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Abstract: The middle reaches of the Yellow River Basin (MYRB) are known for their significant soil
erosion and fragile ecological environment, where vegetation growth is important. However, the
vegetation’s reaction to climate change (CC) and human activity (HA), and the potential driving
mechanisms underlying such changes in the MYRB, have not yet been clarified. Thus, based on
remote sensing data, combined with trend analysis and the Hurst method and supplemented by the
structural equation model (SEM) and residual analysis method, we aimed to conduct an analysis of
the spatio-temporal evolution of the normalized difference vegetation index (NDVI) in the MYRB
from 2000 to 2020. Additionally, we explored how climate and human factors together affect the
NDVI and quantified the proportion of their respective contributions to NDVI change. The NDVI
exhibited a fluctuating upward trend in the MYRB. Moreover, approximately 97.7% of the area
showed an improving trend, with nearly 50% of the area continuing to maintain an improving
trend. Precipitation and temperature had positive effects on the NDVI, while vapor pressure deficit
(VPD) and land use intensity (LUI) had negative effects. HA played a pivotal role in the vegetation
improvement area with a contribution rate of 67.53%. The study revealed NDVI variations and
emphasized the influence of HA on the NDVI in the MYRB. The findings are vital in comprehending
the response mechanism of ecosystems and guiding reasonable environmental protection policies,
which is beneficial for the sustainable development of the region.

Keywords: normalized difference vegetation index (NDVI); driving factors; residual analysis; structural
equation model; middle reaches of the Yellow River Basin (MYRB)

1. Introduction

As an essential component of ecosystems, vegetation is a key indicator of global
terrestrial ecosystem changes and ecological environmental evolution [1–3] and thus is
crucial for global water balance, surface energy exchange, and biogeochemical cycling [4,5].
With the impact of climate change (CC) and human activity (HA) in recent decades, the
study of vegetation’s enduring patterns, and its reactions to worldwide environmental
shifts, has emerged as a prominent topic within ecological research endeavors [6].

The normalized difference vegetation index (NDVI), serving as a reliable metric for as-
sessing the development of vegetation across regions, accurately identifies changes in plant
cover and has gained extensive application in many key fields such as ecological monitor-
ing, agricultural management, climate change research, and environmental protection [7–9].
Previous studies have reported that variations in vegetation exhibit a significant response
to CC and revealed that the spatial heterogeneity of climatic conditions play decisive roles
in vegetation change at the regional scale [10]. Temperature, precipitation, solar radiation,
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relative humidity, carbon dioxide concentration, nitrogen deposition, and saturated va-
por pressure differences are crucial climatic variables that significantly impact vegetation
development and growth [11–14]. Globally, the repercussions of human activities on the
NDVI have sparked extensive concerns, and varying patterns of change are exhibited
across diverse regions. In Sub-Saharan Africa, for instance, rapid population growth fuels
an escalating demand for agricultural land and forest products, thereby counteracting the
climate-driven expansion of shrubland vegetation [15]. Conversely, deforestation driven by
mining activities in the Amazon rainforest contributes to a decline in NDVI values [16]. In
China, human activities such as urbanization, agricultural activities, the Grain for Green
project, overgrazing, and tourism development have significantly contributed to changes
in the NDVI [17–19].

CC and HA have a significant impact on vegetation growth. Although many scholars
have used correlation analysis and multiple regression analysis in different regions to
explore the influencing factors of the NDVI [20,21], the research on its driving mechanism
is not yet sufficiently in-depth. This is because ordinary linear correlation analysis and
multiple regression analysis do not consider the interrelationships between multiple inde-
pendent variables, as well as the direct and indirect effects of independent variables on the
dependent variable. Therefore, we introduced structural equation modeling (SEM), which
can handle complex relationships between multiple variables, clarify driving paths, and
provide a deeper understanding and recognition of driving mechanisms.

In previous studies, many scholars have adopted various exploration approaches to
distinguish the impact of CC and HA on vegetation. Zhang [22] used a partial derivative
method to decompose the interannual variation of vegetation change into the contributions
of CC and HA in the Three River Headwaters Region, but did not specify the contribution
rates of the CC and HA. Huang [23] introduced a GA–SVM model to quantify the effects of
CC and HA on vegetation. This method combines the advantages of genetic algorithms
and support vector machines, but its results are highly dependent on parameter selection,
and different parameter combinations may lead to significant differences in results, which
brings a lot of uncertainty to the results. The residual analysis method was used in
this study to distinguish the impacts of CC and HA, which has been widely applied in
previous studies [24,25]. The residual analysis method can reflect the comprehensive impact
of CC and HA on vegetation change based on the difference between model predicted
values and actual observed values, and can present the spatial distribution differences of
contribution rates.

Previous research has highlighted pronounced geospatial disparities in the reaction
of vegetation to CC and HA, suggesting that a complex and varied interplay between
these factors influences the NDVI. Thus, specific analyses must be performed for different
regions [26]. However, the response patterns of vegetation in the middle reaches of the
Yellow River Basin (MYRB) to climate and human factors have not been clarified and must
be investigated further.

Based on the MODIS NDVI dataset, meteorological data, and human activity data,
this research explored the dynamic fluctuations in vegetation characteristics in the MYRB
and quantitatively assessed the respective contributions of CC and HA to the variations
in NDVI. The research objectives were to (1) analyze spatiotemporal dynamic changes of
vegetation in the MYRB from 2000 to 2020; (2) analyze the key driving factors and the
interplay between vegetation variations and key influencing factors; and (3) determine the
respective contribution rates of CC and HA to NDVI change. This study can provide a
scientific basis for the sustainable development of regional ecological environments.

2. Materials and Methods
2.1. Study Area

The MYRB is located in northern central China (Figure 1) and corresponds to the Yellow
River Basin from Hekou Town in the Inner Mongolia Autonomous Region to Sanmenxia in
Henan Province. Thus, it spans the six provinces of Ningxia, Gansu, Shaanxi, Shanxi, Inner
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Mongolia, and Henan and covers a total area of 345,000 km2. The terrain is high in the
west and low in the east, with an average elevation of 85–3929 m (Figure 1a). The primary
types of land encompass grassland, cropland, and forest land (Figure 1b). The region
features a continental monsoon climate, exhibiting a gradient of declining precipitation and
temperature from the southeast towards the northwest. Moreover, 61% of the watershed
area is in the Loess Plateau [27], which has sparse vegetation, serious soil erosion, and an
extremely fragile ecological environment. The MYRB is divided into three subwatersheds:
Hekou to Longmen (HL); Longmen to Sanmenxia (LS); and Sanmenxia to Huayuankou
(SH), accounting for 32.9%, 55.27%, and 11.83% of the total area, respectively (Figure 1c).
The MRYB is a typical fragile ecological environment in China, and the regional vegetation
development is the result of both natural factors and anthropogenic influences.
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Figure 1. (a) Geographical location and topography; (b) land use in 2020; (c) subwatersheds of the
middle reaches of the Yellow River Basin (MYRB).

2.2. Data Sources and Processing
2.2.1. MODIS Data

The NDVI is currently the most common indicator of vegetation growth. Higher
NDVI values suggest better vegetation growth, whereas lower NDVI values suggest worse
vegetation growth [28,29]. The NDVI data used were derived from the MOD13Q1 product,
which was accessed via the NASA website, featuring a spatial resolution of 250 m and
temporal resolution of 16 days (Table 1).
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Table 1. Dataset information.

Data Name Data Sources Time Resolution Spatial Resolution Time Span Data Type

NDVI MOD13Q1 16 days 250 m 2000–2020 Grid
Precipitation ERA5-land dataset yearly 0.1◦ 2000–2020 Grid
Temperature ERA5-land dataset yearly 0.1◦ 2000–2020 Grid

Solar radiation ERA5-land dataset yearly 0.1◦ 2000–2020 Grid
Saturated vapor pressure ERA5-land dataset monthly 0.1◦ 2000–2020 Grid

Actual water vapor pressure ERA5-land dataset monthly 0.1◦ 2000–2020 Grid
Relative humidity ERA5-land dataset monthly 0.1◦ 2000–2020 Grid

Land use data China Land Cover
Dataset (CLCD) yearly 30 m 2000–2020 Grid

Population density Worldpop center yearly 1 km 2000–2020 Grid

2.2.2. Climatological Data

The climatological data used in this study were derived from the ERA5-land dataset
(https://cds.climate.copernicus.eu/, accessed on 28 September 2023), from which precipi-
tation, temperature, and solar radiation (RAD) data can be obtained. Vapor pressure deficit
(VPD) data cannot be obtained directly and must be obtained by calculation; the calculation
formulas are available in referenced studies [30,31]. The data used in the calculations
were also derived from the ERA5-land dataset. The spatial resolution of these data was
0.1◦ × 0.1◦, and the resolution after resampling was 250 m, which was consistent with the
NDVI data.

2.2.3. Land Use Data

Land use data featuring a 30 m resolution were acquired from the annual China Land
Cover Dataset [32]. Land cover was classified into nine types: cropland (CL); forest (FL);
shrubland (SL); grassland (GL); water land (WL); snow/ice (S/I); bareland (BL); impervious
land (IL); and wetland (WL).

Land use intensity (LUI) represents the degree of human intervention in land use.
Different land use categories are assigned values according to the degree of human inter-
vention [33,34]; the calculation formula is as follows:

LUI = ∑n
i=1(Ai/A)× 100 × Ci (1)

where A is the total area (km2), n is the count of land use categories, Ai is the area of each
land use categories (km2), and Ci is the value of land use intensity for the i-th category of
land use.

2.2.4. Population Data

Population density data, originally at a 1 km resolution, were sourced from the
Worldpop Center (https://hub.worldpop.org/, accessed on 28 September 2023). These
data were then resampled to align with a 250 m resolution, ensuring consistency with the
NDVI data.

2.3. Methods
2.3.1. Trend Analysis and Significance Testing

The Theil–Sen median method was used to study the rate of change, which was
calculated as follows:

slope = Median
(

NDVIj − NDVIi

j − i

)
,∀j > i (2)

where slope is the variation trend, NDVIi and NDVIj are the NDVI values in years i and j,
respectively, and i is the count of serial years.

https://cds.climate.copernicus.eu/
https://hub.worldpop.org/
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The Mann–Kendall significance test [22] is expressed as follows:

S = ∑n−1
j=1 ∑n

i=j+1 sgn
(
NDVIi − NDVIj

)
(3)

where n is the count of years, NDVIi and NDVIj are the NDVI values in years i and j (j > i),
respectively, and sgn(NDVIi − NDVIj) can be determined using Equation (4):

sgn
(
NDVIi − NDVIj

)
=


1, NDVIi − NDVIj > 0
0, NDVIi − NDVIj = 0
−1, NDVIi − NDVIj < 0

(4)

When n > 10, the standard normal distribution variable was calculated using the
following formula:

Z =


S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0
(5)

√
Var(S) = n(n − 1)(2n + 5)/18 (6)

where Z is a significant statistical variable and Var(S) is the variance function. For a given
confidence level α, if |Z| ≥ Z_(1-α/2), then a significant upward or downward trend
occurred in the time series data. When |Z| is greater than 1.96 and 2.58, it indicates that the
trend has passed the significance test with confidence levels of 0.05 and 0.01, respectively.
The Mann–Kendall test trend categories are shown in Table 2.

Table 2. Mann–Kendall test trend categories.

Trend Features Slope |Z|

Extremely significant decrease Slope < 0 |Z| > 2.58
Significant decrease Slope < 0 1.96 < |Z| ≤ 2.58

No significant changes — |Z| ≤ 1.96
Significant increase Slope > 0 1.96 < |Z| ≤ 2.58

Extremely significant increase Slope > 0 |Z| > 2.58

2.3.2. Hurst Exponent Analysis

The Hurst exponent, first introduced by Hurst [35] and further refined by Mandelbrot
and Wallis [36], was employed as a tool to forecast the future trends of NDVI changes [37,38].
This formula has been previously presented in [39,40].

H is the Hurst exponent, which ranges from 0 to 1 and is classified into three grades.
When H = 0.5, randomness occurred in the data. When H > 0.5, the future trend is consistent
with that of the past. When H < 0.5, the future trend is inconsistent with that of the past.

2.3.3. Residual Analysis

Residual analyses were performed to quantitatively describe the influences of CC
and HA on NDVI changes. To derive the predicted NDVI values under the influence of
climatic variation, a multiple regression model linking observed NDVI values with diverse
parameters was formulated at the pixel scale. The divergence between the observed and
predicted values was considered as the NDVI under the human-induced effects.
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NDVIpre = a × P + b × T + c × R + d × V + e (7)

NDVIres = NDVIobs − NDVIpre (8)

where a, b, c, d, and e are regression coefficients, and P, T, R, and V are the precipitation,
temperature, solar radiation, and vapor pressure difference, respectively. NDVIres, NDVIobs,
and NDVIpre are the residual, observed, and predicted NDVI values, respectively.

The standards for identifying the factors driving changes in the NDVI (Appendix A)
were defined based on previous studies [41].

2.3.4. Structural Equation Modeling

Structural equation modeling (SEM), a type of multivariate statistical analysis, is
grounded in the examination of covariance matrices [42]. It can simultaneously handle
the relationship between multiple dependent and independent variables, thus gaining
deeper insights into the underlying processes and factors that could cause fluctuations in
NDVI values.

3. Results
3.1. The Annual Average NDVI

The MYRB region exhibited a range of multiyear average NDVI values spanning from
0 to 0.79 (areal average value of 0.39), demonstrating a diverse vegetation cover over the
years, and obvious spatial heterogeneity (Figure 2). The overall geographical arrangement
was characterized by a “high in the southeast and low in the northwest” trend. The high
NDVI values were mainly concentrated in the mountainous and hilly landscapes, including
the elevated areas of the Liupanshan Mountains, the hilly areas of the Loess Plateau in the
central area, the Luliang Mountains area, the mountainous area in southeastern Shanxi,
and the Qinling Mountains area in the south, while the areas with low NDVI values were
predominantly found in the hilly regions of the Loess Plateau, the Mu Us Sandy Land area,
and the hilly areas of the Loess Plateau and Yellow Loess Ridges in the northwestern area.
Combined with the land use categories, excluding impervious land, water, and snow/ice,
the NDVI values from largest to smallest were ordered as follows: FL (0.61) > SL (0.57) >
CL (0.44) > GL (0.37) > BL (0.18).
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Figure 2. The annual average NDVI from 2000 to 2020 in the MYRB.

The annual average NDVI distribution differed notably among the different subwater-
sheds (Figure 3). HL showed a significant unimodal pattern, while SH showed a significant
bimodal pattern, indicating that the type of land use and vegetation in the HL were rel-
atively singular. The main land use type in HL was grassland, accounting for 67.99% of
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the total area. However, there were two main vegetation types in SH, cropland and forest,
accounting for 40.82% and 44.58%, respectively. Therefore, SH presented a bimodal pattern.
The NDVI value corresponding to the part with the highest degree of density in SH was the
largest and HL was the smallest, indicating that the vegetation growth of the SH was better
than that of other subwatersheds. The interquartile range (IQR) in HL was the smallest at
0.09, indicating a more concentrated NDVI distribution, whereas the IQR in LS was the
largest at 0.16, indicating a more discrete NDVI distribution. The maximum and minimum
median NDVI values were recorded in SH (0.49) and HL (0.28), respectively. The NDVI
values of the different subwatersheds, from highest to lowest, were ordered as follows:
SH > LS > HL.
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3.2. Temporal NDVI Changes

The NDVI in the MYRB showed an overall upward fluctuation trend, with an annual
growth rate of 0.0063 (Figure 4). The NDVI value was the lowest in 2000 (0.31) and highest
in 2018 (0.48). Moreover, the NDVI values of HL, LS, and SH showed an overall upward
fluctuating trend and reached a peak in 2018. HL showed a significant trough in 2015, with
NDVI values decreasing by 7.62% compared to that in the previous year. SH showed a
significant trough in 2013, with NDVI values decreasing by 6.84% compared to those in the
previous year, whereas the LS did not have a significant trough. Overall, the increasing
tendency of the NDVI in HL was the largest, with an annual growth rate of 0.0074, whereas
that in SH was the smallest, with an annual growth rate of 0.0052.
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Figure 4. Inter-annual NDVI trends in (a) MYRB and its subwatersheds, (b) HL, (c) LS, (d) SH from
2000 to 2020.

3.3. Spatial Distributions of NDVI Variation Trend

The change rate of the NDVI spanned between −0.0026 and 0.0028 yr−1, averaging at
0.0063 yr−1. In terms of spatial variation, vegetation witnessed a positive trend in vegetation
improvement in 97.7% of the total area of the MYRB from 2000 to 2020. Moreover, 94.41% of
these regions demonstrated statistically significant improvement, primarily concentrated in
the loess ridges, loess hills, and Mu Us Desert regions. The degraded area only accounted
for 2.30%, of which 0.89% displayed statistical significance; this area was predominantly
located in the Jinzhong and Guanzhong Basins (Figure 5).
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Figure 5. (a) Spatial distributions of slope of NDVI and (b) significant change in the MYRB.

From the perspective of the area of different NDVI trends in different watersheds,
LS had the largest area of significant improvement in vegetation (including extremely
significant and significant), about 177,329 km2, while SH had the smallest area of significant
improvement, about 36,515 km2, and HL had a significant improvement area of about
111,999 km2 (Figure 6a). From the perspective of the proportion of different NDVI trends in
different watersheds, HL had the largest proportion of significantly improved vegetation
areas (including extremely significant improvement and significant improvement) account-
ing for 98.61%, followed by LS and SH, accounting for 92.96% and 89.46%, respectively
(Figure 6b).
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Figure 6. Area (a) and proportions (b) of different NDVI variation trends in different subwatersheds
from 2000 to 2020.

Employing the Hurst exponent, we analyzed the future NDVI fluctuation patterns.
The results indicated that the H values varied between 0.092 and 0.999, with an average
of 0.503 (Figure 7a). The percentage of areas with H values exceeding 0.5 was 49.94%,
suggesting that the current variation trend was sustainable, whereas the proportion of areas
with H values less than 0.5 was 50.06%, indicating that the change trend was unsustainable
(Figure 7b).
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Figure 7. The (a) value and (b) classification of Hurst exponent of the NDVI in the MYRB.

By combining the Hurst exponent with the NDVI trends, a spatial distribution map of
trend sustainability was obtained (Figure 8). The areas of consistently significant improve-
ment accounted for 46.11% of the whole area, which accounted for 48.85% of all significantly
improved areas, indicating that nearly half of the significantly improved area will continue
this trend. The area of consistent significant degradation accounted for 0.70% of the whole
area, which accounted for 79.65% of all significantly degraded area (Table 3). Combined
with the land use categories, the predominant land use categories within the area that
demonstrated consistently significant improvement were GL, CL, and FL, accounting for
39.15%, 26.47%, and 12.20%, respectively. These areas were distributed in the Mu Us Sandy
land, loess hilly ridge, Fenwei Basin, and alpine hilly areas (Figure 9a). Among the areas of
consistent significant degradation, the main land types were CL and CL converted into IL,
accounting for 38.22% and 33.38%, respectively. These areas were predominantly situated
around the Fenwei Basin and urban agglomerations in the eastern alluvial plain, which
were related to urban expansion (Figure 9b).
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and (b) consistent significant degradation areas from 2000 to 2020. GL, grassland; CL, cropland; FL,
forest land; IL, impervious land; and CL-GL, stands for cropland converted to grassland.

3.4. Comprehensive Analysis of Influencing Factors on NDVI

SEM was used to analyze how the driving factors affect NDVI trends. The factors af-
fecting the NDVI included meteorological factors, which included hydrothermal conditions
that affect vegetation growth, such as precipitation and VPD, representing hydrofactors;
temperature and RAD, representing the thermal factors; and human activity factors, which
included population density (PD) and LUI.

The results revealed that precipitation and temperature positively influenced the
NDVI, exhibiting coefficients of 0.19 and 0.11, respectively, whereas VPD and LUI negatively
influenced the NDVI, exhibiting coefficients of −0.08 and −0.17, respectively. PD and RAD
had no significant impact on the NDVI (Figure 10).
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Figure 10. Structural equation modeling results for the NDVI dynamics driven by influencing
factors. The solid blue single-arrow lines represent significant positive pathways (p < 0.05); The solid
red single-arrow lines represent significant negative pathways (p < 0.05); Dashed arrows represent
nonsignificant pathways (p > 0.05). Numbers placed next to the arrows represent the standardized
path coefficients. PRE, precipitation; TEM, temperature; RAD, solar radiation; VPD, vapor pressure
deficit; LUI, land use intensity; and PD, population density.

VPD represents air dryness, and precipitation has a negative impact on VPD, indicating
that an increase in precipitation leads to a decrease in dryness and, consequently, an increase
in the NDVI value. LUI, temperature, and RAD had positive impacts on VPD, indicating
that the higher the LUI, RAD, and temperature, the drier the air and the higher the VPD.

3.5. Analysis of the Contributions of CC and HA to NDVI Changes

We used a residual analysis method to quantitatively evaluate the impact and relative
contributions of CC and HA on vegetation growth changes.

The NDVIpre value reflects the impact of CC on the NDVI. The NDVIpre trend ranged
between −0.026 and 0.025 yr−1, averaging a rate of 0.002 yr−1 (Figure 11a). The proportion
of the area in which CC contributed positively to the NDVI was 96.24%, and it was
predominantly located in the loess hilly areas in the north and west and the mountainous
hilly areas in the southeast. The proportion of the area in which CC contributed negatively
to the NDVI was 3.76%, and it was predominantly located in the Guanzhong Basin and the
Jinzhong Basin. The NDVIres values reflect the impact of HA on the NDVI. The NDVIres
trend ranged between −0.019 and 0.019 yr−1, averaging a rate of 0.004 yr−1 (Figure 11b).
The proportion of the area in which HA contributed positively to the NDVI was 97.68%,
and it was predominantly located in the loess ridge and hill areas in the northern and
central regions and the high mountain areas in the western Liupan Mountains. The
proportion of the area in which HA contributed negatively to the NDVI was 2.32%, and it
was predominantly located in the urban agglomeration in the Fenwei Basin and the eastern
alluvial plain.
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Figure 11. Trends of predicted (a) NDVI and (b) residual NDVI variations in the MRYB from 2000
to 2020.
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The contribution percentages of both CC and HA towards the improvement and
degradation of vegetation areas were calculated based on the predicted and residual values
and the standard of driving factors. The results indicated that the vegetation improvement
area affected by both CC and HA accounted for 97.7%, with CC contributing 32.47% and
HA contributing 67.53% (Figure 12a,c). The area of vegetation degradation affected by
both CC and HA accounted for 2.3%, with CC contributing 54.44% and HA contributing
45.56% (Figure 12b,d). HA dominated vegetation improvement, whereas CC dominated
vegetation degradation.
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4. Discussion
4.1. NDVI Trend Analysis

We analyzed the evolving patterns of NDVI in the MYRB spanning the period from
2000 to 2020, and an upward trend was revealed. This result aligns with previous research
on NDVI trends in China and the Yellow River Basin [43–46]. The areas with the most
significant upward trend in NDVI were the Mu Us Sandy Land, Loess Plateau, and hilly
areas. This upward trend is attributed to ecological projects during the last two decades. In
1999, the Chinese government embarked on a comprehensive series of ecological projects
aimed at enhancing the environment [47], including the Grain for Green Project, the
Three-North Shelterbelt Program Project, and the Natural Forest Protection Project. As an
ecologically fragile area in the Yellow River Basin, it represents a typical area in which the
aforementioned ecological projects have been implemented [48,49]. The implementation
of ecological engineering has yielded remarkable outcomes in safeguarding farmland,
conserving soil and water resources, mitigating wind erosion, and stabilizing sand dunes,
and the regional ecological environment in the MYRB has been improved [50,51]. From
2000 to 2020, the CL area decreased, while the GL and FL areas increased. A total of
31,296.71 km2 of CL has been transferred out, of which 3441.62 km2 and 22,320.72 km2
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have been converted into FL and GL, respectively, accounting for 11% and 71.32% of the
total transferred land area. This finding intuitively demonstrates the benefits of the Grain
for Green project (Figure 13).
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In terms of varying land use categories, the order of NDVI values from high to low
was FL (0.61) > SL (0.57) > CL (0.44) > GL (0.37) > BL (0.18), which aligns with previous
research findings [25]. However, the same types of land exhibited variations in NDVI
values across different regions, which were intricately linked to external environmental
conditions, including precipitation, temperature, terrain, and soil [52–54].

The annual average NDVI distribution differed notably among the different subwater-
sheds. The result showed that the NDVI value of SH was the largest, and that of HL was the
smallest. HL had the highest percentage of areas with a significant improvement trend in
vegetation. We analyzed the reasons for the variability of NDVI in the three subwatersheds
in terms of climatic conditions and geomorphological types. HL flows through the Loess
Plateau region, with loess hills and gullies as the main landforms. The Mu Us Sandy land is
distributed in the area, and the main land use type is grassland. There is less precipitation,
low vegetation coverage, and a fragile ecological environment. Therefore, SH exhibited
the lowest NDVI. With the implementation of ecological engineering, grassland vegetation
gradually recovered, and forest area increased, which is the reason why the area of the
rising NDVI trend occupies the largest proportion in HL. The terrain of LS is undulating
and complex, with loess landforms such as plateaus, ridges, and hills widely distributed.
There are both high mountains and the Fenwei Basin distributed in the region, and the
main land use types are cropland and grassland. The complexity of its landform type has
resulted in its NDVI being at a moderate level. SH is a transitional section of the Yellow
River from mountainous areas to plains, mainly presenting a valley plain landform with
relatively high precipitation. Due to the widespread distribution of cropland and forest, the
vegetation coverage is high, especially in mountainous and valley areas, where vegetation
growth is lush. Therefore, LS exhibited a high NDVI.

4.2. Analysis of Factors That Influence NDVI Change

Previous research has extensively investigated the impact of various factors, notably
meteorological factors, on changes in NDVI, as well as some factors such as climatic
periods and seasonal changes [55–57]. A basic consensus has been reached that both
precipitation and temperature have significant impacts on NDVI changes [58,59]. However,
a consensus has not been reached on whether precipitation and temperature exert a positive
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or negative influence on the NDVI, which is related to the geographical location, climate,
and spatiotemporal scale [60,61].

Enhanced rainfall ensures the availability of water needed for vegetation growth by
increasing soil moisture [62]. The promoting effect of precipitation on the NDVI is evident
in arid and semi-arid areas, whereas excessive precipitation in humid areas can affect RAD,
reduce vegetation photosynthesis, and negatively affect vegetation growth [63]. The MYRB
belongs to arid and semi-arid areas, which supports the conclusion drawn in this study that
precipitation positively influenced changes in the NDVI. Increasing temperatures facilitate
the decomposition and liberation of soil organic matter and nutrients while simultaneously
enhancing vegetation photosynthesis, which promotes vegetation growth [64]. Therefore,
temperature positively influenced changes in the NDVI. VPD represents the dryness of
the atmosphere, with a greater VPD indicating a drier atmosphere. When the VPD is high,
plants adopt a protective mechanism by constricting their stomata to conserve water, which
decreases photosynthesis and carbon uptake [65,66]. An increase in atmospheric VPD leads
to a decrease in global vegetation growth [67]. Therefore, VPD negatively correlated with
the NDVI.

LUI reflects the degree of human activity disturbance [68]. There are two types of
land disturbances caused by human activities: the expansion of construction land caused
by urbanization, occupation, and green space reduction, resulting in an increasing LUI
and decreasing NDVI; and greenspace restoration under ecological restoration policies,
resulting in a decreasing LUI and increasing NDVI. Therefore, LUI negatively correlated
with the NDVI.

In order to more intuitively demonstrate the impact of LUI on NDVI, we analyzed the
correlation between NDVI and LUI in temporal trend and spatial distribution. Moreover,
we also analyzed the correlation between NDVI and LUI under different population density
levels. In terms of temporal trends, LUI showed a downward trend from 2000 to 2020
(Figure 14a), while NDVI showed an upward trend (Figure 14b), with a negative correlation
between NDVI and LUI (Figure 14c). The reason for the decline in LUI is mainly due to
the significant increase in forest and grassland area, which is greater than the increase in
impervious land area caused by urban expansion, indicating the significant effectiveness of
ecological engineering implementation. In terms of spatial distribution, by taking NDVI as
the gradient and dividing it into 30 levels, corresponding LUI values were extracted, and
the correlation between the two was analyzed. The results showed that LUI and NDVI also
exhibited a negative correlation in space (Figure 14d).

Furthermore, we divided population density into 20 levels using population density as
a gradient, and then extracted the average values of LUI and NDVI on different population
density gradients. We found that LUI and NDVI showed a reverse trend with increasing
population density (Figure 15). The higher the population density, the higher the LUI and
the lower the NDVI. This indicated that in areas where the population is concentrated, the
intensity of land use is high, which will cause damage to the ecological environment.
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It can be seen that the population density level of 15 (approximately 20,000 people per
square kilometer) was a crucial transition point. Below this density level, NDVI and LUI
exhibited sharp trends of change and demonstrated a significant negative correlation. How-
ever, when the population density exceeded this level, the change in LUI and NDVI tended
to flatten out. This suggested that when population concentration reaches 20,000 people
per square kilometer, the intensity of LUI attained a relatively saturated state, while NDVI
remained at a relatively stable but low level.

Moreover, the comparison between population density and NDVI can offer valuable
insights into urban communities. The areas with high population density and low NDVI
might indicate regions under stress due to limited green spaces and potentially higher
demands on infrastructure and resources. Conversely, the zones with a more balanced
relationship between the two could signify a healthier living environment.

In this study, RAD exhibited a positive influence on changes in the NDVI; however, the
effect was not significant. Although RAD is a crucial factor in vegetation growth, the effects
of other influencing factors on the NDVI are even more notable in the region. Thus, the
effect of RAD on the NDVI may become insignificant under the comprehensive influence
of numerous influencing factors.

4.3. Contribution of CC and HA to the NDVI

More than 95% of the area was a vegetation improvement zone dominated by HA,
with a contribution percentage of 67.53%, whereas the contribution percentage of CC was
only 32.47%. Approximately 2.3% of the area is a vegetation degradation zone, with HA and
CC contributing roughly equal amounts at 45.56% and 54.44%, respectively. The findings
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indicate that human interventions exert a more central and crucial influence than climatic
factors in regulating annual NDVI changes in this region, as supported by previous studies
on NDVI changes in China [69], the Qinghai-Tibet Plateau [59], and the Loess Plateau [70].

It was worth noting that CC contributed more to degradation than HA in certain areas
(54.44% vs. 45.56%). Therefore, focusing on vegetation degradation areas, further analysis
was conducted on the impact of meteorological factors on vegetation degradation. We
extracted areas with a climate change contribution rate greater than 50% in vegetation
degradation zones and analyzed the reasons for degradation in terms of climate change. The
precipitation in this area showed a decreasing trend, while the VPD showed an increasing
trend from 2000 to 2020 (Figure 16). Under a background of decreasing precipitation and
increasing VPD, the decrease in NDVI reflected the negative impacts of drought stress
and climate change on vegetation. The decrease in precipitation will directly affect the
water supply of vegetation, resulting in vegetation growth restriction. The rise in VPD
means that the water vapor content in the atmosphere is relatively low and the air is drier.
Such dry climatic conditions will intensify water evaporation from vegetation, making
vegetation more vulnerable to drought [67]. Meanwhile, the increase in VPD may also
affect the photosynthesis of vegetation, further limiting its growth. Therefore, vegetation
in this area showed a degraded state. We should focus on areas where precipitation will
continue to decrease and VPD will continue to increase in the future.
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4.4. Limitations and Uncertainties

MODIS NDVI, which is widely used in research on dynamic NDVI change trends
worldwide, was used in this study. However, different sensors, such as MODIS and AVHRR,
have different spectral characteristics and spatial resolutions, leading to differences in the
calculation results. Therefore, combining multi-source data and further analyzing the
uncertainties brought about by these different data sources is necessary to arrive at more
reliable conclusions. In addition, although remote sensing data are convenient and easy to
obtain, they cannot replace field observation data, which makes it difficult to evaluate the
accuracy of NDVI. Therefore, further verification of the data accuracy is required to obtain
more reliable results.

Although the ERA5-land dataset is a widely used climate data source, there are still
uncertainties. For some rapidly changing climate events or small-scale climate heterogene-
ity regions, there is a problem of insufficient capture, such as short-term extreme climate
events being smoothed out in the time-averaging process, thereby underestimating their
impact on vegetation. Additionally, a resolution of 1 km is insufficient to accurately reflect
the impact of climate conditions on vegetation in a small area.

In addition, climatic factors such as temperature, precipitation, RAD, and VPD were
selected according to the hydrothermal conditions to investigate the influence of CC on
the NDVI. However, these climatic factors cannot fully represent CC, with environmental
factors, such as CO2 concentration change and nitrogen deposition, also affecting vege-
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tation [71]. Moreover, LUI cannot represent all human activities. Industrial emissions of
pollutants such as sulfur dioxide, nitrogen oxides, and particulate matter may affect the
photosynthesis and respiration of vegetation. High concentrations of atmospheric pollu-
tants can deposit on the surface of leaves, hindering gas exchange in stomata and reducing
photosynthetic efficiency, thereby affecting vegetation growth and NDVI values [72]. In
addition, this study focused on the macro-scale watershed areas, but more factors need
to be considered for the micro-scale of densely populated cities. For example, greening
roofs of buildings, creating park areas and ecological corridors, as part of urban human
activities, can alter the urban microclimate and have a dual impact on NDVI changes [73,74].
Therefore, the abovementioned environmental and human factors should be considered in
further explorations of the response of vegetation change to CC and HA.

5. Conclusions

This study was conducted to explore the changes in vegetation cover (using NDVI
as an indicator) and the driving mechanism during 2000–2020, and to determine the
contributions of CC and HA in the MYRB. Remote sensing data analysis, trend analysis,
Hurst index prediction, the SEM method, and the residual analysis method were employed
in the analysis. The main findings are as follows:

(1) The NDVI in the MYRB showed a fluctuating upward trend, displaying an annual
growth rate of 0.0063, indicating that vegetation coverage had improved. The overall
geographical arrangement was characterized by a “high in the southeast and low in the
northwest” trend.

(2) The vast majority (97.7%) of areas exhibited a pattern of vegetation enhancement,
and 48.85% of the areas were expected to continue to maintain this trend of improvement.
The improvement area was mainly concentrated in GL, FL, and CL.

(3) Through using the SEM method, precipitation, air temperature, VPD, and LUI were
identified as the key driving factors affecting NDVI change. Precipitation and temperature
exhibited a positive impact on vegetation, while VPD and LUI exhibited a negative effect.

(4) In the area of vegetation improvement, the contribution of HA was notably higher at
67.53%, significantly surpassing the influence of CC, which accounted for 32.47%. However,
in the area of vegetation degradation, the contribution of CC (54.44%) was relatively higher.
This indicates that, in the MYRB, the positive influence of HA on vegetation cover is
significant; however, in some local areas or under certain conditions, CC may also be the
dominant factor of vegetation degradation.

(5) In addition to urban expansion factors, the drought stress caused by reduced
precipitation and increased VPD also limits vegetation growth in areas with vegetation
degradation. The vegetation improvement area is mainly attributed to the implementation
of ecological engineering. We suggest establishing a long-term monitoring and evaluation
mechanism, regularly collecting and analyzing ecological indicator data, to promptly
identify and solve problems, and provide scientific basis and decision-making support for
future ecological restoration projects.

In summary, this study not only revealed the dynamic change characteristics of the
NDVI in the MYRB; the relative contributions of CC and HA to vegetation change were also
quantified, laying a scientific groundwork for local ecological conservation and sustainable
growth. Future studies can further refine the characteristics of vegetation dynamics and
its drivers under different land use categories, as well as explore more effective ecological
protection and restoration strategies.

Author Contributions: Conceptualization, N.Y.; data curation, formal analysis and methodology,
M.G.; supervision and validation, Q.L.; visualization, M.G. and Q.L.; writing—original draft, M.G.;
writing—review and editing, Q.L. and N.Y. All authors have read and agreed to the published version
of the manuscript.

Funding: This research is supported by the Geological Survey Project of National Water Resources
Survey, Monitoring, Evaluation, and Smart Services (DD20230075) and Monitoring and Evaluation of



Sustainability 2024, 16, 10122 18 of 21

Resource and Environmental Carrying Capacity in National Major Regional Development Strategy
Zones (DD20230117).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting this paper can be obtained for free on relevant
websites, and the website name or address was presented in the main text.

Acknowledgments: We thank Jin from the China University of Geosciences (Beijing) for providing
the batch data processing program and tools, and we thank Liu from Beijing Forestry University for
providing positive and constructive advice.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The standards for identifying the driving factors of NDVI changes are shown in the
following table.

Table A1. Standards for identifying the factors driving changes in the NDVI.

S(NDVIobs)
Driving
Factor

Standards for the Classification Contribution Rate/%

S(NDVIpre) S(NDVIres) CC HA

>0 CC and HA >0 >0 S(NDVIpre)/S(NDVIobs) S(NDVIres)/S(NDVIobs)
Positive CC >0 <0 100 0
effects HA <0 >0 0 100

<0 CC and HA <0 <0 S(NDVIpre)/S(NDVIobs) S(NDVIres)/S(NDVIobs)
Negative CC <0 >0 100 0

effects HA >0 <0 0 100

S: slope of trend.
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