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Abstract: In the rapid development of urbanization, the sustained and healthy development of
transportation infrastructure has become a widely discussed topic. The inspection and maintenance
of asphalt pavements not only concern road safety and efficiency but also directly impact the ratio-
nal allocation of resources and environmental sustainability. To address the challenges of modern
transportation infrastructure management, this study innovatively proposes a hybrid learning model
that integrates deep convolutional neural networks (DCNNSs) and support vector machines (SVMs).
Specifically, the model initially employs a ShuffleNet architecture to autonomously extract abstract
features from various defect categories. Subsequently, the Maximum Relevance Minimum Redun-
dancy (MRMR) method is utilized to select the top 25% of features with the highest relevance and
minimal redundancy. After that, SVMs equipped with diverse kernel functions are deployed to per-
form training and prediction based on the selected features. The experimental results reveal that the
model attains a high classification accuracy of 94.62% on a self-constructed asphalt pavement image
dataset. This technology not only significantly improves the accuracy and efficiency of pavement
inspection but also effectively reduces traffic congestion and incremental carbon emissions caused by
pavement distress, thereby alleviating environmental burdens. It is of great significance for enhanc-
ing pavement maintenance efficiency, conserving resource consumption, mitigating environmental
pollution, and promoting sustainable socio-economic development.

Keywords: sustainable roadways; intelligent detection; hybrid learning; feature extraction;
resource conservation

1. Introduction

In the context of accelerating globalization and the continuous development of road
transportation, the inspection and maintenance of highways have become significant
issues of widespread international concern. As a core component of the transportation
network, asphalt pavements, as direct carriers of transportation, directly impact road
safety and traffic efficiency. During their service life, asphalt pavements are exposed to a
combination of loads and local climatic conditions, and their surface inevitably produces
crack defects due to aging [1]. Without timely and effective maintenance measures, these
initial cracks further deteriorate and peel off and eventually evolve into more serious
pavement defects, such as potholes [2]. As a common road distress, asphalt pavement
cracks not only damage the smoothness and aesthetics of the road but also negatively affect
regional economic development [3]. Existing research shows that delays in maintenance can
lead to increasing maintenance costs over time [4]. Conventional pavement maintenance
methods, such as manual inspections, are time-consuming, labor-intensive, and have low
recognition accuracy and poor consistency, making them inadequate for the demands
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of modern transportation infrastructure management [5]. Therefore, the development
of an efficient, precise, and highly automated pavement crack identification technology
holds immense value for accelerating pavement maintenance processes, achieving efficient
resource utilization, reducing environmental pollution, and promoting sustainable socio-
economic development.

In the early stages, researchers primarily relied on basic image processing tech-
niques and threshold segmentation methods to perform asphalt pavement defect detection
tasks [6]. These techniques mainly depended on road engineers to collect pavement defect
images on site. However, on-site image collection could lead to increased labor, material,
and additional costs due to road closures, subsequently causing detection and maintenance
costs to exceed expectations [7]. As computer science and technology rapidly evolve,
conventional machine learning algorithms have significantly improved the efficiency and
quality of pavement defect detection. A series of conventional machine learning algo-
rithms, strongly supported by digital image technology, such as decision trees [8], random
forests [9], SVMs [10], and Bayesian learning [11], have found extensive application in
pavement defect detection [12-14], and have even been used to predict the development of
pavement distresses [15]. This marks a significant leap in the advancement of intelligent
pavement defect detection technology. After comprehensively evaluating the performance
of various machine learning algorithms, it is not difficult to find that machine learning
has become an indispensable means for maintaining road infrastructure [16], especially
Artificial Neural Networks (ANNs), which have shown great potential in pavement crack
classification tasks [17]. Additionally, SVM, as a classic classification algorithm, has deliv-
ered impressive results in the field of pavement defect identification due to its excellent
classification performance and low computational complexity [18,19], demonstrating good
application prospects. The widespread application of machine learning in these fields is
primarily due to its robust predictive capabilities. However, as detection demands escalate,
machine learning faces challenges, such as limited accuracy and efficiency in feature extrac-
tion, which are limitations that have hindered their widespread application in the field of
road engineering to some extent [20].

In recent years, the rapid development of deep learning technologies, particularly
the widespread application of convolutional neural networks (CNNs), has provided new
solutions for pavement crack identification. CNNs, with their powerful feature extraction
capabilities, have achieved significant results in fields such as image classification and
object detection. Because they possess the ability to autonomously learn features and
correlations between tasks, they demonstrate near-human potential [21]. Researchers have
meticulously designed a series of high-performance CNN models, including AlexNet [21],
GoogLeNet [22], VGGNet [23], ResNet [24], and DenseNet [25], leveraging large-scale
general datasets such as ImageNet [26]. These advancements have opened new horizons
in the field of pavement defect detection, bringing unprecedented possibilities and broad
prospects. Preliminary investigations revealed that by constructing shallow CNN archi-
tectures to train low-resolution crack images, CNNs demonstrated superior predictive
capabilities compared to conventional machine learning [27]. Furthermore, as the depth
of these networks increased, the prediction performance of the models was further ele-
vated [28]. With the relentless progression of technology, more sophisticated CNN models,
characterized by deeper layers, have been devised and successfully implemented in practi-
cal engineering contexts [29,30]. These models have significantly improved the predictive
performance of crack detection by integrating multi-level and multi-scale feature fusion
strategies [31,32]. To facilitate the quantitative assessment of asphalt pavement crack de-
fects, researchers have further introduced attention mechanisms into CNNSs, effectively
achieving precise localization of crack boundaries [33,34]. Additionally, Vision Transformer,
anovel deep learning architecture, has provided a new perspective and direction for asphalt
pavement crack detection through its applications in pavement defect classification [35]
and semantic segmentation [36] while also reducing carbon emissions by 30.80% and main-
tenance costs by 20.81% [37]. Notably, the cornerstone to achieving such commendable
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outcomes in these studies is the employment of extensive training datasets. Through these
data, deep learning models can autonomously learn and extract pivotal feature information
from images, thereby facilitating the precise identification of defects, such as cracks.

However, in the field of road engineering practices, there are challenges in two as-
pects. On the one hand, obtaining large-scale pavement images often faces numerous
constraints, and using limited datasets often leads to issues of model overfitting. On
the other hand, relying solely on deep learning models may encounter problems such as
overfitting, high computational costs, and insufficient generalization ability for specific
tasks. Because of their excellent portability, safety, and efficiency, unmanned aerial vehicles
(UAVs) have greatly promoted the progress and development of pavement defect detection,
thus enhancing the construction and utilization of pavement datasets [38,39]. To effectively
employ deep learning models under conditions of limited samples and fulfill detection
requirements, researchers have adopted a transfer learning methodology. This involves
transferring the learned weights from pre-trained deep learning models to fresh detection
tasks and subsequently fine-tuning the parameters of the pertinent layers [40]. This strategy
significantly improves the model’s effectiveness in scenarios with limited data and attains
commendable prediction outcomes. Furthermore, to overcome the challenge of limited
sample sizes more proficiently, researchers have also concentrated on developing adaptive
and lightweight CNN models [41,42]. These models not only maintain high prediction
accuracy while minimizing computational expenses but also facilitate efficient pavement
defect detection within constrained resources. Nevertheless, it is worth noting that the effi-
cient operation of data-driven models often heavily relies on high-performance computing
equipment, which inadvertently poses obstacles to further optimization of the models.

To overcome these challenges, this study, based on the dual constraints of limited sample
size and computational resources, combines the powerful feature extraction capabilities of
CNNs with the superior classification performance of SVMs in machine learning algorithms
to propose a CNN-SVM model. The goal is to effectively improve the efficiency and accuracy
of road defect detection through integrated and optimized model design without significantly
increasing computational burden. Specifically, firstly, a vehicle-mounted line-scan industrial
camera is used to capture images of pavement defects, which eliminates the need to close
roads separately for data collection, thereby avoiding traffic congestion. Secondly, a hybrid
learning model that combines CNNs and SVMs is proposed instead of adopting the time-
consuming conventional manual analysis method. Finally, through algorithmic integration
and innovation, efficient allocation and utilization of resources are achieved, thereby opti-
mizing road management and maintenance processes and enhancing overall efficiency and
service quality. This method not only helps overcome current technical bottlenecks but also
provides a new perspective and practical path for advancing the development of intelligent
road detection technology in resource-constrained environments.

This study aims to provide a more efficient and accurate solution for pavement crack
identification through technological innovation while simultaneously promoting the devel-
opment of intelligent transportation systems and smart cities and achieving sustainable
development in road transportation. The main contributions of this study are as follows:

(1) By fine-tuning the ShuffleNet model, a novel hybrid method for identifying and
classifying defects in pavement cracks is proposed, which overcomes the shortcomings
of large computation in the deep learning model.

(2) The MRMR feature selection method is employed to select the most relevant features,
which effectively overcomes the problem of insufficient detection performance of
asphalt pavement defects with limited samples and computing resources.

(3) By exploring the role of intelligent detection technology in promoting sustainable road
development, the green and low-carbon development of transportation infrastructure
is promoted from the perspective of saving resources and improving efficiency.

The organizational structure of this study is as follows: In Section 2.1, the image

dataset used in this study is introduced. The methods adopted in this study are presented
in Sections 2.2-2.4. The implementation details of the DCNN are described in Section 3.1,
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including parameter settings, training procedures, etc. The experimental results and
detailed analysis of the proposed method are presented in Section 3.2. Section 4 compares
different categories of models and analyzes the performance of the proposed model in
detail. Additionally, the promotional effects of pavement intelligent detection technology
on sustainable road development were also analyzed. Finally, Section 5 summarizes the
research findings and provides insights for future research directions.

2. Methodology
2.1. Dataset

Conventional or UAV-based image acquisition methods may lead to traffic congestion
due to road closures, thereby increasing fuel consumption and carbon emissions. A multi-
functional road inspection vehicle was utilized to systematically collect asphalt pavement
image data from Lanhua Road in Nanjing, China, in this study. These images meticulously
captured typical visible defects, including pavement cracks, as well as some irregularities like
potholes. The resolution of all collected images remained consistent at 4096 x 2000 pixels.

To overcome the computational challenges inherent in processing high-resolution
images with the existing computing resources, the sliding window technique was employed
to divide the original images into 224 x 224-pixel patches to meet the input requirements
of the pre-trained model, as illustrated in Figure 1. This strategy efficiently alleviates the
computational burden while ensuring that the image data conforms to the specific input
resolution specifications of the transfer learning model. Subsequently, road engineering
experts classified these image patches into four distinct categories: background, cracks,
potholes, and landmarks. The consolidated dataset, termed NKLHData, provides enhanced
efficiency and accuracy in detecting pavement defects, thereby laying a robust foundation
for future research works. To verify the reliability of the model, this study employed three
public datasets for comparative experiments, including CRACKS500 [43] and GAPs384 [44].
In all the datasets utilized, 80% of the data are allocated for model training, 10% for
validation, and the remaining 10% are reserved for testing. Table 1 describes the distribution
of pavement images in each classification in every dataset.

Dataset acquisition

=
2 1)
C

3

¥ .
Sliding window method

Manual label

Figure 1. Flow of image data acquisition and processing.
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Table 1. Distribution of different datasets employed in this study.
Datasets Number of Images Background Crack Landmark Pothole

Training set 9272 2318 2318 2318 2318

Validation set 1160 290 290 290 290

NKLHData Test set 1160 290 290 290 290

All 11,592 2898 2898 2898 2898
Training set 6462 3231 3231 / /
Validation set 806 403 403 / /
Crack500 Test set 806 403 403 / /
All 8074 4037 4037 / /
Training set 12,780 6390 6390 / /
Validation set 1598 799 799 / /
GAPs384 Test set 1598 799 799 / /
All 15,976 7988 7988 / /

2.2. Pavement Defect Identification Based on Deep Learning

Considered a pivotal subset of deep learning, CNNs have garnered extensive applica-
tion in various fields, attributed to their remarkable prowess in image recognition tasks. The
objective of this section is to construct a streamlined CNN model grounded in established
deep learning principles that is specifically tailored for training the NKLHData dataset.

The architecture of our proposed CNN model encompasses four key phases, each
consisting of a convolutional layer, a batch normalization layer to stabilize the training
process and mitigate gradient vanishing or exploding issues [24], and a nonlinear activation
layer. To minimize the number of parameters and computational cost, a max pooling layer
follows each phase, performing downsampling to decrease the feature map resolution. The
comprehensive architecture of the proposed CNN network is illustrated in Figure 2. At the
conclusion of the model, a global max pooling layer is utilized to extract significant features
from the final convolutional layer. These features are then fed into a fully connected layer
for enhanced information integration. Ultimately, the model computes and outputs the
probability distribution across classes via a softmax layer.

rﬂ e

Il Convolution layer

|
I’ Background

’ Pothole

p’
I' Crack

Figure 2. Proposed CNN network architecture.

In the course of the model training process, this study employs the cross-entropy loss
function to quantify the discrepancy between the predicted outcomes and the actual labels.
Additionally, to mitigate potential overfitting concerns, a dropout layer with a 10% dropout
rate is incorporated into the model, thereby enhancing its generalization capabilities.
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2.3. Pavement Defect Identification Based on Transfer Learning

Due to the scarcity of large-scale pavement defect image datasets for this study, training
large models directly could result in overfitting challenges. Consequently, this study adopts
transfer learning for pavement defect identification. As a highly effective machine learning
approach, transfer learning harnesses the weights of pre-trained models to provide robust
assistance for new tasks that suffer from insufficient data and limited computational
resources, thereby enhancing the performance of the target task.

Within the field of transfer learning, numerous transfer strategies exist, encompassing
feature-based, instance-based, parameter-based, and relation-based transfers [45]. Consid-
ering the unique scenario and data constraints in this study, a parameter-based transfer
learning strategy was employed. Guided by this strategy, the ShuffleNet model [46] was
chosen as the source for transfer learning, attributed to its minimal parameters and supe-
rior performance, making it an ideal candidate for this purpose. During the fine-tuning
phase, the ShuffleNet model’s entire architecture, encompassing convolutional layers,
batch normalization layers, ReLU activation functions, and more, was preserved. The
trained weights and biases of these layers were transferred to the new task. Furthermore,
the parameters of these layers were frozen during training, with only select parameters
undergoing further training.

Given the disparity in the number of sample categories between the NKLHData dataset
and the pre-trained network, a new fully connected layer was introduced to accommodate
the 4-class sample dataset, replacing the existing one. This novel layer employed the
He weight initialization method [47] for initializing its weights, which is tailored for the
ReLU activation function. This method can mitigate the issues of gradient vanishing and
gradient explosion, thereby expediting the model training process. Figure 3 illustrates the
fine-tuning process and network architecture based on the ShuffleNet model in detail. By
fine-tuning the ShuffleNet model, this study aims to effectively identify pavement defects
while minimizing the risk of overfitting.

Batch normalization
RelU
\J
Max pooling
Shuffle Unit — T
Shuffle Unit — T
Shuffle Unit — T
Y
Y
Average pooling

3x3 DWConv,
BN

=
o
>
£33
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%

2
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\ m
Concat
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Add
\
RelU
\

3%3 AVG Pool,
Stride:

Shuffle Unit -II

Figure 3. ShuffleNet network architecture of transfer learning.

2.4. Pavement Defect Identification Based on Hybrid Learning

The extensive hyperparameters in the fully connected layers of deep learning models
often lead to overfitting. Conversely, conventional machine learning algorithms, such as
SVMs, successfully address overfitting issues by incorporating regularization techniques.
SVM stands as a prominent supervised learning algorithm in machine learning, renowned for
its strong generalization capabilities and robust mathematical theoretical framework grounded
in statistical learning theory and the principle of structural risk minimization. The core idea
of SVM is to identify an optimal hyperplane within the feature space, serving as a decision
boundary to accurately differentiate sample points belonging to different categories.
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In contrast to deep learning models, the parameter tuning of SVM is more streamlined,
minimizing the dependence on complex network architectures and extensive parameters,
which enhances training efficiency. When managing small-scale datasets, SVM not only
boasts a swift training duration but also demonstrates superior performance. Notably,
the computational complexity of SVM primarily depends on the count of support vectors
rather than the dimensionality of the data. This distinctive benefit renders SVM exception-
ally remarkable in tackling high-dimensional data classification tasks. Furthermore, the
classification outcomes furnished by SVM are highly understandable, distinctly outlining
the boundaries separating various categories of data.

This study introduces the ShuffleNet-SVM model, aiming to synthesize the distinct
strengths of CNN and SVM. This model capitalizes on CNN’s robust feature extraction
capabilities while incorporating SVM'’s edge in the interpretability of results. In this
configuration, ShuffleNet’s final three fully connected layers are omitted, and SVM is
integrated to undertake the classification role. The network’s architecture is illustrated
in Figure 4. During implementation, the ShuffleNet model’s fully connected layer is
leveraged to derive 1000 deep features from NKLHData. Subsequently, the MRMR feature
selection method [48] is applied to sieve out the top 25% of these features, serving as the
classifier’s input. These refined, high-level abstract features are then processed by the SVM
classifier for accurate classification. To attain optimal prediction performance, this study
employs SVM models equipped with linear, polynomial, and Gaussian kernels to classify
NKLHData. A 5-fold cross-validation strategy is utilized to fine-tune the kernel and penalty
parameters within the kernel functions.

SVM #2 SVM #1

‘Gaussian

w

RelLU
Max pooling
Shuffle Unit —IT
Shuffle Unit —IT
Shuffle Unit —II
Average pooling
Fully connected

c
S
=

SN
e
5
S E
g g
o5
©
o

Extraction features

Extraction of features using
deep learning model, Fully
Connected, #1000

omial MRMR selects the most
relevant features, #250

Figure 4. Network architecture of ShuffleNet-SVM model.

Maximum Relevance Minimum Redundancy

The Maximum Relevance Minimum Redundancy (MRMR) approach for feature selec-
tion represents a classical technique aimed at optimizing feature selection. Its objective is to
boost the correlation between chosen features and the target variable while simultaneously
decreasing the redundancy among these features. The ultimate goal is to construct an
optimal subset S of features, which maximizes the relevance metric vs. and minimizes
the redundancy metric Ws. The formulas for computing relevance and redundancy are
outlined in Equations (1) and (2), respectively. This strategy plays a crucial role in the
data preprocessing and feature engineering stages, effectively enhancing model accuracy
and efficiency.

1

Ve = g1 Lxes I(XY) M)
1

= g Laes (X, 7) @

where | S| represents the count of features contained within the subset S. The significance of
each feature’s relevance and redundancy is assessed through their mutual information with
the target variable. By determining the mutual information between each feature and the
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target and then prioritizing the features according to their importance, the most influential
features are selected. The computation of mutual information follows Equation (3):

P(X =x;,Y =yj)
(X =x)P(Y =)

I(X, Y) = Zi,j P<X =x;,Y = y]-)log P 3)

Within the MRMR feature selection method, the prioritization of the most relevant
features is accomplished through the computation of the Mutual Information Quotient
(MIQ), as detailed in Equation (4):

I(X,Y)

MIQ, = — 21"/
T I 1(X,2)

(4)

Utilizing this methodology, the present study endeavors to develop a hybrid learning
model that is more streamlined, effective, and precise. This model demonstrates exceptional
performance during subsequent experimental validations, thereby furnishing innovative
concepts and approaches for the creation and refinement of hybrid learning models.

2.5. Performance Evaluation

To evaluate the predictive capability of the model, three metrics are employed: preci-
sion (p), recall (r), and F;-score. Specifically, precision (p) quantifies the fraction of samples
the model classifies as cracks that genuinely correspond to cracks. Recall (), on the other
hand, reflects the percentage of actual crack samples that are accurately identified by
the model. The F;-score provides a more comprehensive and balanced perspective by
harmonizing precision and recall. These metrics follow Equation (5):

_ TP
p= 4TP-FFP
F= mml o 5
= TPIIN )
F = 2XpXr
L= Tptr

where TP (True Positive) represents the count of images accurately identified as cracks,
FN (False Negative) represents the number of images mistakenly labeled as cracks despite
being non-cracks, TN (True Negative) represents the correctly classified non-crack images,
and FP (False Positive) represents the images incorrectly identified as non-cracks while
actually being cracks. A 2 x 2 confusion matrix, as shown in Table 2, provides a visual
depiction of these evaluation metrics.

Table 2. Confusion matrix of binary prediction.

Prediction
Predicted as Positive Predicted as Negative
True positive True positive (TP) False negative (FN)
negative False positive (FP) True negative (TN)

Furthermore, this study also introduces another evaluation metric, AUC (Area Under
the Curve). AUC represents the area surrounded by the ROC curve and coordinate axis.
The calculation of AUC is governed by Equation (6).

1m71

AUC = 3 Y (i1 — xi) (% + Xi41) (6)
i=1

In these curves, the horizontal axis represents the False Positive Rate (FPR), whereas
the vertical axis represents the True Positive Rate (TPR). TPR quantifies the fraction of
all actual positive samples accurately recognized as positive by the model, whereas FPR
describes the percentage of all actual negative samples incorrectly labeled as positive.
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3. Experimental Results
3.1. Implementation Details

The experiments were carried out utilizing the MATLAB 2023b platform (925512),
specifically leveraging the Statistics and Machine Learning Toolbox and the Deep Learning
Toolbox. The training of all models occurred on a workstation featuring an Intel Core
i5-12600KF CPU, 32 GB RAM, and Windows 11 operating system. Additionally, an NVIDIA
GeForce RTX 3060 GPU with 12 GB GDDR6 memory was employed to accelerate processing
tasks. The training process was configured with a maximum of 30 epochs, with the
minibatch size adjusted to 16 due to GPU memory constraints. The initial learning rate
was established at 0.001, while the regularization coefficient was set at 0.003. To promote
network convergence and mitigate overfitting [49], the learning rate was decreased to
one-tenth of its initial value every 20 epochs. For model training, an SGD optimizer with a
momentum factor of 0.9 was utilized [50]. After each training iteration, the validation set
was assessed.

3.2. Model Training

This section delves into three exemplary implementations for identifying defects
in asphalt pavements using innovative methods. Given the scarcity of NKLHData, the
initial strategy in this study was to construct a basic CNN model grounded in the core
principles of CNNs to tackle this issue. The second approach involved fine-tuning a
ShuffleNet model pre-trained on ImageNet. Specifically, we tuned the number of outputs
in the fully connected layer while keeping the weights and biases of the remaining layers
frozen, employing a stabilization strategy to ensure the model’s robustness and efficiency.
The third approach, while also relying on the pre-trained ShuffleNet model for feature
extraction, further integrated these features into the training and prediction processes of an
SVM. This hybrid method merges the strengths of deep learning-based feature extraction
with the efficacy of SVM classifiers, aiming to improve the overall effectiveness of defect
identification. For this third method, this study employed the MRMR feature selection
method to select 250 of the most relevant features and utilized various kernel functions of
the SVM, including linear, quadratic, cubic, and Gaussian, to classify defects, ultimately
striving for more precise and efficient identification of asphalt pavement defects.

3.2.1. Basic CNN Model

In Figure 5, a visualization of the training process of the basic CNN model utilizing
the NKLHData dataset is provided. Specifically, Figure 5 illustrates the fluctuations in the
model’s accuracy throughout the training phase. As the training epochs accumulate, the
accuracy curve demonstrates a consistent upward trend, signifying a notable enhancement
in the model’s recognition capabilities through relentless learning and refinement. Notably,
during the early phases of training, the swift surge in accuracy underscores the model’s
proficient aptitude for adapting to and learning from the dataset’s features.

100.0%

Pttt reu e e
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Figure 5. Training process of shallow CNN model on NKLHData dataset.

Additionally, Figure 5 offers an in-depth examination of how the loss function evolves
over the course of the training epochs. Serving as a vital metric of model performance, the
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loss function directly mirrors the discrepancy between the model’s predicted and actual
values. Noticeably, as the number of iterations accumulates, the loss value exhibits a steady
downward trend, indicating that the model is progressively minimizing prediction errors
and improving prediction accuracy. Early in the training process, particularly within the
initial 10 epochs, the loss function experiences a particularly steep decline, hinting at the
model’s swift acquisition and extraction of essential data features. However, as the training
advances, the rate of reduction in the loss function progressively tapers off, indicating that
the model is nearing its performance ceiling, and further performance gains through mere
iterations become increasingly challenging.

Upon completion of adequate training, it was observed that by the 25th epoch, the
model’s classification accuracy on the training dataset had reached a stabilized high of
96.19%. This notable and consistent performance enhancement demonstrates the model’s
outstanding generalization capabilities and recognition accuracy while also confirming
the rationality and efficacy of the hyperparameters (including the learning rate and batch
size) employed during training. These meticulously chosen parameters guarantee that the
model attains optimal performance despite resource constraints.

3.2.2. Fine-Tune ShuffleNet

Figure 6 delves into the dynamic fluctuations of accuracy and loss during the Shuf-
fleNet model’s training process, leveraging transfer learning. It is evident that during
the initial stages, there is a substantial surge in model accuracy due to a sharp decline in
loss. Specifically, within the first three epochs, the loss reduction is particularly prominent,
highlighting the model’s rapid adaptability and robust learning capability when confronted
with new data. This rapid learning rate implies that the model efficiently captures key
data features during the early stages, setting a firm foundation for subsequent learning. As
the training epochs advance, the improvement in model performance gradually reaches
a plateau. During this phase, the rate of loss reduction begins to decelerate, and the ac-
curacy growth stabilizes. This shift suggests that the model is progressively nearing its
performance ceiling. However, the model persists in refining its internal parameters to
further enhance classification accuracy. After 20 epochs, it becomes apparent that the loss
value exhibits minor fluctuations around 0.6. This stable fluctuation clearly signals that
the training process has stabilized and the model’s performance has attained a relatively
optimal state. At this stage, the model has thoroughly grasped the features within the
training data and is capable of delivering precise predictions on new, unseen data.

100.0%
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@ S [ ] L ]

Figure 6. Dynamic variations of accuracy and loss of ShuffleNet model based on transfer learning.

After meticulously training for 30 epochs, the ShuffleNet model, leveraging transfer
learning, ultimately attained an accuracy of 79.92%. This achievement not only marks
the pinnacle of its classification performance but also fully demonstrates the feasibility
of the transfer learning strategy and the ShuffleNet model in image classification tasks.
By harnessing pre-trained model parameters and employing fine-tuning strategies, this
study has successfully improved the classification accuracy of traditional machine learning
methods, paving the way for extensive application scenarios of the model.
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True Labels

3.2.3. ShuffleNet-SVM

To address the complexity of linearly inseparable data, SVMs have proven effective
in mapping the original space to a feature space by incorporating kernel functions. The
objective of this study is to conduct a comprehensive assessment of the efficacy of six
prevalent kernel functions in SVMs. These include the linear kernel, quadratic polynomial
kernel, cubic polynomial kernel, and Gaussian kernels with varying scales, specifically, 8,
32, and 64. Figure 7 offers a visual representation of the confusion matrices of these kernel
functions in practical applications, providing a quantitative foundation for assessing their
effectiveness in resolving linearly inseparable data challenges. In this matrix, the predicted
classification outcomes are plotted along the x-axis, whereas the true sample categories
are represented on the y-axis. The diagonal elements signify the count of accurately
classified samples for each category, while the off-diagonal elements depict the number
and distribution of misclassified samples.

300

BG

True Labels

PH CK LM BG PH CK LM BG PH CK LM
Prediction Prediction Prediction
(a) Linear kernel (b) Quadratic kernel (c) Cubic kernel

BG

PH CK LM BG PH CK LM BG PH CK LM
Prediction Prediction Prediction
(d) Gaussian kernel with kernel scale 8 (e) Gaussian kernel with kernel scale 32 (f) Gaussian kernel with kernel scale 64
Background=BG Pothole=PH Crack=CK Landmark=LM

Figure 7. Confusion matrix of SVM model with six different kernel functions.

Upon meticulous comparison and analysis of the data presented in Table 3, it becomes
evident that the model utilizing 1000 features demonstrates a subtle yet discernible su-
periority over the model with just 250 features across three pivotal performance metrics:
precision, recall, and Fi-score. This finding emphasizes that expanding the feature set
enables the model to encapsulate a broader spectrum of informational dimensions, thereby
augmenting its overall predictive capability. However, it is noteworthy that the discrepancy
in AUC—a metric assessing the overall classification effectiveness—between these two
feature scales does not attain statistical significance. This revelation suggests that while
augmenting the number of features may optimize the model’s localized performance to a
certain extent, it does not significantly substantially elevate its comprehensive classification
capability on a global level.
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Table 3. Comparison of SVM prediction results with different numbers of features.
Models Kernal P/% R/% F1/% AUC/%
Linear 92.82 92.67 92.74 98.81
Quadratic 94.08 93.97 94.02 99.22
SVM with Cubic 94.37 94.31 94.34 99.04
1000 features Gaussian kernel with scale 8 77.96 75.78 76.85 96.31
Gaussian kernel with scale 32 94.27 94.22 94.24 99.23
Gaussian kernel with scale 64 92.87 92.76 92.81 98.89
Linear 92.78 92.67 92.72 98.71
Quadratic 93.95 93.88 93.91 99.15
SVM with Cubic 94.62 94.57 94.59 99.22
250 features Gaussian kernel with scale 8 93.06 93.10 93.08 99.24
Gaussian kernel with scale 32 92.43 92.33 92.38 98.83
Gaussian kernel with scale 64 90.70 90.60 90.65 98.38

This study aims to systematically identify the most representative top 25% feature sub-
set as the pivotal input for enhancing the model’s performance and accuracy, utilizing the
MRMR methodology. Through an exhaustive evaluation and comparison of SVM models
employing various kernel function configurations, the study found that the SVM equipped
with a cubic polynomial kernel and the SVM featuring a Gaussian kernel (specifically
with a kernel scale of 8) demonstrated superior prediction performance. This superiority
can be attributed to the polynomial kernel’s robustness in capturing intricate nonlinear
relationships within datasets, which is particularly crucial in road engineering. In this
field, tackling challenging tasks like detailed classification and precise prediction of road
defects significantly depends on the model’s proficiency in analyzing complex data pat-
terns. Consequently, the findings of this study not only validate the efficacy of the MRMR
feature selection method but also emphasize the potential and significance of polynomial
kernel functions in augmenting the performance of predictive models applied to road
engineering issues.

It is worth highlighting that the inference speed of an SVM equipped with a Gaussian
kernel in Table 4 is profoundly influenced by the configuration of the scale parameter,
underscoring the necessity of meticulous parameter tuning during the model optimization
phase. In stark contrast, the linear kernel SVM, characterized by its remarkably low
memory footprint (a mere 0.26 MB), demonstrates exceptional versatility in environments
with limited resources, rendering it particularly well-suited for real-time data processing
tasks that necessitate swift processing speeds. While SVMs with polynomial and Gaussian
kernels incur relatively higher memory usage (spanning from 3 MB to 13 MB), this remains
manageable and within practical boundaries.

Table 4. Comparison of model prediction performance after feature selection.

Models Kernal 8;2231}%1152 /s Model Memory/MB
Linear 6000 0.26
Quadratic 2700 3
SVM with Cubic 2800 3
250 features Gaussian kernel with scale 8 500 13
Gaussian kernel with scale 32 1900 3
Gaussian kernel with scale 64 11,000 4

Considering the significant disparities in SVM model performance across various ker-
nel configurations, meticulously selecting the appropriate kernel for specific applications
is paramount. Notably, the linear kernel, distinguished by its swift inference speed and
minimal resource consumption, stands as an optimal choice for real-time analysis tasks
involving vast datasets. Conversely, the polynomial kernel is better aligned with applica-
tions demanding a thorough exploration of intricate nonlinear features within inherently
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complex relationships, albeit necessitating cautious evaluation of the balance between
heightened computational expenses and slower inference rates. As for the Gaussian ker-
nel, it offers superior modeling flexibility; however, optimizing model performance and
computational efficiency hinges on the precise setting of the scale parameter.

In summary, this study adopts the MRMR method as a feature selection strategy,
aiming to refine the quality of the model’s input features. The pioneering ShuffleNet-SVM
model cleverly integrates the automated feature learning capabilities of deep learning
with the exceptional predictive accuracy of machine learning, substantially bolstering the
model’s robustness and generalization prowess in tackling complex data. This fusion
not only adeptly addresses the challenges posed by redundancy and noise interference
during the training process but also appreciably accelerates the model’s inference speed for
classification tasks.

4. Discussion and Analysis
4.1. Comparative Analysis of the Results of Three Methods

In this study, we contrast the precision of classification among three distinct models,
with Table 5 offering a comprehensive breakdown of the findings. Notably, the SVM model
with the Cubic kernel utilizing artificial features exhibits commendable forecasting accuracy;
however, there remains considerable room for enhancement when benchmarked against
three deep learning approaches: CNN, ShuffleNet, and ShuffleNet-SVM. Precisely, the
SVM'’s predictive accuracy lags behind CNN, ShuffleNet, and ShuffleNet-SVM by 16.57%,
12.33%, and 17.68%, respectively. This comparative analysis underscores a significant
conclusion: for the purpose of identifying defects in asphalt pavements, deep learning-
driven models surpass standalone machine learning models in terms of efficacy.

Table 5. Comparison of classification accuracy of different models.

Model P/% R/% F1/%

SVM with artificial features (Cubic) 76.94 76.05 76.49
CNN 93.51 93.45 93.48

ShuffleNet 89.27 89.48 89.37
ShuffleNet-SVM 94.62 94.57 94.59

While parameter-based transfer learning tackles the CNN models” demand for ex-
tensive computational resources and extensive datasets during the training phase and
efficiently reduces the likelihood of overfitting due to smaller datasets, the ShuffleNet
model employing this strategy in our study failed to exhibit superior predictive accuracy
on the test set compared to the CNN model; it actually experienced a decline of 4.24%. One
plausible explanation could be the substantial divergence between ShuffleNet’s pre-training
task and the pavement crack classification task. Furthermore, our study revealed that the
ShuffleNet model’s predictions with transfer learning were 5.35% inferior to those of the
ShuffleNet-SVM model. This disparity is likely attributed to SVM’s ability to enhance the
model by projecting input features into a high-dimensional space via kernel functions,
thereby maximizing the classification margin and achieving impressive classification results
on unseen test samples.

The findings of this study underscore the exceptional classification prowess of the
ShuffleNet-SVM model in detecting asphalt pavement crack defects, with a remarkable
accuracy rate of 94.62%. When juxtaposed against traditional CNN and ShuffleNet models,
ShuffleNet-SVM demonstrates substantial performance gains of 1.11% and 5.35%, respec-
tively. This notable superiority unmistakably confirms the efficacy of the ShuffleNet-SVM
model in tackling such challenges. The exceptional performance of ShuffleNet-SVM is
largely credited to its clever integration of SVM. By decreasing the parameter count in
ShuffleNet’s fully connected layers, ShuffleNet-SVM adeptly circumvents overfitting issues
and drastically cuts down on training time and computational resource usage. Moreover,
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ShuffleNet-SVM fully embraces the regularization and structural risk minimization princi-
ples of SVM, thereby further bolstering the model’s robustness and generalization abilities.

In summary, the ShuffleNet-SVM model not only capitalizes on SVM’s strengths in
classification endeavors but also attains substantial overall performance enhancements,
furnishing an efficient and precise method for detecting asphalt pavement crack defects.
To delve deeper into the model’s performance across specific sample categories, Figure 8
presents the confusion matrices of the three models on the test set. It is worth highlighting
that the confusion between cracks and backgrounds stands out prominently in the image
classification process. This phenomenon is fundamentally rooted in the cracks’ relatively
minute features, which result in a considerable degree of similarity with the background.
This pivotal insight not only reveals the current models’ limitations in distinguishing subtle
differences but also provides invaluable perspectives and directives for our ongoing model
optimization and the enhancement of classification accuracy.

True Labels

10 24

BG PH CK M BG PH CK LM
Prediction Prediction Prediction Prediction
(a) SVM with artificial features (b) Conventional CNN (c) ShuffleNet (d) ShuffleNet-SVM

Background=BG Pothole=PH Crack=CK Landmark=LM

Figure 8. Confusion matrices of the three compared models.

Although the proposed hybrid model has demonstrated significant advantages in
prediction performance, the specific mechanisms by which it perceives and processes input
data remain unclear. Feature visualization serves as a potent analytical tool that not only
fosters a deeper understanding of the model’s prediction behavior but also dissects its
decision-making logic and aids in identifying potential biases or shortcomings.

Figure 9 presents detailed visualization results of features extracted using two different
methods, which profoundly reveal the intrinsic differences in the way the model processes
information. Specifically, Figure 9b displays features obtained through manual feature
extraction techniques, simplified into a single one-dimensional vector. While this method
is intuitive and easy to understand, it may be constrained by human prior knowledge and
the subjectivity of feature design, hindering its ability to fully capture the complexity and
diversity of the data. In contrast, deep learning models exhibit superior feature extraction
capabilities. Deep learning enables the gradual and layered extraction of features from
input data, with a large number and diverse types of features that capture complex patterns
and intricate structures within the data, as illustrated in Figure 9c—e. As the network layers
deepen, the extracted features become increasingly abstract and high-level, encompassing
not only the low-level details of the input data but also rich, deep semantic information.
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Figure 9. Visualization of feature maps extracted by different methods.
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This layered extraction and progressive abstraction of features allow deep learning
models to better adapt to complex and diverse data environments, ultimately resulting in
significant improvements in prediction performance.

To systematically evaluate and compare the predictive performance of various models,
this study employed the t-SNE [51], which aims to map high-dimensional feature maps
into a low-dimensional space for visual analysis through effective dimensionality reduction.
Figure 10 intuitively demonstrates the feature distribution overview in the low-dimensional
space of 290 selected image samples from various categories in the test set.

@ Landmark

Feature #2
Feature #2
Feature #2

0 0.5 1
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(b) CNN (c) ShuffleNet(Transfer) (d) ShuffleNet-SVM

Figure 10. Feature scatter plots extracted by different feature extractors.

The comparative analysis demonstrates that the features automatically extracted based
on deep learning, as shown in Figure 10b,c, exhibit higher linear separability compared to
the traditional artificial features depicted in Figure 10a. This finding profoundly unveils
the primary reason behind the limited classification performance in traditional methods,
namely, their relatively insufficient feature representation capabilities. In contrast, features
extracted through CNNs not only possess remarkable recognition abilities but also present
clear decision boundaries, a characteristic that significantly simplifies classification tasks,
enabling even simpler classifiers to achieve exceptional classification results. Thus, this
study further substantiates the notable advantages of deep learning in feature extraction
and classification tasks.

However, the training process of deep learning models is frequently constrained by
the demand for vast amounts of data and the substantial consumption of computational
resources, posing a significant challenge in practical applications. To address this issue, the
meticulously designed model in this study demonstrates prominent advantages, cleverly
overcoming the limitations of limited data and computational resources and providing an
effective solution for the application of deep learning in resource-constrained environments.

4.2. Superiority Analysis of ShuffleNet-SVM
4.2.1. Compared with Mainstream Models

In this study, various classical recognition models were employed as comparative
benchmarks to further validate the superiority of the proposed ShuffleNet-SVM model.
These models are not only classics in the field of image classification; they also incorporate
a myriad of enhancement strategies, thereby providing a solid foundation for a compre-
hensive evaluation of the ShuffleNet-SVM model’s performance. To facilitate the training
process, the initial weights of all comparative models were adopted from ImageNet-based
pre-trained weights. Additionally, all compared models were implemented using the same
experimental settings as the proposed ShuffleNet-SVM model.

(1) VGG19: This is a classic deep convolutional neural network architecture designed
for image classification tasks. This network comprises 19 weighted layers, including
16 convolutional layers and 3 fully connected layers. It utilizes stacks of multiple
3 x 3 convolutional kernels to increase the network’s depth, enabling it to extract rich
features from images and achieve remarkable classification performance on large-scale
datasets like ImageNet.
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ResNet50: This is a deep residual network architecture designed to address the issue
of performance degradation that occurs during the training of deep neural networks.
ResNet50 contains 50 convolutional layers and introduces shortcut connections, en-
abling the network to learn identity mappings and making it easier to optimize
deep networks.

Inceptionv3: This is a high-performing convolutional neural network architecture that
utilizes a module called “Inception” to optimize the network structure and enhance
performance. Inceptionv3 captures multi-scale features in images by parallelly utiliz-
ing convolutional kernels of different sizes and pooling operations, and it reduces the
amount of computation and number of parameters through bottleneck layers.
DarkNet19: This is a convolutional neural network architecture specifically designed
for real-time object detection tasks. DarkNet19 achieves efficient computation speed
and a small model size by utilizing a simple stack of convolutional layers without
complex modules or connections.

DenseNet201: This is an efficient deep convolutional neural network architecture that
significantly reduces the number of parameters while enhancing feature propagation
and reuse. DenseNet201 consists of 201 layers, where dense connections enable
each layer to be directly connected to all preceding layers, thus achieving effective
feature reuse.

MobileNetv2: This is a lightweight convolutional neural network architecture specifi-
cally designed for mobile and embedded vision applications. MobileNetv2 introduces
depthwise separable convolution blocks with linear bottlenecks and inverted residual
connections, which significantly reduces the model’s parameters and computations
while maintaining high performance.

The comprehensive test results are presented in Table 6. The proposed model has

demonstrated exceptional performance in the classification task on the NKLHData dataset,
achieving a classification accuracy of 94.57%, precision of 94.62%, recall of 94.57%, and
an Fj-score of 94.59%. In contrast, classical image classification models failed to exhibit a
significant competitive advantage on the same dataset. Notably, among all the classification
categories, the identification of crack images remains the most challenging task within the
NKLHData dataset.

Table 6. Classification precision of various compared models.

Metrics Model  yGG19 ResNets0  InceptionV3  DarkNet19 ~ DenseNet201 MobileNetv2 Moo et
Al P/% 68.54 91.35 8546 86.50 89.82 87.01 94.62
resori R/% 53.69 90.78 85.26 85.52 88.36 87.16 94.57
categories F1/% 60.21 91.06 85.36 86.01 89.08 87.08 94.59
P/% 95.12 91.77 74.92 70.18 72.56 78.45 88.52
Background R/% 13.45 73.10 85.52 91.72 94.83 80.34 93.10
F1/% 23.57 81.38 79.87 79.52 82.21 79.38 90.75
P/% 78.19 100.00 96.25 96.99 97.97 94.77 100.00
Pothole R/% 95.17 100.00 97.24 100.00 100.00 100.00 99.66
F1/% 85.85 100.00 96.74 98.47 98.47 97.31 99.83
P/% 64.15 77.65 82.91 82.76 91.88 77.29 91.34
Crack R/% 11.72 91.03 66.90 57.93 62.41 72.76 87.04
F1/% 19.82 83.81 74.05 68.15 7433 74.96 89.24
P/% 36.71 95.99 87.75 96.06 96.88 97.54 98.62
Landmark R/% 94.42 98.97 91.38 92.41 96.21 95.52 98.28
F1/% 52.87 97.46 89.53 94.20 96.54 96.52 98.45

Furthermore, through the analysis of Table 7, it becomes apparent that VGG19 stands

out as the most intricate model, boasting a substantial number of parameters (139.5 M),
whereas ShuffleNet-SVM underscores its strength in lightweight design with a minimal
number of parameters (0.86 M). In terms of processing speed, ShuffleNet-SVM surpasses
all other models significantly, attaining an impressive frame rate of 371 FPS, highlighting
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its exceptional capability for real-time processing. This underscores the suitability of
lightweight models such as ShuffleNet-SVM for devices with limited resources, including
embedded systems and mobile devices, as well as applications demanding high-speed
processing, such as real-time detection requirements.

Table 7. Differences in prediction performance of various models.

Model Parameters Frame Per Second (FPS)
VGG19 139.5 M 75
ResNet50 23.5M 164
InceptionV3 20.80 M 162
DarkNet19 19.8 M 266
DenseNet201 18.1 M 40
MobileNetv2 22M 224
ShuffleNet-SVM 0.86 M 371

4.2.2. Compared with Various Datasets

Table 8 presents a detailed overview of the predictive performance of the proposed
model across four datasets: NKLHData, Crack500, GAPs384, and METU [52]. It system-
atically quantifies this performance through key metrics, including precision, recall, and
Fi-score. The analysis results indicate that the model’s performance varies significantly
across different datasets, and within the same dataset, there is also an imbalance in predic-
tive performance among different categories. Specifically, the model achieves precision,
recall, and Fj-scores extremely close to 100% on the METU dataset, demonstrating ex-
ceptional performance. In contrast, while its performance on the Crack500 and GAPs384
datasets is relatively lower, it is still maintained above 90%. Furthermore, a comparative
analysis of the NKLHData dataset under different brightness conditions reveals that the
proposed model exhibits similar performance, suggesting that the CNN-SVM model has
robust adaptability to images captured under varying lighting conditions. Further explo-
ration indicates that these performance differences and imbalances may be attributed to
the complex interplay of various underlying factors. Firstly, the quality of the datasets is a
crucial factor directly related to the model’s predictive performance. High-quality datasets
often significantly enhance the model’s prediction accuracy. Secondly, the imbalance in cat-
egory distribution may also be a key factor limiting the model’s performance improvement
in certain categories.

Table 8. Prediction results based on various datasets.

Datasets NKLHData NKLHData
Metrics (150%) NKLHData (1100%) Crack500 GAPs384 METU
P/% 93.28 94.62 94.04 90.80 90.16 99.83
All categories R/% 93.10 94.57 93.97 90.57 90.00 99.83
Fi1/% 93.19 94.59 94.00 90.68 90.08 99.83
P/% 84.06 88.52 87.06 87.76 87.65 99.90
Background R/% 92.76 93.10 92.76 94.29 93.13 99.75
F1/% 88.20 90.75 89.82 90.91 90.30 99.82
P/% 90.77 91.34 90.84 93.83 92.67 99.75
Crack R/% 81.38 87.24 85.52 86.65 86.88 99.90
Fi1/% 85.52 89.24 88.10 90.21 89.68 99.83
P/% 100.00 100.00 100.00 / / /
Pothole R/% 99.31 99.66 99.31 / / /
F1/% 99.65 99.83 99.65 / / /
P/% 98.29 98.62 98.28 / / /
Landmark R/% 98.97 98.28 98.28 / / /
Fi1/% 98.63 98.45 98.28 / / /

Note: |50% means that the brightness of the data set is reduced by 50%, and 1100% means that the brightness of
the data set is doubled.
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4.3. Advantages of Intelligent Detection Technology

Road intelligent inspection technology, as a pivotal technological advancement in
modern traffic engineering, has profoundly impacted the sustainable development of
highway engineering. By merging the Internet of Things, extensive data analytics, and
advanced artificial intelligence algorithms, this technology facilitates efficient and precise
monitoring of highway statuses. It not only markedly augments detection accuracy but
also effectively minimizes human errors, thus furnishing more dependable data support
for highway maintenance work.

In the field of highway engineering inspection and maintenance, road intelligent
inspection technology demonstrates numerous advantages over traditional inspection
methods. From an economic perspective, traditional inspection techniques are costly due
to inefficient use of materials and labor, with frequent material waste and construction
delays further exacerbating the economic burden [53]. In contrast, intelligent inspection
technology, through efficient data collection and analysis, enables the precise localization
of damaged areas, facilitating accurate material usage and optimal labor allocation [54].
This drastically reduces maintenance costs and enhances economic efficiency.

On the societal front, the prolonged implementation of traditional inspection tech-
niques often leads to extended construction periods, disrupting community daily life,
increasing traffic accident risks, and lowering residents’ quality of life [55]. Road intelligent
inspection technology, with its rapid response and precise localization capabilities, effec-
tively shortens construction durations and minimizes traffic disruptions, thereby mitigating
negative societal impacts and enhancing public satisfaction and quality of life [56].

Regarding environmental protection, traditional inspection techniques consume sub-
stantial natural resources and generate significant waste, exacerbating environmental
pollution [57]. Road intelligent inspection technology, however, reduces resource con-
sumption and waste production by minimizing unnecessary material use and construction
activities [58]. Additionally, it shortens construction durations and mitigates additional
vehicle emissions due to traffic disruptions, demonstrating notable environmental protec-
tion advantages.

Moreover, road intelligent detection technology can collect and examine real-time
information, including road statuses, traffic volumes, and weather conditions, and swiftly
issue advance warnings for potential hazards like traffic collisions and congestion. This
assists traffic management agencies in prompt responses, safeguarding highway safety,
maintaining smooth traffic flow, and minimizing accident frequencies. Furthermore, data
obtained from intelligent detection technology can be utilized to develop models for
assessing highway technical conditions that predict the residual service life of highways and
their maintenance requirements. This enables the refinement of maintenance management
strategies and the development of scientific and logical maintenance schedules, which, in
turn, mitigate damage resulting from excessive use or inadequate maintenance, thereby
extending the service life of highways.

In summary, road intelligent inspection technology exhibits more positive impacts
in terms of saving economic costs, improving societal quality of life, and protecting the
environment. With continuous technological advancements and deeper application promo-
tion, road intelligent inspection technology is poised to inject new vitality and momentum
into the sustainable development of the road maintenance sector, driving the highway
transportation industry towards a smarter and more sustainable direction.

5. Conclusions

To address the issues posed by the high computational resource consumption re-
quirements and large data volumes required for deep learning-based pavement defect
recognition models in sustainable roads, this study proposes a hybrid methodology that
integrates a convolutional neural network (ShuffleNet) with an SVM for automatic classifi-
cation of a self-constructed, limited pavement defect image dataset. Firstly, features are
extracted from the fully connected layer of a pre-trained ShuffleNet model. Secondly, the
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MRMR method is employed to select the 250 most relevant features from the extracted
1000 features, which serve as the dataset’s characteristics. Then, SVM classifiers utilizing
various kernel functions are employed to classify these features and compare them with
current classical image classification models for analysis. Finally, the significant advantages
of intelligent detection technology for sustainable road development are analyzed from
three perspectives. The findings of this study support the following conclusions:

(1) After optimizing the proposed hybrid model with the MRMR feature selection method,
it achieved a high classification accuracy of 94.62% on a self-constructed asphalt
pavement image dataset and exhibited robustness on public datasets.

(2) By effectively mitigating traffic delays and reducing additional vehicle emissions re-
sulting from untimely pavement maintenance or incorrect detections, this technology
is of significant importance in alleviating environmental pressures and advancing
sustainable development in transportation and the environment.

(3) The widespread promotion and application of this technology will further elevate the
level of intelligence and sophistication in pavement maintenance management, position-
ing it as a pivotal strategy for driving sustainable development in highway engineering.

This study aims to explore a novel method for pavement defect identification suitable
for limited datasets and computational resources. According to the experimental findings,
the recognition of cracks in asphalt pavements remains a significant challenge, primarily
due to the inherent variability in pavement crack defect recognition across diverse regions,
road classifications, and climatic conditions. However, methodologies such as transfer
learning and domain adaptation can empower models to rapidly adapt to various contexts
while sustaining high levels of performance. These technologies pave new pathways for
sustainable technologies in road maintenance by reducing carbon emissions during the
production of repair materials and lowering resource and energy consumption, embodying
the concept of sustainable development. Therefore, future research will focus on further en-
hancing the robustness of sustainable road detection technologies and conducting in-depth
quantitative assessments of the practical contributions of smart detection technologies in
advancing the sustainable development of highway engineering based on specific main-
tenance schemes. The goal is to provide more solid support for theoretical research and
practical applications in related fields.
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