities,
driving the development and prosperity of station areas. However, if the residential den-
sity is excessively high, it can lead to insufficient public facilities, traffic congestion, and
environmental degradation, which negatively impact the vitality of station areas.

The variables positively correlated with weekend vitality, in order of influence, are
as follows: commercial density, TINT_R10K, and average number of floors. The variables
negatively correlated with weekend vitality, in order of influence, are as follows: MTL_R5K,
residential prices, NAIN_R5000m, and residential density. On weekends, commercial
density has a greater impact on vitality than the road network structure. Weekends are typ-
ically reserved for rest and leisure, with many individuals choosing to engage in activities
such as shopping, dining, and entertainment. Commercial facilities not only attract more
visitors to the station area, thereby increasing vitality, but also function as key venues for
social interaction.
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4.5.2. Multi-Scale Geographically Weighted Regression (MGWR) Correlation Analysis

To determine the spatial distribution of significant variables influencing vitality, the
factors affecting vitality were estimated using MGWR. However, this section does not
include a time-period-specific analysis. According to the regression results presented in
Table 9, the magnitude of influence is ranked as follows: TINT_R10K > NAIN_R5000m
> MTL_R5K > residential density > commercial density > average number of floors >
housing prices, indicating that spatial configuration exerts the most substantial impact
on the vitality of areas surrounding the stations. TINT_R10K and housing prices show a
significant positive correlation with vitality, whereas NAIN_R5000m exhibits a significant
negative correlation. Commercial density, residential density, average number of floors,
MTL_R5K, and NAIN_R5000m demonstrate contrasting effects on street vitality.

Table 9. Statistical description of MGWR coefficients.

Variable Band-
Width

Adj t-val
(95%) p T Mean STD Min Median Max

Intercept 43.000 3.070 0.008 ** −1.127 −0.361 0.726 −1.788 −0.404 1.229
Commercial density 43.000 3.143 0.005 ** 4.338 0.343 0.243 −0.116 0.305 1.250

Average number of floors 50.000 3.140 0.011 ** 3.016 0.059 0.138 −0.356 0.046 0.594
Residential density 43.000 3.142 0.009 ** −2.436 −0.105 0.171 −0.528 −0.105 0.378

Housing prices 615.000 2.192 0.019 ** 2.206 0.030 0.011 0.009 0.029 0.051
MTL_R5K 43.000 3.060 0.002 ** −4.503 −0.466 0.622 −1.453 −0.325 0.799

NAIN_R5000m 183.000 2.458 0.000 *** −5.009 −1.076 0.472 −1.864 −1.077 −0.553
TINT_R10K 43.000 3.134 0.000 *** 4.745 1.832 0.577 0.966 1.649 2.898

* p < 0.1, ** p < 0.05, *** p < 0.001.

However, due to the variations in the bandwidth scales of each indicator in the MGWR
model, it is necessary to apply the Adj t-val (95%) values from Table 8 (representing
the confidence level of the bandwidth) as the criterion for evaluating the data, excluding
insignificant values. The results, as shown in Figure 11d,e, indicate that only NAIN_R5000m
and TINT_R10K are related to most areas around the four stations, demonstrating the
significant impact of spatial configuration on vitality.
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4.5.3. Correlation Analysis of Regression Prediction with Random Forest Model

This study utilizes the Random Forest regression model, incorporating the SHAP
algorithm and partial dependence plots, to thoroughly investigate the nonlinear relation-
ships between vitality and its influencing factors around railway stations. The results are
summarized as follows:

Figure 12 shows the calculated SHAP values on the horizontal axis, with higher
positive SHAP values indicating a greater positive impact on vitality. Each point in the
figure represents a data point extracted from the database, stacked vertically to illustrate
density and color-coded according to value, with red indicating higher values and blue-
purple indicating lower values. Commercial density, TTD R10K, and TTSL R10K make the
highest contributions. Enterprise density, average number of floors, and transportation
facility density generally enhance vitality, while residential density tends to diminish it.
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Figure 13 elucidates the complex interplay between fluctuations in factor values and
their corresponding shifts in importance, based on the SHAP algorithm. Notably, factors
such as the average number of floors, commercial density, transportation facility density,
TNC R10K, TTD R10K, TTD R5K, TNC R24K, and TTSL R10K display a pattern where, as
their values increase, their negative impact on the vitality of areas surrounding railway
stations gradually diminishes, transitioning to a positive influence.

Conversely, factors like residential density and MTD R5K exhibit an inverse relation-
ship, where their negative impact on vitality increases as their values decrease. Enterprise
density shows a nuanced pattern: initially, as its value increases, the negative impact on the
vitality of areas around railway stations also increases; however, upon further increases,
this negative impact diminishes and eventually transforms into a positive influence on
vitality. Overall, the relationship between enterprise density and MTN R5K with the vitality
around railway stations demonstrates a positive U-shaped interaction.
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4.6. Comparison of SHAP Values and MGWR Coefficients

The SHAP values derived from the global random forest model (Figures 12 and 13)
were integrated and compared with the MGWR coefficients (Table 8). The findings reveal
that, in both models, commercial density in the areas surrounding the stations emerges
as the most influential factor, underscoring a strong relationship between the density of
commercial facilities and the vitality of railway station areas. Moreover, the average number
of floors and residential density serve as key predictors across both models.

5. Discussion
5.1. Factors Influencing the Areas Surrounding Railway Stations
5.1.1. Spatial Form

Based on the OLS models for urban vitality (Tables 5–7) and the random forest analysis
(Figures 12 and 13), the average number of floors exerts a significant influence on street
vitality [94,95] and demonstrates consistent results across both the OLS and random forest
models. This consistency highlights the crucial role of the average number of floors in
predicting urban vitality. In many rapidly urbanizing regions, the number and scale of
high-rise buildings have historically been regarded as key indicators of socioeconomic
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development [96]. Moreover, the MGWR model reveals a polarized impact of the average
number of floors on the vitality around special-grade stations. In certain areas, such as
those surrounding Beijing Station and Beijing Fengtai Station, this variable does not show
a significant relationship with vitality. These stations, being large, purpose-built public
facilities, exhibit a level of vitality that is not particularly influenced by building height.
However, in the outer ring of Beijing Station, a positive correlation between the average
number of floors and vitality is observed. This could be attributed to the stringent height
restrictions in areas near the Forbidden City, limiting new development.

5.1.2. Urban Function

According to the multiple regression models for urban vitality (Tables 5–7) and the
random forest model (Figures 12 and 13), commercial density significantly influences the
vitality of areas surrounding railway stations, showing substantial effects in both the OLS
and random forest models. While some studies suggest that commercial density negatively
impacts vitality on weekdays in Beijing [31], others argue that it exerts a notable positive
influence on street vitality [97]. In the MGWR model used in this study, commercial
density is positively associated with the vitality of areas near railway stations, exhibiting a
polycentric structure. The spatial distribution of its coefficients follows a “core-periphery”
pattern. For instance, around Beijing South Station, the impact of commercial density
on vitality decreases progressively from the station outward. As a key transportation
hub, railway stations attract not only a significant number of commuters but also diverse
transient populations, such as tourists and business travelers. These populations demand a
wider range of commercial services, and areas with higher commercial density are better
positioned to meet their needs for shopping, dining, and entertainment. Consequently,
higher commercial density contributes to greater vitality in station-adjacent areas. This
finding is consistent with research on the vitality of subway station areas, which shows that
economically advanced cities tend to exhibit higher vitality around subway stations [98].

In the Random Forest model, increases in enterprise density and transportation fa-
cility density also exert a positive influence on the vitality of areas surrounding railway
stations. This finding aligns with results from earlier research, where scholars have noted
that enterprise density and a diverse range of transportation facilities can enhance urban
vitality [99,100]. However, both the random forest and MGWR models reveal that resi-
dential density has a significant impact on neighborhood vitality, displaying a bifurcated
trend [29].

Housing prices are positively correlated with vitality across the study areas. Previous
research has also shown that residential clustering is closely linked to housing prices [101].
While the vitality of areas surrounding Beijing West Station, Beijing South Station, and
Beijing Fengtai Station is not influenced by housing prices, the area around Beijing Station
exhibits a ring-like spatial structure, with the impact gradually increasing from west to east.
This suggests that rising housing prices in the residential communities near Beijing Station
could enhance the vitality of the surrounding areas.

5.1.3. Spatial Configuration

The regression analysis reveals that accessibility has the most significant influence
on street vitality, emphasizing the critical role that street networks play in sustaining
vitality [102]. The MGWR model indicates that the impact of road network structure
on vitality exhibits clear temporal variability [103]. NAIN_R5000m, TINT_R10K, and
MTL_R5K notably affect the vitality around railway stations. NAIN_R5000m correlates
with all four stations in Beijing, showing a negative effect, which diminishes progressively
from east to west. This suggests that the walkability of eastern areas has a more pronounced
negative influence on neighborhood vitality compared to the western areas. In Space
Syntax, an increase in integration signifies greater spatial accessibility, enhancing overall
convenience for residents and contributing to the improvement of street vitality [104].
TINT_R10K exerts a positive effect across all four stations, with its impact ranked as Beijing
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Station > Beijing South Station > Beijing Fengtai Station > Beijing West Station. In the
Random Forest model, increases in the values of TNC R10K (Node Count), TTD R10K
(Total Depth), TTD R5K, MTN R5K (Metric Total Nodes), TNC R24K, and TTSL R10K
(Total Segment Length) are associated with a decreasing negative impact on the vitality of
areas surrounding railway stations, eventually showing a positive influence. Conversely,
an increase in the value of MTD R5K (Metric Total Depth) gradually reduces its positive
impact on vitality, turning it into a negative influence. These variables, which are related to
road network density, indicate that greater complexity in the road network may enhance
vitality; as node counts, total depth, and segment lengths increase, the vitality around
railway stations is positively affected [99,100].

5.2. Implications for Railway Station Planning and Decision-Making

Based on the findings above, we propose the following planning strategies. First,
amid rapid urban development, high-rise buildings in specific areas may play a pivotal
role in enhancing urban vitality. However, this impact varies across regions, and planning
decisions should consider the specific needs of areas surrounding the stations. For example,
for stations such as Beijing Station and Beijing Fengtai Station, where large public facilities
dominate, building height exerts minimal influence on vitality. In peripheral areas, however,
a moderate increase in building height can positively affect vitality. Such planning should
be aligned with local height restrictions.

Second, optimizing the layout of commercial facilities can significantly enhance re-
gional vitality by addressing the needs of various transient populations, including com-
muters, tourists, and business professionals. Planners should aim to establish a multi-
centered commercial structure both in the core and peripheral areas around stations,
ensuring the diverse demands of these groups are met while preventing a decline in vitality
caused by overly concentrated commercial density. Additionally, a moderate increase in
housing prices can contribute to improving regional vitality.

Finally, the influence of road network structure on vitality highlights the importance
of accessibility for maintaining vibrant streets. Planners should prioritize optimizing
walkability and road network integration around railway stations. This involves adjusting
network density and integration according to the specific needs of different areas to mitigate
congestion and noise issues caused by high-density road networks.

In conclusion, the planning of areas surrounding railway stations should integrate
considerations of building design, functional distribution, floor area ratio control, road
network optimization, and housing prices. Such a balanced approach will ensure enhanced
regional vitality and promote long-term sustainable development.

6. Conclusions

As urban railways rapidly develop and railway stations see increasing usage, these
stations and their surrounding areas are becoming focal points for a variety of urban func-
tions. Therefore, it is critical to fully understand the spatial form, functional distribution,
and mechanisms by which existing railway stations impact the vitality of adjacent areas to
inform future urban renewal and planning. This study conducts a quantitative analysis
of urban vitality, spatial form, and functional facilities distribution using Baidu heatmaps
and POI data. By evaluating the performance of different models on both local and global
variables, urban planners and decision-makers can more accurately identify the factors
influencing vitality around stations, leading to more effective strategy formulation. The
main conclusions are as follows:

(1) The spatial distribution of vitality around railway stations reveals significant dis-
parities and an uneven spread of vitality. Policy formulation should account for
the developmental context of each station and aim to blur the conceptual boundary
between station and city, fostering greater interconnection and integrated growth
between railway stations and urban areas within metropolitan clusters.
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(2) Multiple regression analysis reveals that commercial density, average number of floors,
and road network integration are positively correlated with vitality, while housing
prices and residential density show negative correlations. These findings suggest that
urban planning should prioritize the enhancement of commercial density and the
improvement of transportation networks to boost vitality. The factors influencing
vitality vary between weekdays and weekends. Weekday vitality is more predictable,
being closely linked to commercial density and transportation infrastructure, whereas
weekend vitality is more influenced by commercial density alone, reflecting shifts in
activity patterns and needs across time.

(3) On a global scale, the Random Forest (RF) model demonstrates superior performance
in predicting vitality around railway stations compared to traditional linear regres-
sion and other machine learning models. At the local level, MGWR outperforms
conventional GWR and OLS in terms of fit and robustness.

(4) Comparisons between SHAP values and MGWR coefficients reveal that commercial
density is the most critical predictor, indicating that the intensity of commercial activities
significantly influences the vitality of areas surrounding railway stations. The average
number of floors and residential density are identified as fundamental predictors.

This study can be enhanced in several areas: First, the analysis of street vitality could
be further refined by exploring its economic, cultural, and social dimensions. Future
research should incorporate additional spatial data to provide a more comprehensive
understanding of street vitality, thereby deepening the analysis. In the context of high-
density urbanization, subjective perceptions and related indicators should be integrated into
evaluations of urban vitality. Survey methods could be used to capture public perceptions
of various aspects of urban life, thereby providing a unified and subjective assessment of
vitality to more accurately depict urban vibrancy. Second, the range of indicators should
be expanded. For instance, combining Baidu street view maps for visual assessments of
the environment—such as calculating the green view index and openness—could offer
a more holistic understanding of the area and support more precise analyses. Third,
increasing the sample size would provide more robust insights. This study only focuses
on four major special-grade stations in Beijing. To gain a deeper understanding of the
relationship between spatial layout, function, and urban street vitality, future research
should incorporate additional railway stations from various regions.
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