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Abstract: The increasing environmental pollution resulting from plastic waste and the need to reuse
agro-industrial wastes as a source of discarding has led to the development of innovative biobased
products. In the frame of this context, the use of neat polylactic acid (PLA) and its blend with
polybutylene succinate (PBS) with or without cellulose nanocrystals (CNCs) extracted from hemp
fibers is explored here. This study aimed to assess the biogas production of different biopolymeric
films. In parallel, life cycle assessment (LCA) analysis was performed on the same films, focusing on
their production phase and potential end-of-life scenarios, regardless of film durability (i.e., single-use
packaging) and barrier performance, to counteract possible soil health threats. Specifically, this study
considered three specific systems: PLA, PLA_PBS (PLA/PBS blend 80:20 w/w), and PLA_PBS_3CNC
(PLA/PBS blend + 3% CNCs) films. The assessment involved a batch anaerobic digestion (AD)
process at 52 ◦C, using digestate obtained from the anaerobic treatment of municipal waste as the
inoculum and cellulose as a reference material. The AD process was monitored over about 30 days,
revealing that reactors containing cellulose showed inherent biodegradability and enhanced biogas
production. On the other hand, biopolymeric films based on PLA and its blends with PBS and
CNCs exhibited an inhibitory effect, likely due to their recalcitrant nature, which can limit or delay
microbial activity toward biomass degradation and methanogenesis. LCA analysis was performed
taking into consideration the complex environmental implications of both including biopolymers
in the production of renewable energy and the use of post-composting digestate as an organic
fertilizer. Remarkably, the PLA_PBS_3CNC formulation revealed slightly superior performance
in terms of biodegradability and biogas production, mainly correlated to the presence of CNCs in
the blend. The observed enhanced biodegradability and biogas yield, coupled with the reduced
environmental impact, confirm the key role of optimized biopolymeric formulations in mitigating
inhibitory effects on AD processes while maximizing, at the same time, the utilization of naturally
derived energy sources.

Keywords: biopolymers; polylactic acid; polybutylene succinate; cellulose nanocrystals; anaerobic
digestion; biogas; biomethane; environmental impact; life cycle assessment

1. Introduction

Food packaging contributes approximately 5.4% to global greenhouse gases (GHGs)
emissions, with sector-specific impacts varying widely: up to 40% for alcoholic beverages;
10–20% for fresh produce; 10–12% for dairy, fruits, vegetables, and nuts; and around 2%
for meat, fish, and eggs [1]. The growth in the global population (about 10.3–10.5 billion
by 2050 and about 12.0–12.6 billion by 2075 [2]) together with the increasing need for food
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has increased the production of single-use plastic packaging systems (23 million tons just
in Europe; projections estimate 92 million tons by the year 2050 [3]), whose life cycle is no-
ticeably short, as they quickly become waste to be disposed of. This scenario has increased
the production of plastic waste and the food packaging presence in waste streams [2,4]. To
address this issue, the European Commission introduced Directive 2008/98/EC (Waste
Framework Directive) [5], requiring European Union member states to follow a waste
management hierarchy based on five levels:

1. Prevention;
2. Reuse;
3. Recycling;
4. Other recovery;
5. Disposal.

In the last years, biodegradable polymers have been considered as a reliable alter-
native to non-degradable ones, also due to the need to solve the problems generated by
plastic waste at their end of life [6]. Polylactic acid (PLA) is one of the most important
biobased polymers obtained from renewable resources [7] and used in food packaging [8].
It is derived from renewable resources, such as corn starch or sugarcane [9], and exhibits
excellent mechanical properties, thermal stability, and biodegradability, making it a suitable
alternative to conventional petroleum-based plastics. However, its inherent brittleness and
low thermal resistance limit its applications [10]. To overcome these limitations, PLA is
often blended with other biopolymers, such as polybutylene succinate (PBS), which is also
derived from renewable resources [11] and possesses good mechanical properties and ther-
mal stability, which make the blend more suitable for food packaging applications [12,13].
PBS is an aliphatic polyester that is attracting attention due to the possibility of biobased
production, its intrinsic biodegradability, as well as its good processability [14].

In comparison to equivalent traditional polymers used in food applications, many
biopolymers show some limitations, such as poor oxygen barrier characteristics and rel-
atively poor thermal and mechanical properties [15,16]. In this context, the develop-
ment of nanocomposites represents a valid method to increase the physical properties of
biodegradable polymers. Recent studies highlighted how using nanocomposites has been
an efficient strategy to upgrade the structural and functional properties of biodegradable
polymers. The incorporation of organic and inorganic nanofillers, such as nanocellulose,
nanolignin, nanohydroxyapatite, metallic nanoparticles, or carbon nanostructures, into
biodegradable polymers like PLA or poly(ε-caprolactone) (PCL) has been tested to pro-
duce nanocomposites with enhanced mechanical, thermal, and electrical properties [17–19].
Cellulose nanocrystals (CNCs), among the nanoparticles employed as reinforcements for
biobased polymers, are gaining increasing interest. In this regard, CNCs can be obtained
as monocrystalline domain-based stiff rods, with diameters ranging from 1 to 100 nm
and from 10 to 100 nm in length. These nanocrystals can be produced through the acid
hydrolysis of plant fibers, where sulfuric acid is employed to remove the amorphous plant
components, with the formation of highly crystalline cellulose [20].

Moreover, the problem related to food packaging waste recycling (also packaging
based on biopolymers) is that this type of packaging is often highly contaminated with food
residues, oils, and other impurities, which can significantly complicate the recycling pro-
cess, although mechanical recycling is technically feasible [21]. In any case, biodegradable
polymers represent a valid resource from a sustainable perspective due to the possibility
of helping divert food waste from landfills thanks to their composting features. Bioplas-
tics offer indeed significant advantages, helping to mitigate the environmental impact
associated with conventional petrochemical-based plastics. PLA and other biodegradable
polymers are derived from renewable resources like corn starch and sugarcane, and they
can be composted industrially, thus reducing persistent plastic waste accumulation in
the environment [6,22]. Additionally, bioplastics can enhance the sustainability of food
packaging without compromising essential properties such as mechanical strength and
barrier functions against oxygen and moisture [23]. Furthermore, the incorporation of
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nanomaterials, such as CNCs, can improve these properties, making bioplastics competitive
with conventional polymers [24,25].

Bioplastics’ biodegradability makes them suitable for the collection in the organic
fraction of municipal solid waste (OFMSW) [26]. Specifically, their biodegradability in
anaerobic environments allows for biogas to be produced, contributing to renewable
energy production and sustainable waste management [27,28]. Anaerobic digestion (AD)
can have the double advantage of both producing biogas used in the electricity industry
and biomethane, which can be recovered by suitable purification procedures and fed
into the natural gas network or utilized for the transportation sector [29,30]. The use of
bioplastics in food packaging not only reduces environmental impact but also supports a
more sustainable circular economy, aligning with global efforts to reduce plastic pollution
and promote the use of renewable resources [31,32].

In this regard, life cycle assessment (LCA) analysis is widely recognized as one of
the tools to assess environmentally critical issues of processes and products and suggest
solutions aimed at improving the related environmental performance [33,34]. It can be
considered as the leading tool to assess bio- and non-biopolymer-based packaging environ-
mental performance. An LCA approach applied to a specific industrial system is aimed
at focusing on the related hotspots and at proposing improvements of the environmental
efficiency by means of a rationalization of natural and human resources [35]. Moreover,
the study also allows for comparing the environmental performance of different industrial
systems, products or, within the same industrial system, technologies. This can be achieved
through the development of specific models of the analyzed system by considering the
boundaries of the system, the involved processes and sub-processes, and input and output
flows crossing the process. The assessment begins with raw material extraction and consid-
ers all aspects of production, use (or service life), and end of life. The study must be based
on the LCA methods described in ISO 14040 and 14044 [36,37], and it has to be divided into
four steps: (1) definition of the goal and scope of the study, (2) establishment of a life cycle
inventory (LCI), (3) life cycle impact assessment (LCIA), and finally, (4) interpretation of
environmental burden associated with the product. The environmental aspects generally
include energy expense, resource exploitation, and emissions (in air, water, etc.), while envi-
ronmental impact categories generally include climate change, particulate matter formation,
eutrophication, land use, as well as human carcinogenic and non-carcinogenic toxicity.

In this regard, this paper aimed to investigate the possibility of producing renewable
energy (biogas) through the thermophilic AD of biodegradable polymer-based films in-
oculated with digestate derived from the anaerobic treatment of the OFMSW, as well as
the related environmental sustainability. The AD of food waste and waste bioplastics is
indeed a field of growing interest thanks to the fact that the digestion of bioplastics can
generate CH4, which is considered a promising source of renewable energy [35], thereby
presenting an opportunity to utilize bioplastics as potential contributors to sustainable
energy production. Three different biopolymeric films were tested for about one month
in batch anaerobic reactors, i.e., a film based on only PLA, a blend made of PLA and PBS
80:20 (w/w) (PLA_PBS), and the same blend added with 3% of CNCs (PLA_PBS_3CNC).
A proportion of 20% of PBS was chosen according to a previous study that highlighted it as
a valid compromise to maintain good thermal and mechanical properties of the PLA films,
while 3% of CNCs was selected to enhance the biofilm disintegration behavior tested under
composting conditions according to ISO 20200:2015 [13,38]. At the same time, attention was
paid to the biodegradability assessment during the process. Meanwhile, LCA analysis was
performed in order to evaluate the impacts and feasibility of the process in order to assess
the potential and limitations of using the aforementioned biofilms in the food packaging
industry. It is worthwhile pointing out that no economic or social impacts were considered
and an attributional LCA was performed both in the case of the production stages of the
bioplastic-based films and on the related end of life.
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2. Materials and Methods
2.1. Cellulose Nanocrystal (CNC) Production

Cellulose nanocrystals (CNCs) were extracted from Phormium tenax technical fibers [20].
The latter were pre-treated with 0.5% (w/v) NaOH solution, washed with distilled water
several times, and dried in an oven at 80 ◦C for 24 h. After this stage, they were chopped
to an approximate length of 5–10 mm and de-waxed, boiling the fibers in a mixture of
toluene/ethanol (2:1 v/v) for 6 h. The obtained fibers were filtered, washed with ethanol
for 30 min, and dried. Regarding cellulose extraction, natural fibers were treated with
0.7% (w/v) of sodium chlorite and the fibers (liquor ratio 1:50 w/v) were boiled for 2 h. The
solution pH was lowered to about 4 by means of acetic acid. System treatment with sodium
bisulfate solution at 5% (w/v) was carried out and, at the end of this preliminary process,
holocellulose (α-cellulose + hemicellulose) was obtained, as a result of lignin removal. The
holocellulose was processed with 17.5% (w/v) NaOH solution, filtered, and washed with
deionized water. The obtained material was dried at 60 ◦C in a vacuum oven until constant
weight was measured.

CNC suspension was then obtained from pre-treated Phormium tenax leaves by sulfuric
acid hydrolysis. The lab-scale process was carried out with 64% (w/w) sulfuric acid at
45 ◦C for 30 min with high rate stirring. After the acid removal, dialysis, and ultrasound
treatment, an ion exchange resin (Dowex Marathon MR-3) was added for 48 h and then
removed by filtration.

CNC suspensions were neutralized by the addition of 1.0% (v/v) of 0.25 mol L−1

NaOH. The final CNC production yield was about 10% with respect to the dry initial source.

2.2. Biopolymeric Film Preparation

PLA, PLA_PBS, and PLA_PBS_3CNC films were prepared by using a co-rotating twin
screw micro extruder (DSM Explorer 5&15 CC Micro Compounder, Xplore Instruments
BV, Sittard, The Netherlands). The used apparatus is equipped with a film casting system,
suitable to produce 70 mm wide film strips. The film thickness was around 150 µm. PLA
pellets were previously dried in a vacuum oven at 98 ◦C for 3 h, while PBS ones were dried
at 80 ◦C for 12 h. Moreover, CNCs were dried at 40 ◦C overnight.

For the production of PLA film, a screw speed of 150 rpm and mixing time of 1 min
were implemented, while a temperature profile from 180 ◦C to a maximum mixing temper-
ature of 210 ◦C was chosen. The same process was applied to produce the neat PLA/PBS
blend (weight ratio 80:20 w/w). The only difference regards the mixing rate, which in this
case amounts to 6 min. This time was reduced to 4 min in the case of the PLA_PBS_3CNC
film (PLA/PBS blend 80:20 w/w as a matrix, filled with the 3% wt. of CNCs) to prevent
CNC degradation.

Figure 1 summarizes a schematic representation of the film extrusion process. After the
drying phase, each component of the investigated systems is fed into the micro-extruder,
where both the polymer blends and the nano-reinforced compounds are recirculated
through a specific channel whenever the extrusion die is hindered by the activation of
the lock. At the end of the mixing time, the lock is removed, and the polymer melt can
go through the extrusion thin die. At the exit of the die, the (molten) polymer sheet is
cooled down by an air knife and subsequently captured by the first roll and driven through
a second roll, where it is wound and collected. The roll system, through the speed and
the torque regulation, is responsible for the film stretching in the winding direction (no
cross-sectional stretching).

It has to be pointed out that the film stretching mainly occurs between the extrusion
die and the first roll.
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Figure 1. Schematic representation of the film production through extrusion and casting.

2.3. Batch Anaerobic Digestion (AD) Test

A batch AD test was conducted at a temperature of 52 ± 2 ◦C using digestate obtained
from OFMSW treatment as the inoculum. A reference material (cellulose films) and three
treated samples were set up in the batch AD reactors as follows: sample with cellulose as
reference material consisting of inoculum added with cellulose films; PLA sample consisting
of inoculum and PLA films; PLA_PBS sample consisting of inoculum and blended films
made of 80% PLA and 20% PBS; and sample PLA_PBS_3CNC consisting of inoculum and
blended films made of 80% PLA and 20% PBS added with 3% CNCs. A control sample
was represented by the mere inoculum. The bioplastic films and the reference material
were shredded into fragments of 1.5 × 1.5 cm to provide 1 g of total solids (TS), equivalent
to the dry weight (DW) of the material, which was then added to 67 g of wet inoculum
according to ISO 15985:2014 [39]. The production of biogas was evaluated daily through the
volumetric method over a period of about 30 days and biodegradation was subsequently
estimated. As far as the percentages of bio-CH4 in the biogas produced from different
samples are concerned, they were obtained from data in the literature [40,41]. The test
was conducted in a tank equipped with a thermostatic unit to maintain the temperature.
Inside the tank containers with a capacity of 300 mL were placed. Each container, once
filled with the respective material (inoculum, inoculum + cellulose, inoculum + bioplastic),
was connected to a hydraulic gasometer represented by a second container filled with
water through a capillary tube that was in turn connected to a third container (graduated
cylinder). The pressure increase due to biogas production caused the water to move from
the second container to the graduated cylinder, allowing for quantification of the biogas
volume produced (Figure 2) [29,42,43].

The daily volume of water displaced corresponded to the biogas production, expressed
in Nm3/t of dry matter. Each sample was analyzed in triplicate. The main chemical
characteristics of the digestate used as inoculum are reported in Table 1.
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Figure 2. Representation of a laboratory-scale anaerobic digestion reactor connected to a hydraulic
gasometer. The quantification of the volume of biogas produced is obtained by measuring the volume
of displaced water.

Table 1. Main chemical characteristics of the inoculum a.

Parameter Inoculum

Dry matter (%) 19.54 ± 0.81
VS (g/kg) 615 ± 18.4

pH 8.26 ± 0.15
EC (dS/m) 22.66 ± 1.47
TOC (g/kg) 339 ± 11.0

NH4
+-N (g/kg) 17.64 ± 1.21

FOS/TAC 0.42 ± 0.08
a All data expressed on a dry weight basis.

2.4. Analytical Methods

The moisture content was measured by calculating the weight loss after drying the
sample in an oven at 105 ◦C for 24 h. The % of biodegradation was calculated according to
the Equation (1) provided by ISO 15985:2014 [39]:

% Biodegradation =
mC, g(test)− mC, g(blank)

mC, i
× 100 (1)

where mC,g is the amount of gaseous carbon in grams evolved after anaerobic biodegrada-
tion, from test (test material) and blank (inoculum), and mC,i is the amount of carbon in
grams initially present in the test material. This method allowed for the determination of
the biodegradation rate of the tested materials.

The biopolymer biodegradation kinetic of the different biofilms was assessed by fitting
biodegradability data to the modified Gompertz model, Equation (2), as described by
García-Depraect et al. [44]:

C = P × exp
{
−exp

[
R × e

P
× (λ − t) + 1

]}
(2)

where C represents the cumulative carbon in the gas phase (mg of C per g of bioplastic) at
time t (days), P denotes the maximum amount of bioplastic carbon converted to gaseous
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carbon (mg of C per g of bioplastic), R is the peak mineralization rate (mg of C per g of
bioplastic per day), λ is the delay period (in days) before gas-phase carbon release, and
e refers to Euler’s number (approximately 2.71828).

Electrical conductivity (EC) and pH were evaluated on fresh material using a benchtop
conductivity meter and a benchtop pH meter, respectively. The total volatile solids (VS)
content of the digestate was assessed by measuring the weight loss after ashing the sample
at 550 ◦C for 24 h in a muffle furnace. The total organic carbon content used for estimat-
ing organic matter (OM) in the digestate was measured utilizing the Springer–Klee wet
dichromate oxidation method [45]. Fresh sample was used for the assessment of NH4

+-N
by means of the micro-Kjeldahl distillation method [46]. The FOS/TAC parameter was
evaluated as a ratio between the total volatile fatty acids (expressed as mg/L of CH3COOH
equivalent) and alkalinity (expressed as mg/L of CaCO3) [43].

2.5. Statistical Analysis

The analyses performed in this study are presented as mean values of 3 samples ± standard
error (SE). Two-way ANOVA Tukey’s multiple comparisons test was utilized to determine
the significance of the differences in the sample mean values. The standard error of the
mean (SEM) was reported. A significance level of p < 0.05 was set for the data. All statistical
analyses were conducted using GraphPad Prism 9.0.0 for Windows (GraphPad Software,
San Diego, CA, USA).

2.6. Life Cycle Assessment (LCA) Analysis

The considered batch scale manufacturing technology is in principle compatible with
an industrial scale production (even if the production rate is not comparable): for this
reason, the related life cycle inventory (LCI) was built up taking into consideration data
coming from industrial processes included in the used software (SimaPro version 9.5.0.1)
databases (Ecoinvent 3.9).

2.6.1. Methodology

In this study, the environmental performance of three different biopolymeric film-
based systems has been investigated. PLA, PLA_PBS, and PLA_PBS_3CNC films were
studied for the whole life cycle, from the extraction and processing of all raw materials to
the end-of-life, although the use phase has been neglected as single-use products and no
food or other kinds of contaminations have been taken into account.

The waste management phase regards AD, with the possibility to produce energy
through the biogas treatment in a co-generation plant, while the possibility of using the
final digestate as a soil improver was not considered.

2.6.2. Goal and Scope

The goal and the scope of the study regard the assessment of the potential environmen-
tal performance of the above-mentioned systems, also taking into account the related end of
life. In particular, the end of life regards the biopolymer-based films’ AD with the possibility
to exploit the energy potentially obtained through the produced biogas processing in a
co-generation plant, avoiding producing the same amount through benchmark routes. For
this purpose, through life cycle analysis, this investigation also aimed at assessing the envi-
ronmental sustainability of the selected end-of-life route, as well as to verify whether AD
in a co-generation plant for biogas production could mitigate the environmental burdens
rising from the investigated systems’ whole life cycle. Regarding the systems’ boundaries,
all the flows cross the investigated systems from raw materials extraction to film production
(to gate). No issues regarding the film service life, performance, or durability were taken
into account. On the other hand, all the flows regarding the systems’ end-of-life dealing
with the related AD were included. The system’s expansion was developed to take into
account the possibility of exploiting electric energy and heat produced in an average biogas
co-generation plant.
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2.6.3. Life Cycle Inventory (LCI)

As introduced, the system’s expansion has been developed to take into account the pos-
sibility of exploiting electric energy and heat produced in an average biogas co-generation
plant, avoiding producing the corresponding amount from benchmark sources:

• Electricity, medium voltage {RER}| market group for electricity, medium voltage | cut-
off, S;

• Heat, district or industrial, natural gas {Europe without Switzerland} | market for heat,
district or industrial, natural gas | cut-off, S.

Regarding the data quality, the PLA-based polyester is included in the databases
(Ecoinvent 3.9) of the used software (SimaPro 9.5.0.1). PBS is not included in the software
database; thus, the related model was built up from data collected from the literature
regarding the industrial production of this kind of polymer. It has to be pointed out that,
where not available in the literature (primary data), averaged data were used for energy
used in the processes of the related supply chain [13].

For example, the energy needed for liquid systems’ mechanical mixing ranges between
0.5 kW/m3 and 12 kW/m3 multiplied by the mixing time, on the base of the system viscosity
and the mixing rate. A power of 1.00 kW/m3 is recommended for low-viscosity systems.

Thermal energy spent within high-temperature processes can be deduced by Equation (3):

Q =
∆T∑n

i miCpi + mi∆Hi

η
(3)

where ∆T is the temperature gap the reagent is held during the considered stages (65 ◦C),
Cpi is the specific heat of the i-th reagent, ∆Hi is the enthalpy related to potential phase
changes of the i-th reagent, and η is the system efficiency (0 < η < 1. Average value 0.75).

The energy needed for processes carried out under vacuum can be estimated by means
of Equation (4):

E =
Q∆Pt
e f f

(4)

where P (Pa) is the applied pressure gap, Q is the vacuum system flow rate, t is the mere
pump working time, and eff is the system efficiency (average value 0.72).

The production of CNCs was also modeled on the base of averaged data regarding the
whole group of processes carried out in the related supply chain [13]. The energy consumed
by the involved batch mode processes was calculated on the basis of the corresponding
industrial processes. The industrial scaling up also includes the possibility of water and
chemical species reuse in multiple cycles. In this example, as a worst scenario, reactive
solutions were considered to be eliminated after only two production cycles. The polymer-
based films were successfully produced by means of direct extrusion of the granules and
the mentioned nanofiller.

As far as the AD of the mentioned films is concerned, it was carried out under
thermophilic conditions (52 ◦C) and substrate mixing by hand. For a more realistic model,
to include energy flows regarding substrate mixing and heating, as well as gas purification
and desulfurization carried out in a co-generation plant, a framework regarding several
industrial plants was taken into account; thus, averaged data were used [47].

As introduced, the system boundaries also include the biogas co-generation plant,
where the produced CO2 is directly abated as biogenic carbon dioxide. Additionally, in a
complete plant where AD and the produced biogas from co-digestion are carried out, many
sources of internal losses occur. Moreover, the produced thermal and electric energy also
depend on the mere methane content in the processed biogas [48]. For this reason, each
one of the elaborated systems is characterized by a proper energy yield.

The final digestate is considered as waste, despite the possibility of it potentially being
applied as a fertilizer after different treatments. In this framework, the worst scenario was
considered; thus, disposal (garden composting) was assumed.
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Primary data were used to model the input and the output flows occurring in the AD
stage. In particular, direct measurements were taken to evaluate the weight and the nature
of the initial substrate (inoculum) and the final digestate, as well as to model the produced
biogas, for whom also the mere methane and carbon dioxide weight and volumes were
estimated for any investigated film subjected to the AD.

Inoculum was obtained from the OFMSW digestate. For this reason, the related life
cycle includes only the (averaged data) transport phase from the collection site to the
digestion plant (5 km).

It has to be pointed out that the thermophilic conditions lead to the evaporation of the
moisture contained in the digestate during the AD (about 70% of the initial amount), which
is released into the environment as water vapor.

As a functional unit, 1.00 kg for any kind of film was taken into account. In Table 2,
the inventories related to the whole life cycle of the investigated films are summarized.

Table 2. Life cycle inventories related to the whole life cycle of the investigated systems.

Flow Unit PLA Film PLA_PBS Film PLA_PBS_3CNC Film

INPUT

PLA granules kg 1.00 0.80 7.77 × 10−1

PBS granules kg - 0.20 1.94 × 10−1

Cellulose NC kg - - 2.91 × 10−2

Film extrusion kg 1.00 1.00 1.00

Inoculum transport (Euro 4 lorry, 7.5–16 tons) tkm 3.41 × 10−1 3.44 × 10−1 3.42 × 10−1

EMISSIONS IN ATMOSPHERE

Ammonia kg 1.76 × 10−3 1.79 × 10−3 1.78 × 10−3

NOx kg 2.69 × 10−4 2.14 × 10−4 4.34 × 10−4

Biogenic CO2 kg 3.98 × 10−1 3.43 × 10−1 6.97 × 10−1

Methane kg 2.44 × 10−3 1.85 × 10−3 3.76 × 10−3

Water vapor kg 37.48 38.81 37.82

OUTPUT/WASTES

Biowaste garden composting kg 29.62 28.48 28.54

AVOIDED PRODUCTS

Heat from natural gas at industrial district kWh 6.43 × 10−1 4.83 × 10−1 9.88 × 10−1

Electric energy from the grid kWh 1.05 7.59 × 10−1 1.56

3. Results and Discussion
3.1. Anaerobic Digestion of Biopolymeric Films

The production of biogas is a key metric in evaluating the efficiency of AD for different
substrates. At the end of the test period, the cumulative biogas production for each
tested sample was detected as follows: inoculum with 51.86 Nm3/t of TS, cellulose with
102.91 Nm3/t of TS, PLA with 39.69 Nm3/t of TS, PLA_PBS with 33.01 Nm3/t of TS, and
PLA_PBS_3CNC with 59.20 Nm3/t of TS (Figure 3). The high biogas yield from the cellulose
sample confirms its suitability as a benchmark for biodegradability tests. Cellulose, being a
pure polysaccharide, is readily degraded by microbial consortia in anaerobic conditions,
resulting in high biogas yields. The biogas production from PLA and its blends (PLA_PBS
and PLA_PBS_3CNC) was significantly lower than that from cellulose samples and similar
to the production provided by the inoculum alone. This aligns with existing literature,
wherein pure PLA often shows limited biodegradability due to its crystalline structure and
relatively slow hydrolysis rate under anaerobic conditions [40,49,50]. The addition of PBS
to PLA (as in PLA_PBS) did not substantially enhance the biogas yield, suggesting that the
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blend’s overall degradation rate is still inhibited by the presence of PLA. However, the slight
increase in biogas production in the PLA_PBS_3CNC sample indicates that the inclusion
of CNCs might have enhanced microbial activity or provided additional biodegradable
material, albeit to a limited extent. This can also be justified by the chemistry of CNCs that
positively impacts the interfacial forces exerted with the PLA and PBS matrix increasing
interfacial affinity between PBS and CNCs and reducing PLA crystallization [51,52]. These
results therefore highlighted how adding CNCs can mitigate the inhibiting effect of PLA
on AD improving biogas production. Furthermore, these findings are consistent with
studies in the literature that highlight how adding cellulose nanomaterials can improve the
biodegradability efficiency of polymer blends [53].
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Figure 3. Cumulative biogas production after 27-day thermophilic anaerobic digestion of the sole
inoculum, inoculum and cellulose films, inoculum and PLA films, inoculum and PLA/PBS-blended
films, and inoculum and PLA/PBS-blended films added with CNCs, expressed as Nm3 of biogas per
ton of total solids (SEM = 5.663).

Engineering the composition of polymer blends could therefore be a possible way
forward to increase the biogas yield during AD, as well as co-digestion with other waste
biomasses and the application of different pre-treatments [54,55].

The energy content of biogas produced from the AD process is crucial for evaluating
the practical applicability of these substrates in renewable energy production. The biogas
energy content typically accounts for around 21.6 MJ/Nm3 [56]. Using this value, the
potential energy yields from biogas production after 27 days of AD for each sample can be
estimated as reported in Table 3.

Table 3. Estimated energy production after 27-day thermophilic anaerobic digestion of the sole
inoculum, inoculum and cellulose films, inoculum and PLA films, inoculum and PLA/PBS-blended
films, and inoculum and PLA/PBS-blended films added with CNCs [56].

Biogas Produced
(Nm3/t of TS)

Estimated Energy Produced
(MJ/t of TS)

Inoculum 51.86 ± 5.97 1120.15 ± 129.01
Cellulose 102.91 ± 9.44 2222.75 ± 203.97

PLA 39.69 ± 4.26 857.34 ± 91.92
PLA_PBS 33.01 ± 7.20 713.11 ± 155.44

PLA_PBS_3CNC 59.20 ± 5.32 1278.70 ± 114.85
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These results indicate that cellulose, as expected, has the highest potential for energy
production due to its higher biogas yield. The energy yields from PLA and its blends,
although lower, still represent significant renewable energy potential. This is particularly
important given the increasing emphasis on sustainable and renewable energy sources.
In particular, the presence of PLA blends added with CNCs in AD could contribute to
enhancing energy yield and renewable energy production, helping to meet the objectives of
a circular economy and sustainable development. These results are in line with what was
observed in a previous study on organic waste, where energy production after 1 month
was found to be around hundreds of MJ per ton of TS [29].

The mg of gaseous C evolved per gram of TS over 27 days of thermophilic AD for each
sample was calculated according to ISO 15985:2014 [39]. The reactors containing cellulose
showed a higher carbon yield compared to other samples. In contrast, reactors with PLA
biofilms released lower amounts of carbon, with variations depending on the composition.
Remarkably, the addition of CNCs to the PLA_PBS blend resulted in a notable increase
in carbon output compared to the PLA and PLA_PBS samples, allowing for this blend to
overcome the inoculum in the final yield (Table 4). These values represent the cumulative
carbon released as CO2 and CH4, indicative of the substrates’ biodegradability. Cellulose films,
representing the positive control, emitted the highest amount of C, standing out as the most
easily degradable substrate. PLA and its blends emitted significantly less C, highlighting their
slower degradation rates. This aligns with previous studies that reported the challenges in
the anaerobic biodegradation of PLA due to its physicochemical properties such as crystalline
structure, porosity, and high molecular weight [40,49,50]. The higher C emissions detected
from PLA_PBS_3CNC compared to the other PLA-based biofilms suggest that the addition of
CNCs enhances the overall biodegradation under the tested conditions. These findings are
critical for understanding the environmental impact of using these materials in AD processes.
The C emissions data provide indeed insights into the efficiency of the biodegradation process.
Higher C emissions detected for cellulose reflect efficient substrate conversion into biogas,
while in contrast, the lower emissions observed for PLA and its blends highlight the need for
further biofilm optimization or a prolonged anaerobic process to enhance their biodegradability.

Table 4. Initial organic matter and cumulative quantities of mg of gaseous C evolved per g of
total solids after 27-day thermophilic anaerobic digestion of the sole inoculum, inoculum and cel-
lulose films, inoculum and PLA films, inoculum and PLA/PBS-blended films, and inoculum and
PLA/PBS-blended films added with CNCs, and % of biodegradation of biopolymeric films after
27-day thermophilic anaerobic digestion.

Initial OM a

(g DW Basis)
Cumulative Gaseous

C Evolved (mg)
Biodegradation of

Biopolymeric Films (%)

Inoculum 8.89 ± 0.29 27.8 ± 3.20 -
Cellulose 9.89 55.1 ± 5.06 93.86

PLA 9.89 21.3 ± 2.28 0
PLA_PBS 9.89 17.7 ± 3.85 0

PLA_PBS_3CNC 9.89 31.7 ± 2.85 31.74
a For biopolymers, 1 g of organic matter added to the inoculum was considered.

The percentage of biodegradation of different biofilm samples after 27 days of ther-
mophilic AD shown in Table 4 was also calculated following the ISO 15985:2014 guidelines [39].
The highest % of biodegradation was detected for cellulose, accounting for approximately
93.86%, indicating that cellulose was the most biodegradable sample under the test condi-
tions. For PLA_PBS_3CNC biofilm the biodegradation percentage was significantly lower, i.e.,
31.74%, highlighting its slower and less complete degradation, while for PLA and PLA_PBS,
the % could not be estimated using the provided equation due to the lower emission of gaseous
C compared to the blank represented by the inoculum. These results are in line with what has
been found in the literature since the AD of bioplastics, even under thermophilic conditions,
rarely reaches high degradation percentages; specifically, to reach an 80% degradation of PLA,
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an average of at least 70 days is necessary, while for PBS in thermophilic conditions of AD, no
biodegradation was detected after 50 days [57]. This evaluation can provide an estimate of
the biodegradability of a polymer, since high percentages represent a good biodegradation
degree of the OM. These findings then suggested that cellulose-containing reactors featured
both the highest biogas production and biodegradability. On the contrary, reactors containing
PLA films or its blends highlighted more inhibited AD process. It is noteworthy that the
PLA_PBS_3CNC biofilm was the one with higher biogas production and % of biodegrada-
tion compared to the other PLA-made biofilms, suggesting how CNCs could enhance its
biodegradability while mitigating environmental impacts.

The anaerobic biodegradability of the biopolymeric films was then evaluated over
the tested period in order to compare the different degradation kinetics using the mod-
ified Gompertz model [44]. As shown in Figure 4, the cellulose films demonstrated a
high biodegradability, reaching 90% of biodegradation after 11 days and a plateau of
approximately 93% by day 14, indicative of its suitability as a benchmark for this study
following the expected trend for a highly biodegradable material. This behavior aligns
with the literature, where cellulose material is consistently reported to undergo efficient
breakdown in anaerobic environments due to its polysaccharide structure, which is readily
metabolized by anaerobic microorganisms [58]. In contrast, the PLA and PLA_PBS samples
exhibited no measurable biodegradation throughout the experimental period, underscoring
the inherent resistance of these materials to AD. This finding is consistent with previous
studies, which report that PLA, while considered a biodegradable polymer under industrial
composting conditions, is resistant to degradation in anaerobic environments due to its
crystallinity, molecular weight, porosity, and accessible surface area, which can hinder
microbial activity [40,49,50]. Notably, the PLA_PBS_3CNC biofilms displayed a distinct
degradation pattern. Although the initial biodegradation of this sample was negligible,
it started showing degradation after approximately 20 days, reaching a biodegradation
percentage of 31.74% by the end of the experiment. This result suggests that the addi-
tion of CNCs to the PLA/PBS blend can significantly enhance the biodegradability of
the material under anaerobic conditions. The observed increase in biodegradation of the
PLA_PBS_3CNC blend can be attributed to the role of CNCs in improving the structural and
functional properties of biopolymers and facilitating the hydrolysis process, as discussed
in prior studies [59–61].
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3.2. Environmental Implications of Biopolymer End-of-Life

As previously introduced, the second part of this study focused on LCA and envi-
ronmental impacts of using different biofilms for AD. SimaPro 9.5.0.1 LCA software was
employed, and two main tools were utilized:

• ReCiPe 2016 Endpoint (H): This method addresses a wide range of environmental
concerns at the midpoint level and then aggregates the midpoints into a set of three
endpoint categories. Endpoint characterization represents a model of the impact on
a given effect (i.e., human health, ecosystems, and resources). Midpoint methods
measure an effect before the damage to the areas of protection occurs. Endpoint results
can be aggregated so that a single score expresses all the impacts that a given product
has on the environment;

• ReCiPe 2016 Midpoint (H): this method was used as a tool aimed at the quantification
of a wide range of impact categories (midpoint parameters).

Figure 5 summarizes the LCA score, found through the application of the ReCiPe 2016
Endpoint (H), regarding the life cycle of the investigated systems. Due to the use of CNCs,
produced through several processing stages, many of them characterized by the use of
chemicals and energy-intensive processes (i.e., freeze-drying), the potential environmental
impact of the film based on the PLA/PBS blend reinforced with the above-mentioned
nanofiller is considerably higher than the other ones. This scenario was obtained without
referencing the higher performance of the former system (mechanical, gas barrier properties,
and durability), as it is out of the scope of this investigation, where the main focus is
attributed to the end-of-life routes of each system.
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Figure 5. Comparison of the LCA score obtained for the investigated system, analyzed by means of
the ReCiPe 2016 Endpoint (H) tool.

The LCA score of the above-mentioned blend is slightly higher than the score of the
PLA-based system.

As shown in Figures 6 and 7, the environmental contribution of the end of life for the
unfilled systems is negligible, as it potentially represents 1.18% of the total score for the
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PLA-based film and 3.33% for the PLA/PBS blend-based one. The investigated route is
very interesting, but, because of the low amount of biogas produced, the low energy that
can be produced in a co-generation plant, together with the large amount of final digestate
to be disposed of, does not thus allow for any relevant mitigation of the environmental
burden arising from the related production stages.
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On the other hand, more biogas and energy can be produced in the case of CNC-
reinforced PLA/PBS blend AD, compared to the other unfilled systems, which potentially
leads to a negative LCA score for the related end-of-life route, and thus a potentially
positive environmental impact. Unfortunately, the improvement (mitigation) that can be
potentially obtained amounts to only 1.34% (Figure 8).

The described scenario could be considered encouraging, and this route can be pre-
ferred to other benchmark end-of-life routes, such as direct composting, incineration, etc.,
although the performance in terms of biogas production needs to be significantly improved
with the aim to increase the sustainability of the investigated systems.

As shown in Figure 8, the production phase is responsible for the whole environmental
impact of the biobased polymer films considered. For the PLA and the PLA/PBS blend-
based films, the most important flows concern polymer production. For the film reinforced
with the CNCs, this nanofiller is responsible for nearly 60% of the whole impact, despite
representing less than 3% in weight of the total system, while PLA and PBS granule
production contribute 21% and 10%, respectively (PLA represents 80% of the matrix weight
as in the unfilled blend, while the PBS represents the remaining 20% of the matrix weight).

Regarding the end-of-life phase, as shown in Figure 8, the positive scenario due to the
possibility of using energy from the produced biogas is completely counterbalanced by
the negative scenario related to the environmental burdens due to digestate compositing,
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inoculum transport and the materials and energy flows crossing the AD plant, as well as
the co-generation ones.
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As shown in Figure 9, the most relevant impact categories in the considered life cycle of
the three systems include global warming and fine particulate matter formation, generally
caused by energy used to produce the required raw materials and to carry out the processes
included within the three kinds of biofilm supply chain. In the case of the unfilled systems,
more than 40% of the impact is due to global warming and another 40% to the particulate
matter formation. In the case of the filled system, global warming is responsible for 32% of
the total impact, while particulate matter formation is responsible for more than 45% of the
total impact.
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Another 10% of the total LCA score is due to human toxicity generated by the emission
of carcinogenic and non-carcinogenic substances. The related contribution is higher in the
case of the reinforced film (about 17%). A less significant role is played by the whole range
of the other impact categories, such as land use, fossil and mineral resource exploitation,
and water consumption.

The aforementioned impact categories have been measured through the quantification
of the corresponding impact indicators, as summarized in Table 5.

Table 5. Quantification of the impact indicators related to the investigated systems.

Impact Category Unit PLA Film PLA_PBS Film PLA_PBS_3CNC Film

Global warming kg CO2 eq 4.03 4.83 8.51

Stratospheric ozone depletion kg CFC11 eq 2.83 × 10−5 2.68 × 10−5 2.93 × 10−5

Ionizing radiation kBq Co-60 eq 4.27 × 10−2 0.20 1.62

Ozone formation, human health kg NOx eq 9.58 × 10−3 1.07 × 10−2 1.90 × 10−2

Fine particulate matter formation kg PM2.5 eq 6.43 × 10−3 7.20 × 10−3 1.89 × 10−2

Ozone formation, terrestrial ecosystems kg NOx eq 1.02 × 10−2 1.14 × 10−2 2.01 × 10−2

Terrestrial acidification kg SO2 eq 1.86 × 10−2 2.01 × 10−2 5.34 × 10−2

Freshwater eutrophication kg P eq 1.45 × 10−3 1.67 × 10−3 5.53 × 10−3

Marine eutrophication kg N eq 1.43 × 10−3 1.19 × 10−3 3.19 × 10−3

Terrestrial ecotoxicity kg 1.4-DCB 12.99 14.32 46.76

Freshwater ecotoxicity kg 1.4-DCB 0.16 0.17 0.65

Marine ecotoxicity kg 1.4-DCB 0.20 0.21 0.84



Sustainability 2024, 16, 10146 17 of 22

Table 5. Cont.

Impact Category Unit PLA Film PLA_PBS Film PLA_PBS_3CNC Film

Human carcinogenic toxicity kg 1.4-DCB 0.15 0.19 0.55

Human non-carcinogenic toxicity kg 1.4-DCB 2.76 3.24 12.47

Land use m2a crop eq 0.82 0.72 1.04

Mineral resource scarcity kg Cu eq 1.05 × 10−2 1.14 × 10−2 3.54 × 10−2

Fossil resource scarcity kg oil eq 0.84 1.19 2.15

Water consumption m3 0.15 0.17 0.20

Table 6 summarizes the contribution of the end-of-life route to each indicator’s value
for the entire group of investigated systems. It can be seen that the end-of-life route for
the above-mentioned systems contributes to lowering the value of most impact indicators.
The problem is that this decrease does not occur for the most important indicators, such as
global warming and fine particulate matter formation. A slight decrease (lower than 0.50%)
occurs only in the case of the system based on the nano-reinforced film.

Table 6. Contribution of the end-of-life (EoL) phase to the impact indicator’s value for the
investigated systems.

Impact Category
Contribution of the EoL Route (%)

PLA Film PLA_PBS Film PLA_PBS_3CNC Film

Global warming +4.69 +5.96 −0.37

Stratospheric ozone depletion +61.40 +62.40 +56.77

Ionizing radiation −516.82 −78.11 −20.17

Ozone formation, human health −0.79 +0.74 −1.53

Fine particulate matter formation +1.97 +4.03 −0.47

Ozone formation, terrestrial ecosystems −0.29 +1.17 −1.33

Terrestrial acidification +18.51 +19.74 +5.68

Freshwater eutrophication −22.89 −14.26 −8.90

Marine eutrophication −1.61 −1.34 −1.10

Terrestrial ecotoxicity +3.75 +4.62 +0.45

Freshwater ecotoxicity −8.87 −5.70 −3.29

Marine ecotoxicity −9.07 −5.63 −3.31

Human carcinogenic toxicity −14.49 −7.75 −6.39

Human non-carcinogenic toxicity −14.47 −8.43 −4.96

Land use +14.61 +16.43 +10.58

Mineral resource scarcity −4.98 −2.85 −2.45

Fossil resource scarcity −11.07 −4.60 −7.90

Water consumption −2.55 −1.48 −3.96

This further demonstrates that the end-of-life phase for PLA and PLA/PBS blend
does not worsen their environmental impact but, at the same time, does not produce any
significant mitigation of their environmental impact arising from the related life cycle up
to the production stage (cradle-to-gate). Actually, a slight improvement occurs due to
the end-of-life route for the PLA/PBS-based film reinforced with CNCs, despite the very
low amount.
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As shown in Figure 10, the most important environmental effect throughout the whole
life cycle of the investigated films concerns human health, which is responsible for nearly
the entire related impact. Considerably less relevance concerns the ecosystem quality and
abiotic resource exploitation.
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Figures 9 and 10 show that the standard error, related to the contribution, respectively,
of each single impact category and environmental burdens to the investigated film envi-
ronmental impact, is very low, as the end-of-life phase for the above-mentioned systems
with respect to the corresponding life cycle does not significantly affect the LCA score
(it actually seems to be nearly negligible). Therefore, the changes in the produced biogas
in comparison to the measured average value produce small variations in the whole LCA
score, and also in the impact indicators and environmental burdens.

Table 7 summarizes the quantification of the main environmental damages related to
the whole life cycle of the PLA-based film, the PLA/PBS blend-based one, and the latter
blend reinforced with the CNC system. For the unfilled films, the end-of-life contributes to
a slight increase in issues such as human health and ecosystem quality, as shown also in
Table 8. On the other hand, the end-of-life contributes to decreasing resource exploitation.
In the case of the nanocomposite film, the end-of-life contributes also to slightly decreasing
human health issues.

Table 7. Quantification of the environmental damages related to the investigated systems.

Damage Category Unit PLA Film PLA_PBS Film PLA_PBS_3CNC Film

Human health DALY 9.14 × 10−6 1.07 × 10−5 2.47 × 10−5

Ecosystems Species × yr 2.63 × 10−8 2.86 × 10−8 5.30 × 10−8

Resources USD2013 0.24 0.36 0.58

Table 8. Contribution of the end-of-life (EoL) phase to the environmental damage value for the
investigated systems.

Damage Category
Contribution of the EoL Route (%)

PLA Film PLA_PBS Film PLA_PBS_3CNC Film

Human health +1.01 +3.20 −1.39

Ecosystems +7.85 +8.88 +2.10

Resources −11.01 −4.58 −7.83
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4. Conclusions

The biogas production from various substrates after about one month highlighted
significant differences in anaerobic digestion efficiency. Cellulose biofilms demonstrated
the highest biogas production, whereas bioplastics such as PLA and its blends (PLA_PBS
and PLA_PBS_3CNC) exhibited lower biogas yields, consistent with the already available
literature on PLA’s reduced biodegradability during digestion. The inclusion of 3% of
cellulose nanocrystals (CNCs) in PLA_PBS_3CNC slightly improved biogas output, sug-
gesting enhanced biodegradation of this blend. The estimated energy content of biogas
reflected cellulose’s superior potential for energy production, while PLA and its blends
offered modest yet notable renewable energy contributions, with PLA_PBS_3CNC blend
yielding higher values compared to the other PLA-made biofilms. The % of biodegrada-
tion for cellulose after the tested period accounted for approximately 93.86% followed by
PLA_PBS_3CNC biofilm with 31.74%, highlighting how CNCs can markedly enhance the
biodegradability of PLA/PBS blends and play a critical role in promoting the anaerobic
degradation of biopolymer blends, although a longer digestion time is probably needed to
achieve greater biodegradation. On the contrary, PLA and PLA_PBS blends showed no
degradation, highlighting the limitations of these materials under the tested conditions.

In this investigation, the LCA of three biofilm systems was also carried out according
to a “Cradle-to-Gate” approach. The end-of-life stage regards anaerobic digestion aimed at
the production of energy in a co-generation plant. This scenario allows for avoiding the
production of the same amount of (electric and thermal) energy. On the other hand, the
resulting digestate has been assumed as subjected to composting.

Despite the end-of-life route diverting the biofilms from landfilling, incineration, and
mainly from direct industrial composting, the amount of produced biogas is very low, as
well as the energy potentially produced. For this reason, this disposal route cannot be
considered as a mitigation action of the environmental effects related to the whole life cycle
of the investigated biodegradable films. Only in the case of the system reinforced with
CNCs does the end-of-life slightly mitigate the environmental burdens related to the other
stages of the biofilm life cycle, as a consequence of the higher amount of produced biogas.

However, for the management of biodegradable wastes diverted from direct industrial
composting, anaerobic digestion appears as an environmentally favorable option, as a
consequence of the conversion of organic waste into biogas, which is a renewable energy
source. Overall, these findings emphasize the potential for optimizing bioplastic blends,
particularly with CNCs, to enhance biodegradability and renewable energy production.
Anyway, more sustainable scenarios have to be investigated for biopolymer-based food
packaging as a further milestone toward a circular economy, including optimizing anaer-
obic digestion conditions for enhanced biodegradability and biogas production. Future
studies could investigate process improvements evaluating anaerobic digestion efficiency
in different operating conditions. The effectiveness of applying different pre-treatments
along with the co-digestion with other biomass types could be further investigated to
maximize the biogas yield potential of different biopolymeric blends.
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