Evaluation of Autonomous Driving Safety by Operational Design Domains (ODD) in Mixed Traffic
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Methodology of PCA
3.2. Evaluating Autonomous Driving Safety by ODDs
3.3. Implementing a Real-World Based Simulation Environment
3.4. Identify Indicators and Evaluate Driving Safety
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NHTSA. Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey; National Highway Traffic Safety Administration: Washington, DC, USA, 2018; DOT HS 812 115; Available online: https://trid.trb.org/View/1507603 (accessed on 26 October 2024).
- Bahrami, S.; Roorda, M.J. Optimal traffic management policies for mixed human and automated traffic flows. Transp. Res. Part A Policy Pract. 2020, 135, 130–143. [Google Scholar] [CrossRef]
- Li, Q.; Li, X. Trajectory planning for autonomous modular vehicle docking and autonomous vehicle platooning operations. Transp. Res. Part E Logist. Transp. Rev. 2022, 166, 102886. [Google Scholar] [CrossRef]
- Rad, S.R.; Farah, H.; Taale, H.; van Arem, B.; Hoogendoorn, S.P. Design and operation of dedicated lanes for connected and automated vehicles on motorways: A conceptual framework and research agenda. Transp. Res. Part C Emerg. Technol. 2020, 117, 102664. [Google Scholar] [CrossRef]
- Tengilimoglu, O.; Carsten, O.; Wadud, Z. Implications of automated vehicles for physical road environment: A comprehensive review. Transp. Res. Part E Logist. Transp. Rev. 2023, 169, 102989. [Google Scholar] [CrossRef]
- Yu, X.; van den Berg, V.A.; Verhoef, E.T.; Li, Z.C. Will all autonomous cars co-operate? Brands’ strategic interactions under dynamic congestion. Transp. Res. Part E Logist. Transp. Rev. 2022, 166, 102825. [Google Scholar] [CrossRef]
- Zhu, J.; Tasic, I.; Qu, X. Flow-level coordination of connected and autonomous vehicles in multilane freeway ramp merging areas. Multimodal Transp. 2022, 1, 100005. [Google Scholar] [CrossRef]
- Gu, Z.; Wang, Z.; Liu, Z.; Saberi, M. Network Traffic Instability with Automated Driving and Cooperative Merging. Transp. Res. Part C Emerg. Technol. 2022, 138, 103626. [Google Scholar] [CrossRef]
- Yao, Z.; Hu, R.; Jiang, Y.; Xu, T. Stability and Safety Evaluation of Mixed Traffic Flow with Connected Automated Vehicles on Expressways. J. Saf. Res. 2020, 75, 262–274. [Google Scholar] [CrossRef]
- Yu, R.; Zheng, Y.; Qu, X. Dynamic driving environment complexity quantification method and its verification. Transp. Res. Part C Emerg. Technol. 2021, 127, 103051. [Google Scholar] [CrossRef]
- Jin, S.; Sun, D.H.; Zhao, M.; Li, Y.; Chen, J. Modeling and Stability Analysis of Mixed Traffic with Conventional and Connected Automated Vehicles from Cyber Physical Perspective. Phys. A Stat. Mech. Appl. 2020, 551, 124217. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, Y.; Xu, L.; Xia, C.; Olson, D.L. The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review. Phys. A Stat. Mech. Appl. 2024, 635, 129454. [Google Scholar] [CrossRef]
- Rong, J.; Mao, K.; Ma, J. Effects of individual differences on driving behavior and traffic flow characteristics. Transp. Res. Rec. 2011, 2248, 1–9. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Liu, S.; Yu, C.; Glaser, Y. Analysis of Pre-crash Scenarios and Contributing Factors for Autonomous Vehicle Crashes at Intersections. Accid. Anal. Prev. 2024, 195, 107383. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.K.; Channamallu, S.S.; Khan, M.A.; Kermanshachi, S.; Pamidimukkala, A. An Exploratory Analysis of Temporal and Spatial Patterns of Autonomous Vehicle Collisions. Public Works Manag. Policy 2023, 29, 588–611. [Google Scholar] [CrossRef]
- Parekh, D.; Poddar, N.; Rajpurkar, A.; Chahal, M.; Kumar, N.; Joshi, G.P.; Cho, W. A review on autonomous vehicles: Progress, methods and challenges. Electronics 2022, 11, 2162. [Google Scholar] [CrossRef]
- Li, G.; Yang, Y.; Li, S.; Qu, X.; Lyu, N.; Li, S.E. Decision Making of Autonomous Vehicles in Lane Change Scenarios: Deep Reinforcement Learning Approaches with Risk Awareness. Transp. Res. Part C Emerg. Technol. 2022, 134, 103452. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Huang, Y.; Zhao, J.; Bella, F. Safety of Autonomous Vehicles. J. Adv. Transp. 2020, 2020, 867757. [Google Scholar] [CrossRef]
- Kang, L.; Shen, H.; Li, Y.; Xu, S. A Data-driven Control Policy based Driving Safety Analysis System for Autonomous Vehicles. IEEE Internet Things J. 2023, 10, 14058–14070. [Google Scholar] [CrossRef]
- Favarò, F.M.; Eurich, S.O.; Nader, N. Analysis of Disengagements in Autonomous Vehicle Technology. In Proceedings of the 2018 Annual Reliability and Maintainability Symposium (RAMS), Reno, NV, USA, 22–25 January 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Banerjee, S.S.; Jha, S.; Cyriac, J.; Kalbarczyk, Z.T.; Iyer, R.K. Hands off the wheel in Autonomous vehicles?: A Systems Perspective on over a Million Miles of Field Data. In Proceedings of the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Luxembourg, 25–28 June 2018; pp. 586–597. [Google Scholar] [CrossRef]
- Khattak, Z.H.; Fontaine, M.D.; Smith, B.L. Exploratory Investigation of Disengagements and Crashes in Autonomous Vehicles Under Mixed Traffic: An Endogenous Switching Regime Framework. IEEE Trans. Intell. Transp. Syst. 2020, 22, 7485–7495. [Google Scholar] [CrossRef]
- Dixit, V.V.; Chand, S.; Nair, D.J. Autonomous Vehicles: Disengagements, Accidents and Reaction Times. PLoS ONE 2016, 11, e0168054. [Google Scholar] [CrossRef]
- Leledakis, A.; Lindman, M.; Östh, J.; Wågström, L.; Davidsson, J.; Jakobsson, L. A method for predicting crash configurations using counterfactual simulations and real-world data. Accid. Anal. Prev. 2021, 150, 105932. [Google Scholar] [CrossRef] [PubMed]
- Hou, G. Evaluating Efficiency and Safety of Mixed Traffic with Connected and Autonomous Vehicles in Adverse Weather. Sustainability 2023, 15, 3138. [Google Scholar] [CrossRef]
- Wang, H.; Lai, J.; Zhang, X.; Zhou, Y.; Li, S.; Hu, J. Make space to change lane: A cooperative adaptive cruise control lane change controller. Transp. Res. Part C Emerg. Technol. 2022, 143, 103847. [Google Scholar] [CrossRef]
- Hu, J.; Feng, Y.; Li, S.; Wang, H.; So, J.; Zheng, J. Mirroring the Parking Target: An Optimal-Control-Based Parking Motion Planner with Strengthened Parking Reliability and Faster Parking Completion. IEEE Trans. Intell. Transp. Syst. 2024; early access. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X.; Hu, Y. A Trajectory Planning Method of Automatic Lane Change Based on Dynamic Safety Domain. Automot. Innov. 2023, 6, 466–480. [Google Scholar] [CrossRef]
- Hu, J.; Yan, X.; Wang, G.; Tu, M.; Zhang, X.; Wang, H.; Lai, J. A Simulation Platform for Truck Platooning Evaluation in an Interactive Traffic Environment. IEEE Trans. Intell. Transp. Syst. 2024, 25, 13785–13804. [Google Scholar] [CrossRef]
- Liu, T.; Shen, Y.; Wang, K. Path Tracking Control for Autonomous Truck with Dual Modular Chassis. Automot. Innov. 2023, 6, 558–570. [Google Scholar] [CrossRef]
- Niroumand, R.; Hajibabai, L.; Hajbabaie, A.; Tajalli, M. Effects of Autonomous Driving Behavior on Intersection Performance and Safety in the Presence of White Phase for Mixed-autonomy Traffic Stream. Transp. Res. Rec. 2022, 2676, 112–130. [Google Scholar] [CrossRef]
- Sinha, A.; Chand, S.; Wijayaratna, K.P.; Virdi, N.; Dixit, V. Comprehensive Safety Assessment in Mixed Fleets with Connected and Automated Vehicles: A Crash Severity and Rate Evaluation of Conventional Vehicles. Accid. Anal. Prev. 2020, 142, 105567. [Google Scholar] [CrossRef]
- Hu, J.; Wang, S.; Zhang, Y.; Wang, H. Safety-Aware Human-Lead Vehicle Platooning by Proactively Reacting to Uncertain Human Behaving. arXiv 2024. [Google Scholar] [CrossRef]
- Li, M.; Jiang, C.; Song, X.; Cao, H. Parameter effects of the potential-field-driven model predictive controller for shared control. Automot. Innov. 2023, 6, 48–61. [Google Scholar] [CrossRef]
- Lee, S.J.; Jo, Y.; Kim, H.J.; Park, J.; Oh, C. Driving Safety Evaluation of Mixed Car-Following Situations by Autonomous and Manual Vehicles at Urban Interrupted Road Facilities. In Proceedings of the 102nd Annual Meeting of the Transportation Research Board, Washington, DC, USA, 8–12 January 2023. [Google Scholar] [CrossRef]
- Jung, A.R.; Jo, Y.; Oh, C.; Park, J.H.; Yun, D.G. Evaluating Driving Behavior of Mixed Car-Following Situations Consisting of Autonomous and Manual Vehicles by Road Alignment Conditions. In Proceedings of the 102nd Annual Meeting of the Transportation Research Board, Washington, DC, USA, 8–12 January 2023. [Google Scholar]
- Wen, X.; Cui, Z.; Jian, S. Characterizing Car-following Behaviors of Human Drivers When Following Automated Vehicles using The real-world Dataset. Accid. Anal. Prev. 2022, 172, 106689. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, Z.; Xu, Z.; Wang, Y.; Li, X.; Qu, X. Field Experiments on Longitudinal Characteristics of Human Driver Behavior Following an Autonomous Vehicle. Transp. Res. Part C Emerg. Technol. 2020, 114, 205–224. [Google Scholar] [CrossRef]
- Alozi, A.R.; Hussein, M. Active Road User Interactions With Autonomous Vehicles: Proactive Safety Assessment. Transp. Res. Rec. 2023, 2677, 74–89. [Google Scholar] [CrossRef]
- Kim, H.J.; Lim, K.I.; Kim, J.W.; Son, W.B. Operational Design Domain for Testing of Autonomous Shuttle on Arterial Road. J. Korea Inst. Intell. Transp. Syst. 2020, 19, 135–148. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Bartlett, M.S. The effect of standardization on a χ2 approximation in factor analysis. Biometrika 1951, 38, 337–344. [Google Scholar] [CrossRef]
- Howard, M.C.; Henderson, J. A review of exploratory factor analysis in tourism and hospitality research: Identifying current practices and avenues for improvement. J. Bus. Res. 2023, 154, 113328. [Google Scholar] [CrossRef]
- Salehimanesh, F.; Soltani, M.; Dastoorpoor, M.; Moradi, N. Factor analysis of the Persian version of the voice disability coping questionnaire. J. Voice 2020, 34, 965-e1. [Google Scholar] [CrossRef]
- Willgoss, T.G.; Goldbart, J.; Fatoye, F.; Yohannes, A.M. The Development and Validation of the Anxiety Inventory for Respiratory Disease. Chest 2013, 144, 1587–1596. [Google Scholar] [CrossRef]
- Kamrani, M.; Arvin, R.; Khattak, A.J. Extracting useful information from basic safety message data: An empirical study of driving volatility measures and crash frequency at intersections. Transp. Res. Rec. 2018, 2672, 290–301. [Google Scholar] [CrossRef]
- Mahdinia, I.; Mohammadnazar, A.; Arvin, R.; Khattak, A.J. Integration of automated vehicles in mixed traffic: Evaluating changes in performance of following human-driven vehicles. Accid. Anal. Prev. 2021, 152, 106006. [Google Scholar] [CrossRef] [PubMed]
- FHWA. Surrogate Safety Measures from Traffic Simulation Models; Federal Highway Administration Report FHWA-RD-03-050; FHWA: McLean, VA, USA, 2003. [Google Scholar] [CrossRef]
- Oh, C.; Park, S.R.; Ritchie, S.G. A Method for Identifying Rear-end Collision Risks Using Inductive Loop Detectors. Accid. Anal. Prev. 2006, 38, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Archer, J. Indicators for Traffic Safety Assessment and Prediction and Their Application in Micro-Simulation Modelling: A Study of Urban and Suburban Intersections. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2005. ISBN: 91-7323-119-3. [Google Scholar]
- Cunto, F.; Saccomanno, F.F. Calibration and validation of simulated vehicle safety performance at signalized intersections. Accid. Anal. Prev. 2008, 40, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Ko, J.; Park, J.; Oh, C.; Kim, S. Identification of safety benefits by inter-vehicle crash risk analysis using connected vehicle systems data on Korean freeways. Accid. Anal. Prev. 2020, 144, 105675. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Jang, J.; Park, S.; Oh, C. Connected vehicle-based road safety information system (CROSS): Framework and evaluation. Accid. Anal. Prev. 2021, 151, 105972. [Google Scholar] [CrossRef]
- Chevalier, A.; Coxon, K.; Chevalier, A.J.; Clarke, E.; Rogers, K.; Brown, J.; Keay, L. Predictors of older drivers’ involvement in rapid deceleration events. Accid. Anal. Prev. 2017, 98, 312–319. [Google Scholar] [CrossRef]
- Bagdadi, O.; Várhelyi, A. Development of a method for detecting jerks in safety critical events. Accid. Anal. Prev. 2013, 50, 83–91. [Google Scholar] [CrossRef]
- Ko, J.E.; Jang, J.Y.; Oh, C. A Multi-agent Driving Simulation Approach for Evaluating the Safety Benefits of Connected Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 23, 4512–4524. [Google Scholar] [CrossRef]
- Wang, H.; Feng, Y.; Tian, Y.; Wang, Z.; Hu, J.; Tomizuka, M. Towards the next level of vehicle automation through cooperative driving: A roadmap from planning and control perspective. IEEE Trans. Intell. Veh. 2024, 9, 4335–4347. [Google Scholar] [CrossRef]
Route | Number of AVs | Operating Time | Number of AD Mode Data | Number of MD Mode Data | Total | |||
A | 3 | Mon.~Sat. 09:00~16:00 (Break time 12:00~13:30) | 2,119,706 | 2,047,418 | 4,167,124 | |||
B | 2 | Mon.~Fri. 09:30~17:00 (Break time 12:00~13:30) | 1,119,177 | 957,571 | 2,076,748 | |||
Total | 3,238,883 | 3,004,989 | 6,243,872 | |||||
AVD sample | ||||||||
Terminal_id | 9272 | 6075 | ||||||
gps_dt [yyyymmddhhmmss] | 20220210103000 | 20220210093001 | ||||||
Latitude | 37.57634458 | 37.57647618 | ||||||
Longitude | 126.8938359 | 126.8989613 | ||||||
Speed [km/h] | 30.7 | 35.4 | ||||||
Driving_mode [1: MD mode/2: AD mode] | 2 | 1 |
AVD-Based Parameter Adjustment for Each Driving Mode | ||||
Parameter Adjustment for Each Driving Mode Based on Existing Research Review | ||||
Division | Parameter | Value | ||
MD Mode | AD Mode | |||
Following | Maximum look ahead distance | m | 250 | 300 |
Number of interaction objects | - | 2 | 10 | |
Number of interaction vehicles | - | 1 | 8 | |
Car following model | Gap time distribution (CC1) | s | 0.9 | 0.6 |
Threshold for entering “Following” (CC3) | s | 8.00 | 6.00 | |
Acceleration from standstill (CC8) | m/s2 | 3.50 | 4.00 | |
Acceleration at 80 km/h (CC9) | m/s2 | 1.50 | 2.00 | |
Signal control | Reaction after end of green | - | One decision | One decision |
No | Variable | Indicator | Equation | ||||
---|---|---|---|---|---|---|---|
1 | STD_spd. | Standard deviation | |||||
2 | STD_acc. | Measurement | Analysis time unit | ||||
3 | STD_spc. | Sampling interval | |||||
4 | STD_hdwy. | Number of data | |||||
5 | VF_spd. | Time-varying stochastic volatility | |||||
6 | VF_acc. | ||||||
7 | VF_jerk | Measurement | Analysis time unit | ||||
8 | VF_spc. | Sampling interval | |||||
9 | VF_hdwy. | Number of data | |||||
10 | Avg. DRAC | Deceleration rate to avoid a crash | |||||
Length of the leading vehicle | |||||||
11 | NC_SDI | Number of conflicts by SDI | |||||
12 | NC_TTC | Number of conflicts by TTC | |||||
13 | NC_DRAC | Number of conflicts by DRAC | |||||
14 | NC_RDE | Number of conflicts by rapid deceleration events | |||||
15 | CPI | Crash potential index | |||||
Maximum available deceleration rate | |||||||
Binary state variable (0: non-interaction/1: interaction) | |||||||
16 | P2P jerk |
Total Variance Explained | Rotated Component Matrix | Component Score | Normalized Values | Risk Score | |||
---|---|---|---|---|---|---|---|
ODD Name | Total | Variance (%) | Indicator | Component Matrix Coefficient | |||
Unsignalized intersection (left turn) | 3.11 | 31.15 | STD_spd. | 0.96 | 0.32 | 0.552 | 0.554 |
STD_acc. | 0.92 | 0.31 | 0.574 | ||||
VF_spd. | 0.92 | 0.30 | 0.376 | ||||
VF_jerk | 0.67 | 0.21 | 0.714 | ||||
Signalized intersection (right turn) | 3.73 | 31.08 | STD_spd. | 0.87 | 0.29 | 0.629 | 0.525 |
VF_jerk | 0.86 | 0.24 | 0.760 | ||||
VF_spd. | 0.81 | 0.17 | 0.448 | ||||
STD_acc. | 0.77 | 0.18 | 0.509 | ||||
STD_spc. | 0.77 | 0.32 | 0.281 | ||||
Roundabout | 4.16 | 37.77 | P2P jerk | 0.94 | 0.27 | 0.446 | 0.501 |
VF_spd. | 0.91 | 0.23 | 0.415 | ||||
STD_acc. | 0.89 | 0.20 | 0.469 | ||||
NC_RDE | 0.85 | 0.29 | 0.581 | ||||
STD_spd. | 0.80 | 0.15 | 0.541 | ||||
Unsignalized intersection (right turn) | 3.51 | 38.99 | STD_acc. | 0.95 | 0.27 | 0.469 | 0.485 |
STD_spd. | 0.91 | 0.26 | 0.291 | ||||
VF_jerk | 0.88 | 0.25 | 0.543 | ||||
VF_spd. | 0.75 | 0.23 | 0.562 | ||||
VF_acc. | 0.63 | 0.16 | 0.562 | ||||
Unsignalized intersection (through) | 3.98 | 38.44 | P2P jerk | 0.96 | 0.26 | 0.288 | 0.372 |
VF_spd. | 0.93 | 0.24 | 0.220 | ||||
STD_acc. | 0.89 | 0.22 | 0.490 | ||||
STD_spd. | 0.82 | 0.18 | 0.463 | ||||
NC_RDE | 0.71 | 0.24 | 0.400 | ||||
Signalized intersection (left turn) | 3.43 | 34.28 | VF_hdwy. | 0.97 | 0.28 | 0.370 | 0.369 |
VF_spc. | 0.96 | 0.27 | 0.383 | ||||
CPI | 0.96 | 0.27 | 0.579 | ||||
Avg. DRAC | 0.76 | 0.24 | 0.143 | ||||
Signalized intersection (through) | 2.90 | 28.74 | VF_hdwy. | 0.97 | 0.52 | 0.148 | 0.135 |
VF_spc. | 0.96 | 0.51 | 0.122 |
Total Variance Explained | Rotated Component Matrix | Component Score | Normalized Values | Risk Score | |||
---|---|---|---|---|---|---|---|
ODD Name | Total | Variance (%) | Indicator | Component Matrix Coefficient | |||
Merge from side road | 3.57 | 29.71 | NC_TTC | 0.98 | 0.28 | 0.507 | 0.493 |
NC_DRAC | 0.97 | 0.27 | 0.582 | ||||
CPI | 0.95 | 0.27 | 0.494 | ||||
STD_spc. | 0.70 | 0.19 | 0.390 | ||||
Illegal parking | 2.99 | 38.49 | STD_spc. | 0.83 | 0.43 | 0.274 | 0.457 |
STD_spd. | 0.76 | 0.37 | 0.523 | ||||
NC_DRAC | 0.65 | 0.42 | 0.573 | ||||
U-turn | 3.90 | 35.45 | STD_spd. | 0.89 | 0.23 | 0.377 | 0.364 |
STD_spc. | 0.88 | 0.22 | 0.380 | ||||
VF_spc. | 0.88 | 0.22 | 0.414 | ||||
STD_hdwy. | 0.86 | 0.25 | 0.277 | ||||
VF_hdwy. | 0.85 | 0.23 | 0.370 | ||||
Speed limit change zone | 3.90 | 41.48 | STD_acc. | 0.96 | 0.37 | 0.332 | 0.306 |
P2P jerk | 0.94 | 0.36 | 0.301 | ||||
STD_spd. | 0.93 | 0.36 | 0.284 | ||||
Bus stop | 3.07 | 31.92 | VF_spc. | 0.92 | 0.32 | 0.160 | 0.247 |
VF_hdwy. | 0.90 | 0.31 | 0.194 | ||||
NC_RDE | 0.80 | 0.27 | 0.285 | ||||
STD_acc. | 0.68 | 0.21 | 0.400 | ||||
P2P jerk | 0.52 | 0.14 | 0.196 | ||||
Additional lane | 2.82 | 33.48 | VF_hdwy. | 0.91 | 0.33 | 0.204 | 0.213 |
NC_SDI | 0.90 | 0.32 | 0.127 | ||||
VF_spc. | 0.83 | 0.28 | 0.198 | ||||
STD_spc. | 0.67 | 0.25 | 0.322 |
Total Variance Explained | Rotated Component Matrix | Component Score | Normalized Values | Risk Score | |||
---|---|---|---|---|---|---|---|
ODD Name | Total | Variance (%) | Indicator | Component Matrix Coefficient | |||
Crosswalk at intersection | 3.46 | 28.81 | VF_spd. | 0.87 | 0.28 | 0.393 | 0.552 |
STD_spd. | 0.84 | 0.25 | 0.629 | ||||
STD_acc. | 0.81 | 0.22 | 0.509 | ||||
VF_jerk | 0.77 | 0.21 | 0.760 | ||||
P2P jerk | 0.77 | 0.23 | 0.316 | ||||
Mid-block crosswalk | 3.24 | 29.47 | P2P jerk | 0.85 | 0.28 | 0.402 | 0.485 |
NC_RDE | 0.82 | 0.27 | 0.520 | ||||
STD_spd. | 0.81 | 0.25 | 0.435 | ||||
VF_acc. | 0.74 | 0.24 | 0.584 | ||||
Bicycle lane | 2.70 | 29.19 | STD_spd. | 0.88 | 0.42 | 0.594 | 0.473 |
STD_acc. | 0.77 | 0.35 | 0.380 | ||||
VF_jerk | 0.65 | 0.36 | 0.592 | ||||
VF_spd. | 0.64 | 0.21 | 0.325 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Ko, J.; Oh, C.; Kim, S. Evaluation of Autonomous Driving Safety by Operational Design Domains (ODD) in Mixed Traffic. Sustainability 2024, 16, 9672. https://doi.org/10.3390/su16229672
Kim H, Ko J, Oh C, Kim S. Evaluation of Autonomous Driving Safety by Operational Design Domains (ODD) in Mixed Traffic. Sustainability. 2024; 16(22):9672. https://doi.org/10.3390/su16229672
Chicago/Turabian StyleKim, Hoseon, Jieun Ko, Cheol Oh, and Seoungbum Kim. 2024. "Evaluation of Autonomous Driving Safety by Operational Design Domains (ODD) in Mixed Traffic" Sustainability 16, no. 22: 9672. https://doi.org/10.3390/su16229672
APA StyleKim, H., Ko, J., Oh, C., & Kim, S. (2024). Evaluation of Autonomous Driving Safety by Operational Design Domains (ODD) in Mixed Traffic. Sustainability, 16(22), 9672. https://doi.org/10.3390/su16229672