Metal Resistance of Microorganisms as a Crucial Factor for Their Homeostasis and Sustainable Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Metal Solutions
2.2. Bacterial Strains
2.3. Determination of the Maximum Tolerable Concentrations of Heavy Metals for the Strains
2.4. Growth of the Strains in the Presence of Heavy Metals
2.5. Analysis of Genes Responsible for Metal Resistance
2.6. Data Analysis
3. Results
3.1. Level of Microbial Resistance to Metals
3.2. Dynamics of Microbial Growth in the Presence of Heavy Metals
3.3. Genetic Background of Microbial Resistance to Metals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bradl, H.B. Chapter 1 Sources and origins of heavy metals. In Interface Science and Technology; Heavy Metals in the Environment: Origin, Interaction and Remediation; Elsevier: Amsterdam, The Netherlands, 2005; Volume 6, pp. 1–27. [Google Scholar] [CrossRef]
- Nies, D.H. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 1999, 51, 730–750. [Google Scholar] [CrossRef] [PubMed]
- Inobeme, A. Effect of Heavy Metals on Activities of Soil Microorganism. In Microbial Rejuvenation of Polluted Environment; Adetunji, C.O., Panpatte, D.G., Jhala, Y.K., Eds.; Springer: Singapore, 2021; Volume 3, pp. 115–142. [Google Scholar] [CrossRef]
- Hejna, M.; Gottardo, D.; Baldi, A.; Dell’Orto, V.; Cheli, F.; Zaninelli, M.; Rossi, L. Review: Nutritional ecology of heavy metals. Animal 2018, 12, 2156–2170. [Google Scholar] [CrossRef] [PubMed]
- Godyń, P.; Dołhańczuk-Śródka, A.; Ziembik, Z.; Moliszewska, E. Estimation of the committed radiation dose resulting from gamma radionuclides ingested with food. J. Radioanal. Nucl. Chem. 2014, 299, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Wang, Q.; Lv, M.; Chen, L. Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 2019, 360, 1553–1563. [Google Scholar] [CrossRef]
- Godyń, P.; Dołhańczuk-Śródka, A.; Ziembik, Z.; Moliszewska, E. Influence of K on the transport of Cs-137 in soil–plant root and root-leaf systems in sugar beet. J. Radioanal. Nucl. Chem. 2016, 307, 325–331. [Google Scholar] [CrossRef]
- Havryliuk, O.A.; Hovorukha, V.M.; Sachko, A.V.; Gladka, G.V.; Bida, I.O.; Tashyrev, O.B. Bioremoval of hazardous cobalt, nickel, chromium, copper and cadmium compounds from contaminated soil by Nicotiana tabacum plants and associated microbiome. Biosyst. Divers. 2021, 29, 88–93. [Google Scholar] [CrossRef]
- Das, S.; Dash, H.R.; Chakraborty, J. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl. Microbiol. Biotechnol. 2016, 100, 2967–2984. [Google Scholar] [CrossRef]
- Rahman, Z. An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. J. Hazard. M. 2020, 396, 122682. [Google Scholar] [CrossRef]
- Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D.J.; Larsson, D.J.; Hobman, J.L. Chapter Seven—Metal Resistance and Its Association with Antibiotic Resistance. In Advances in Microbial Physiology; Microbiology of Metal Ions; Poole, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 70, pp. 261–313. [Google Scholar] [CrossRef]
- Hovorukha, V.; Bhattacharyya, A.; Iungin, O.; Tashyreva, H.; Romanovska, V.; Havryliuk, O.; Bielikova, O.; Blackwell, C.; Burks, B.; Cothern, C.; et al. Draft Genome Sequences of Six Strains Isolated from the Rhizosphere of Wheat Grown in Cadmium-Contaminated Soil. Microbiol. Resour. Announc. 2020, 9, e00676-20. [Google Scholar] [CrossRef]
- Afzal, A.M.; Rasool, M.H.; Waseem, M.; Aslam, B. Assessment of heavy metal tolerance and biosorptive potential of Klebsiella variicola isolated from industrial effluents. AMB Express 2017, 7, 184–193. [Google Scholar] [CrossRef]
- Li, Y.; Du, J.; Zhang, P.; Ding, J. Crystal structure of human copper homeostasis protein CutC reveals a potential copper-binding site. J. Struct. Biol. 2010, 169, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Kloosterman, T.G.; Van Der Kooi-Pol, M.M.; Bijlsma, J.J.E.; Kuipers, O.P. The novel transcriptional regulator SczA mediates protection against Zn2+ stress by activation of the Zn2+-resistance gene czcD in Streptococcus pneumoniae. Mol. Microbiol. 2007, 65, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.; Schlegel, H.G. Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J. Bacteriol. 1994, 176, 7045–7054. [Google Scholar] [CrossRef] [PubMed]
- Gu, R.; Gao, J.; Dong, L.; Liu, Y.; Li, X.; Bai, Q.; Jia, Y.; Xiao, H. Chromium metabolism characteristics of coexpression of ChrA and ChrT gene. Ecotoxicol. Environ. Saf. 2020, 204, 111060. [Google Scholar] [CrossRef]
- Lei, H.-T.; Bolla, J.R.; Bishop, N.R.; Su, C.-C.; Yu, E.W. Crystal Structures of CusC Review Conformational Changes Accompanying Folding and Transmembrane Channel Formation. J. Mol. Biol. 2014, 426, 403–411. [Google Scholar] [CrossRef]
- Nies, D.H. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J. Bacteriol. 1992, 174, 8102–8110. [Google Scholar] [CrossRef]
- Heeney, D.D.; Yarov-Yarovoy, V.; Marco, M.L. Sensitivity to the two peptide bacteriocin plantaricin EF is dependent on CorC, a membrane-bound, magnesium/cobalt efflux protein. Microbiol. Open 2019, 8, 827–843. [Google Scholar] [CrossRef]
- Hattori, M.; Tanaka, Y.; Fukai, S.; Ishitani, R.; Nureki, O. Crystal structure of the MgtE Mg2+ transporter. Nature 2007, 448, 1072–1075. [Google Scholar] [CrossRef]
- Nikaido, H.; Hall, J.A. Overview of bacterial ABC transporters. In Methods in Enzymology; ABC Transporters: Biochemical, Cellular, and Molecular Aspects; Academic Press: Cambridge, MA, USA, 1998; Volume 292, pp. 3–20. [Google Scholar] [CrossRef]
- Grass, G.; Otto, M.; Fricke, B.; Haney, C.J.; Rensing, C.; Nies, D.H.; Munkelt, D. FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch. Microbiol. 2005, 183, 9–18. [Google Scholar] [CrossRef]
- Docherty, K.M.; Gutknecht, J.L.M. The role of environmental microorganisms in ecosystem responses to global change: Current state of research and future outlooks. Biogeochemistry 2012, 109, 1–6. [Google Scholar] [CrossRef]
- Havryliuk, O.; Hovorukha, V.; Patrauchan, M.; Youssef, N.H.; Tashyrev, O. Draft whole genome sequence for four highly copper resistant soil isolates Pseudomonas lactis strain UKR1, Pseudomonas panacis strain UKR2, and Pseudomonas veronii strains UKR3 and UKR4. Curr. Res. Microb. Sci. 2020, 1, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Haferburg, G.; Kothe, E. Microbes and metals: Interactions in the environment. J. Basic Microbiol. 2007, 47, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Abidin, Z.; Chowdhury, A. Heavy metal and antibiotic resistance bacteria in marine sediment of pahang coastal water. J. CleanWAS 2018, 2, 20–22. [Google Scholar] [CrossRef]
- Giovanella, P.; Cabral, L.; Costa, A.P.; de Oliveira Camargo, F.A.; Gianello, C.; Bento, F.M. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals. Ecotoxicol. Environ. Saf. 2017, 140, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Soto, J.; Charles, T.C.; Lynch, M.D.J.; Larama, G.; Herrera, H.; Arriagada, C. Genome Sequence of Brevundimonas sp., an Arsenic Resistant Soil Bacterium. Diversity 2021, 13, 344. [Google Scholar] [CrossRef]
- Weimer, A.; Kohlstedt, M.; Volke, D.C.; Nikel, P.I.; Wittmann, C. Industrial biotechnology of Pseudomonas putida: Advances and prospects. Appl. Microbiol. Biotechnol. 2020, 104, 7745–7766. [Google Scholar] [CrossRef]
- Leedjärv, A.; Ivask, A.; Virta, M. Interplay of Different Transporters in the Mediation of Divalent Heavy Metal Resistance in Pseudomonas putida KT2440. J. Bacteriol. 2008, 190, 2680–2689. [Google Scholar] [CrossRef]
- Cánovas, D.; Cases, I.; De Lorenzo, V. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol. 2003, 5, 1242–1256. [Google Scholar] [CrossRef]
- Miller, C.D.; Pettee, B.; Zhang, C.; Pabst, M.; McLean, J.E.; Anderson, A.J. Copper and cadmium: Responses in Pseudomonas putida KT2440. Lett. Appl. Microbiol. 2009, 49, 775–783. [Google Scholar] [CrossRef]
- Nokman, W.; Benluvankar, V.; Maria Packiam, S.; Vincent, S. Screening and molecular identification of heavy metal resistant Pseudomonas putida S4 in tannery effluent wastewater. Biocatal. Agric. Biotechnol. 2019, 18, 101052. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Wang, Q.; Wang, C.; Wang, P. Biosorption of copper, manganese, cadmium, and zinc by Pseudomonas putida isolated from contaminated sediments. Desalination Water Treat. 2014, 52, 7218–7224. [Google Scholar] [CrossRef]
- Deshwal, V.K.; Kumar, P. Effect of Heavy metals on Growth and PGPR activity of Pseudomonads. J. Acad. Ind. Res. 2013, 2, 286–290. [Google Scholar]
- Maltman, C.; Messner, K.; Kyndt, J.A.; Yurkov, V. Brevundimonas aurifodinae, sp. nov., an Aerobic Anoxygenic Phototroph Resistant to Metalloid Oxyanions Isolated from Gold Mine Tailings. Microorganisms 2024, 12, 2167. [Google Scholar] [CrossRef]
- Alvarado-Lopez, M.J.; Garrido-Hoyos, S.E.; Raynal-Gutierrez, M.E.; El-Kassis, E.G.; Marrugo-Negrete, J.L.; Rosano-Ortega, G. Native Cyanide Degrading Bacterial Consortium and Its Potential for Gold Mine Tailings Tertiary Biotechnological Treatment. Chem. Eng. Trans. 2022, 94, 1441–1446. [Google Scholar] [CrossRef]
- Zaim, S.; Bekkar, A.A. Advances in research on the use of Brevundimonas spp. to improve crop and soil fertility and for soil bioremediation. Alger. J. Biosci. 2023, 4, 045–051. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Wang, Y.; Xie, X.; Shi, Q. The Connection between Czc and Cad Systems Involved in Cadmium Resistance in Pseudomonas putida. Int. J. Mol. Sci. 2021, 22, 9697. [Google Scholar] [CrossRef]
- Lin, H.; Chen, G.; Zhao, H.; Chao, Y. Variable metal resistance of P. putida CZ1 biofilms in different environments suggests its remediation application scope. J. Environ. Manag. 2021, 298, 113458. [Google Scholar] [CrossRef]
- Tripathi, M.; Kumar, S.; Makarana, G.; Goel, R. Metal-Tolerant Bioinoculant Pseudomonas putida KNP9 Mediated Enhancement of Soybean Growth under Heavy Metal Stress Suitable for Biofuel Production at the Metal-Contaminated Site. Energies 2023, 16, 4508. [Google Scholar] [CrossRef]
Strain | MTC, ppm | ||||
---|---|---|---|---|---|
Cr(VI) | Fe(III) | Co(II) | Cu(II) | Ni(II) | |
B. vesicularis USM1 | 50 | 1500 | 25 | 150 | 50 |
P. putida USM4 | 250 | 2500 | 100 | 600 | 500 |
Metal | Concentration, ppm | Lag Phase Duration, Hours | |
---|---|---|---|
B. vesicularis USM1 | P. putida USM4 | ||
PB without metal | 0 | 10 | 10 |
Cr(VI) | 50 | 10 | 8 |
100 | 19 | NA | |
150 | NA 1 | 9 | |
250 | GA 2 | GA | |
Fe(III) | 500 | 10 | 10 |
1500 | 10 | 11 | |
2500 | 10 | 11 | |
Co(II) | 25 | 25 | NA |
50 | 26 | 1 | |
100 | GA | 24 | |
150 | NA | 15 | |
Cu(II) | 50 | 16 | NA |
100 | 16 | 1 | |
150 | GA | NA | |
200 | NA | 1 | |
300 | NA | 15 | |
400 | NA | GA | |
Ni(II) | 50 | 11 | NA |
100 | 12 | 3 | |
200 | NA | 8 | |
300 | NA | 3 | |
500 | NA | 2 |
No. | BRC ID | Product |
---|---|---|
Copper resistance genes | ||
1 | fig|41276.14.peg.852 | Lead-, cadmium-, zinc-, and mercury-transporting ATPase (EC 3.6.3.3) (EC 3.6.3.5); copper-translocating P-type ATPase (EC 3.6.3.4) |
2 | fig|41276.14.peg.2064 | Apolipoprotein N-acyltransferase/Copper homeostasis protein CutE |
3 | fig|41276.14.peg.3039 | Copper resistance protein B |
4 | fig|41276.14.peg.3043 | Lead-, cadmium-, zinc-, and mercury-transporting ATPase (EC 3.6.3.3) (EC 3.6.3.5); Copper-translocating P-type ATPase (EC 3.6.3.4) |
5 | fig|41276.14.peg.3048 | Copper resistance protein CopD |
6 | fig|41276.14.peg.3049 | Copper resistance protein CopC |
Cobalt and Nickel resistance genes | ||
1 | fig|41276.14.peg.574 | Cobalt/zinc/cadmium resistance protein CzcD |
2 | fig|41276.14.peg.854 | Nickel–cobalt–cadmium resistance protein NCCN |
3 | fig|41276.14.peg.860 | Cobalt/zinc/cadmium resistance protein CzcD |
4 | fig|41276.14.peg.2683 | Nickel–cobalt–cadmium resistance protein NCCN |
5 | fig|41276.14.peg.3024 | Cobalt/zinc/cadmium resistance protein CzcD |
6 | fig|41276.14.peg.3025 | RcnR-like protein clustered with cobalt–zinc–cadmium resistance protein CzcD |
7 | fig|41276.14.peg.3052 | Nickel–cobalt–cadmium resistance protein NCCN |
Chromate resistance genes | ||
1 | fig|41276.14.peg.1538 | Chromate reductase (EC 1.6.5.2) |
2 | fig|41276.14.peg.1882 | Chromate transport protein ChrA |
3 | fig|41276.14.peg.2841 | Chromate transport protein ChrA |
Iron resistance genes | ||
1 | fig|41276.14.peg.718 | Outer membrane receptor proteins, mostly Fe transport |
2 | fig|41276.14.peg.1238 | Ferrous iron efflux pump FieF |
No. | BRC ID | Product |
---|---|---|
Copper resistance genes | ||
1 | fig|303.690.peg.47 | Apolipoprotein N-acyltransferase/copper homeostasis protein CutE |
2 | fig|303.690.peg.358 | Lead-, cadmium-, zinc-, and mercury-transporting ATPase (EC 3.6.3.3) (EC 3.6.3.5); copper-translocating P-type ATPase (EC 3.6.3.4) |
3 | fig|303.690.peg.1569 | Copper resistance protein B |
4 | fig|303.690.peg.1570 | Blue copper oxidase CueO precursor |
5 | fig|303.690.peg.1574 | Copper-sensing two-component system response regulator CusR |
6 | fig|303.690.peg.1575 | Copper sensory histidine kinase CusS |
7 | fig|303.690.peg.1576 | Copper/silver efflux RND transporter, outer membrane protein CusC |
8 | fig|303.690.peg.1577 | Copper/silver efflux RND transporter, membrane fusion protein CusB |
9 | fig|303.690.peg.1578 | Copper/silver efflux RND transporter, transmembrane protein CusA |
10 | fig|303.690.peg.1581 | Copper-sensing two-component system response regulator CusR |
11 | fig|303.690.peg.1587 | Lead-, cadmium-, zinc-, and mercury-transporting ATPase (EC 3.6.3.3) (EC 3.6.3.5); copper-translocating P-type ATPase (EC 3.6.3.4) |
12 | fig|303.690.peg.1593 | Lead-, cadmium-, zinc-, and mercury-transporting ATPase (EC 3.6.3.3) (EC 3.6.3.5); copper-translocating P-type ATPase (EC 3.6.3.4) |
13 | fig|303.690.peg.2116 | Copper-sensing two-component system response regulator CpxR |
14 | fig|303.690.peg.3556 | Heavy-metal-associated domain (N-terminus) and membrane-bounded cytochrome biogenesis cycZ-like domain, possible membrane copper tolerance protein |
15 | fig|303.690.peg.4168 | Copper sensory histidine kinase CusS |
16 | fig|303.690.peg.4335 | Copper resistance protein B |
17 | fig|303.690.peg.4357 | Copper tolerance protein |
18 | fig|303.690.peg.4358 | Copper-sensing two-component system response regulator CusR |
19 | fig|303.690.peg.5088 | Copper(I) chaperone CopZ |
20 | fig|303.690.peg.5090 | Lead-, cadmium-, zinc-, and mercury-transporting ATPase (EC 3.6.3.3) (EC 3.6.3.5); copper-translocating P-type ATPase (EC 3.6.3.4) |
Cobalt and Nickel resistance genes | ||
1 | fig|303.690.peg.46 | Magnesium and cobalt efflux protein CorC |
2 | fig|303.690.peg.347 | Mg/Co/Ni transporter MgtE, CBS domain-containing |
3 | fig|303.690.peg.1024 | Mg/Co/Ni transporter MgtE, CBS domain-containing |
4 | fig|303.690.peg.1583 | Cobalt/zinc/cadmium efflux RND transporter, outer membrane protein CzcC |
5 | fig|303.690.peg.1584 | Cobalt/zinc/cadmium efflux RND transporter, membrane fusion protein CzcB |
6 | fig|303.690.peg.1585 | Cobalt/zinc/cadmium efflux RND transporter, transmembrane protein CzcA |
7 | fig|303.690.peg.1607 | Cobalt/zinc/cadmium resistance protein CzcD |
8 | fig|303.690.peg.1746 | Cobalt–zinc–cadmium resistance protein |
9 | fig|303.690.peg.2184 | Predicted cobalt transporter CbtA |
10 | fig|303.690.peg.2257 | ABC transporter, permease protein 2 (cluster 5, nickel/peptides/opines) |
11 | fig|303.690.peg.2258 | ABC transporter, permease protein 1 (cluster 5, nickel/peptides/opines) |
12 | fig|303.690.peg.2259 | ABC transporter, substrate-binding protein (cluster 5, nickel/peptides/opines) |
13 | fig|303.690.peg.2879 | ABC transporter, ATP-binding protein (cluster 5, nickel/peptides/opines)/ABC transporter, ATP-binding protein (cluster 5, nickel/peptides/opines) |
14 | fig|303.690.peg.3397 | Nickel-binding accessory protein UreJ-HupE |
15 | fig|303.690.peg.3529 | Magnesium and cobalt transport protein CorA |
16 | fig|303.690.peg.4187 | Cobalt ABC transporter, ATP-binding protein CbtL |
17 | fig|303.690.peg.4188 | Cobalt ABC transporter, permease protein CbtK |
18 | fig|303.690.peg.4189 | Cobalt ABC transporter, substrate-binding protein CbtJ |
19 | fig|303.690.peg.4434 | Magnesium and cobalt transport protein CorA |
20 | fig|303.690.peg.4684 | Nickel ABC transporter, ATP-binding protein NikE (TC 3.A.1.5.3) |
21 | fig|303.690.peg.4685 | Nickel ABC transporter, ATP-binding protein NikD (TC 3.A.1.5.3) |
22 | fig|303.690.peg.4686 | Nickel ABC transporter, permease protein NikC (TC 3.A.1.5.3) |
23 | fig|303.690.peg.4687 | Nickel ABC transporter, permease protein NikB (TC 3.A.1.5.3) |
24 | fig|303.690.peg.4688 | Nickel ABC transporter, substrate-binding protein NikA (TC 3.A.1.5.3) |
25 | fig|303.690.peg.4689 | Nickel-responsive regulator NikR |
Chromate resistance genes | ||
1 | fig|303.690.peg.2867 | Chromate reductase (EC 1.6.5.2) |
2 | fig|303.690.peg.4676 | Chromate transport protein ChrA |
Iron resistance genes | ||
1 | fig|303.690.peg.31 | Ferrous iron efflux pump FieF |
2 | fig|303.690.peg.354 | Ferric iron ABC transporter, iron-binding protein |
3 | fig|303.690.peg.355 | Ferric iron ABC transporter, permease protein |
4 | fig|303.690.peg.356 | Ferric iron ABC transporter, ATP-binding protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hovorukha, V.; Moliszewska, E.; Havryliuk, O.; Bida, I.; Tashyrev, O. Metal Resistance of Microorganisms as a Crucial Factor for Their Homeostasis and Sustainable Environment. Sustainability 2024, 16, 9655. https://doi.org/10.3390/su16229655
Hovorukha V, Moliszewska E, Havryliuk O, Bida I, Tashyrev O. Metal Resistance of Microorganisms as a Crucial Factor for Their Homeostasis and Sustainable Environment. Sustainability. 2024; 16(22):9655. https://doi.org/10.3390/su16229655
Chicago/Turabian StyleHovorukha, Vira, Ewa Moliszewska, Olesia Havryliuk, Iryna Bida, and Oleksandr Tashyrev. 2024. "Metal Resistance of Microorganisms as a Crucial Factor for Their Homeostasis and Sustainable Environment" Sustainability 16, no. 22: 9655. https://doi.org/10.3390/su16229655
APA StyleHovorukha, V., Moliszewska, E., Havryliuk, O., Bida, I., & Tashyrev, O. (2024). Metal Resistance of Microorganisms as a Crucial Factor for Their Homeostasis and Sustainable Environment. Sustainability, 16(22), 9655. https://doi.org/10.3390/su16229655