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Abstract: Building extraction in landslide-affected scattered mountainous areas is essential for
sustainable development, as it improves disaster risk management, fosters sustainable land use,
safeguards the environment, and bolsters socio-economic advancement; however, this process entails
considerable challenges. This study proposes a Res-Unet-based model to extract landslide-affected
buildings from unmanned aerial vehicle (UAV) data in scattered mountain regions, leveraging the
feature extraction capabilities of ResNet and the precise localization abilities of U-Net. A landslide-
affected, scattered mountainous region within the Three Gorges Reservoir area was selected as a case
study to validate the model’s performance. Experimental results indicate that Res-Unet displays
high accuracy and robustness in building recognition, attaining accuracy (ACC), intersection-over-
union (IOU), and Fl-score values of 0.9849, 0.9785, and 0.9892, respectively. This enhancement
can be attributed to the combined model, which amalgamates the skip connections, the symmetric
architecture of U-Net, and the residual blocks of ResNet. This integration preserves low-level
detail during recovery at higher levels, facilitating the extraction of multi-scale features while also
mitigating the vanishing gradient problem prevalent in deep network training through the residual
block structure, thus enabling the extraction of more complex features. The proposed Res-Unet
approach shows significant potential for the accurate recognition and extraction of buildings in
complex terrains through the efficient processing of remote sensing images.

Keywords: Res-Unet; building extraction; scattered mountainous area; unmanned aerial vehicle
(UAV) data

1. Introduction

The significance of landslide risk management has markedly increased due to the
escalating frequency of landslides. According to statistics from the EM-DAT global catastro-
phe database [1], landslides have led to over 32 million fatalities, impacted approximately
1 billion individuals, and incurred economic damages estimated at around 3.58 trillion US
dollars since the early 1900s. Statistics from the Ministry of Natural Resources, as reported
in the National Geological Disaster Bulletin, indicate that from 2005 to 2022, landslides
were the most prevalent geohazard in China, comprising 71.5% of all incidents. Building
extraction in landslide-affected mountainous regions is essential for sustainable develop-
ment, as it enhances disaster risk management, promotes sustainable land use, protects the
environment, and supports socio-economic development. In alighment with the mandates
of Sustainable Development Goal (SDG) 11 [2] for sustainable cities and communities, the
production of a building inventory enhances comprehension of the spatial distributions of
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structures in mountainous regions. This empowers authorities to perform comprehensive
disaster assessments, devise efficient early warning systems, and formulate effective emer-
gency response strategies, thus ensuring the affordability and sustainability of housing
and services, ultimately augmenting the community’s resilience and safety. Moreover, in
accordance with the protection principles of SDG 15 pertaining to terrestrial ecosystems,
precise building mapping enables the identification and management of buildings in hilly
regions. This directs land use decisions to circumvent high-risk areas, enforces construction
restrictions, and enhances infrastructure development, ultimately mitigating damage to
natural ecosystems and fostering sustainable land use [3]. This consequently facilitates
the attainment of both SDGs 11 and 15 [4]. Moreover, understanding the distribution and
characteristics of buildings aids in assessing the potential impacts of landslides, facilitating
more efficient emergency response and resource allocation. Ultimately, this enhances the
safety and resilience of populations in landslide-prone areas.

While field surveys for building inventories provide comprehensive data, they also
present significant drawbacks. Implementing large-scale landslide disaster scenarios ne-
cessitates substantial human resources and effort, rendering these surveys labor-intensive
and time-consuming to conduct [5,6]. Moreover, carrying out field surveys may expose
individuals to potential hazards, particularly in unstable or risky environments. These
constraints underscore the urgent need for alternative methodologies, such as remote
sensing technology, to effectively acquire data on elements at risk [7,8].

Recently, building extraction from remote sensing data, encompassing both optical
and synthetic aperture radar (SAR) data, has garnered considerable attention due to its cost-
efficiency and scalability in providing up-to-date information on urban structures. Initially,
the development of building extraction techniques heavily relied on heuristic feature design
approaches [9,10], which utilized geometric primitives; over-segmentation methods; and
classifier-based techniques. These early methods employed geographical, spectral, and
auxiliary data to hypothesize building locations [11,12]. However, they often encountered
challenges related to scalability and robustness, primarily due to the complexities inherent
in feature engineering.

Recent advancements in deep learning (DL) have significantly transformed the field
of remote sensing image interpretation [13]. Convolutional Neural Networks (CNNs) have
demonstrated superior feature extraction capabilities, outperforming traditional methods in
terms of both efficiency and accuracy. For instance, Guo et al. [14] developed an integrated
CNN model for extracting buildings in rural areas, achieving high accuracy and efficiency.
Additionally, Zhang et al. [15] enhanced the Mask R-CNN architecture by integrating
high-resolution remote sensing imagery with advanced DL techniques, introducing the
Mask R-CNN fusion Sobel framework. This combination of CNNs and edge detection
methods proved more efficient than traditional Mask R-CNN approaches in segmenting
and extracting complex building structures.

The limitations of semantic segmentation network encoders in accurately captur-
ing low-level feature representations result in diminished spatial information regarding
building features, along with an excess of redundant information that does not effectively
communicate the precise spatial details of the buildings. As a result, numerous researchers
have implemented substantial enhancements to resolve these issues [16,17]. For example,
Hui, et al. [18] proposed an enhanced U-Net model that incorporates the Xception module
and a multi-task framework, aiming to extract robust features and improve spatial consis-
tency using high-resolution remote sensing images. Wang and Miao [19] introduced the
void space pyramid pool module within the U-Net structure, combining residual learning
and pyramid pooling in empty spaces, resulting in improved accuracy and boundary defi-
nition for building extraction. Qiu et al. [20] further refined the U-Net model by integrating
an optimized skip connection scheme, the void space convolutional pyramid pool module,
and enhanced depth separable convolutional modules. Their new network, Refine-U-Net,
significantly improved multi-scale and multi-level feature extraction capabilities, thereby
enhancing the accuracy of building extraction. Nevertheless, as models have progressively
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improved, the boosted depth of CNNs has resulted in challenges related to vanishing and
bursting gradients. This study utilizes the U-Net architecture as the foundational frame-
work to tackle the inadequate spatial details in multi-scale building extraction, substituting
the U-Net encoder with ResNet to effectively capture multi-scale information and mitigate
the issues of vanishing and exploding gradients.

Despite these advancements, extracting buildings in scattered mountainous areas con-
tinues to present unique challenges. The available satellite imagery often has relatively low
resolution [21], complicating the distinction of small structures from their surroundings;
even when conducting building extraction using higher resolution satellite imagery, the
recognition accuracy remains limited. For instance, the Mask R-CNN algorithm employed
by Raghavan et al. [22] achieved an accuracy of only 0.820, while the average precision of the
object detection deep learning framework used by Nurkarim et al. [23] was merely 0.7466.
In these regions, buildings, typically small houses, may occupy fewer than 100 pixels, com-
plicating the extraction process. Additionally, the buildings may possess indistinct borders
that are difficult to differentiate from the surrounding natural environment, such as agricul-
tural land, meadows, or mountainous terrain [24]. The dataset is often imbalanced, with
a notably low proportion of positive samples (buildings) relative to the background [25].
The diverse geographical settings in mountainous areas add to the complexity, while the
sparse population density results in structures being widely dispersed rather than clustered,
hindering the application of effective strategies in urban environments. To achieve accurate
building extraction in such terrains, specialized methodologies and datasets tailored to the
unique characteristics of these areas are essential.

A landslide-affected, scattered mountainous region within the Three Gorges Reservoir
area was selected as a case study to validate model performance. The proposed models
were compared against classical semantic segmentation models, specifically PSP-Net and
DeepLabv3, to assess their efficacy in this challenging environment.

2. Materials and Methods
2.1. Study Area

The Three Gorges Reservoir area in China is characterized by complex geological
conditions, making it highly susceptible to various geohazards that pose significant chal-
lenges for management and safety [26]. Among these, landslides represent one of the most
critical threats, driven by steep slopes, rock fractures, and fluctuations in water levels [27].
They can be triggered by heavy rainfall, changes in reservoir water levels, and seismic
activity [28,29]. Six typical landslide-affected areas were selected, as depicted in Figure 1.
The distribution of buildings in these regions is markedly different from urban settings,
characterized by scattered houses and significantly lower densities. This spatial distribution
complicates building identification in mountainous and rural terrains, further challenging
the application of conventional urban-centric segmentation models.

As one of the largest landslides, with a volume exceeding 10 million cubic meters
in the Three Gorges Reservoir area [30], the Fanjiaping landslide was chosen as a case
study. Located approximately 56 km northwest of the Three Gorges Reservoir Dam on the
southern bank of the Yangtze River (see Figure 1 for the landslide location), it consists of two
blocks: the Muyubao landslide and the Tanjiahe landslide. The Fanjiaping landslide has a
total volume of over 106 million cubic meters and covers a planar area of approximately
1.96 million square meters. The thickness of the landslip varies between 40 and 139.16 m,
with the material comprising loose accumulation layers at the surface and quartz sandstone
and sandy conglomerate rocks of the Xiagxi Formation from the Lower Jurassic at the base.
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Figure 1. The location and an unmanned aerial vehicle (UAV) image of the typical landslide-affected
areas in the Three Gorges Reservoir: (a) Baijiabao landslide; (b) Bazimen landslide; (c) Baishuihe
landslide; (d) Shuping landslide; (e) Majiagou landslide; (f) Fanjiaping landslide.

The Fanjiaping landslide is classified as an old landslide that has been reactivated due
to the filling of the Three Gorges Reservoir. During the 156 m water storage period, cracks
appeared at the rear edge of the Tanjiahe landslide, leading to the relocation of nearby
residents. Between June and August 2007, the area experienced continuous heavy rainfall.
In September 2007, a crack approximately 30 m long and 20 cm wide, with a scarp height



Sustainability 2024, 16, 9791

50f 15

of 25 cm, was identified at the rear of the landslide at an elevation of 420 m. By April 2012,
the eastern boundary of the landslide, from the rear edge at an elevation of 400 m to the
middle section near Shahuang Road, exhibited feather-like, intermittently connected cracks
extending approximately 200 m. These cracks, with a strike direction of about 30°, had new
openings ranging from 1 to 10 cm in width [31]. Small-scale collapses were observed along
the crack zone, and the continuous deformations posed significant threats to local residents.

The Fanjiaping landslide is situated in a hilly canyon landscape [32], where the vari-
able topography can result in sudden alterations in lighting conditions. Cloud cover and
mountain shadows influence imaging quality, while reflecting objects like concrete sur-
faces and pebbles can provide intense sunlight reflections, leading to distorted building
outlines. This may result in overexposed or underexposed photos, with overexposure
leading to detail loss and underexposure obscuring building characteristics, thu compli-
cating recognition. Consequently, the selection of Res-Unet, which has multi-scale feature
extraction capabilities, can proficiently tackle these issues, thereby enhancing the accuracy
and robustness of building extraction.

2.2. UAV Data Collection and Processing

Orthophoto images of the Fanjiaping landslide were acquired using a DJI Phantom
4 RTK UAV (Shenzhen, China), conducting terrain-following flights at a height of 100 m.
The DJI Phantom 4 RTK is a compact multi-rotor drone designed specifically for low-
altitude photogrammetry, equipped with a high-definition aerial survey camera and a
GNSS positioning system that provides centimeter-level accuracy. The specifications of the
DJI Phantom 4 RTK UAV are detailed in Table 1.

Table 1. The specifications of the DJI Phantom 4 RTK UAV.

Camera Sensor

Field of Max Image Effective Focal Positioning ACC (RTK-Enabled

Size Pixels Length and Functioning Properly)

1”7 CMOS

Horizontal: 0.1 m

5472 x 3648 (3:2) 20M 24mm Vertical: 0.1 m

The surveyed area spanned longitudes from 110°29'20” to 110°30'50” east and lati-
tudes from 31°1/30” to 32°2/15” north, covering approximately 4 km?. Aerial photography
was conducted on 17 July 2023, under sunny weather conditions. The UAV photogramme-
try operated at a relative flying altitude of 100 m, with forward and side overlap rates estab-
lished at 80%. This study employed Pix4D desktop software (https://www.pix4d.com/) to
process the UAV image data, which included initial processing, point cloud densification,
and the generation of Digital Surface Models (DSM) and orthophotos. In the initial phase,
the images underwent a process to extract specific feature points, known as keypoints.
Subsequently, image matching techniques were utilized to identify these keypoints across
additional images, with the effectiveness of matching closely tied to the degree of overlap
achieved during the flight. The keypoints were then used to construct a sparse 3D point
cloud through automatic aerial triangulation and bundle block adjustment. The sparsely
distributed 3D point cloud was aligned with geographic coordinates using GPS and inertial
measurement unit data from the UAV. By incorporating ground control point data, the
model was re-optimized, resulting in the enhanced positional accuracy of the sparse 3D
point cloud. In Stage 2, the point cloud was made denser using multi-view stereo algo-
rithm [33]. Then, in Stage 3, the dense 3D point cloud was utilized to create DSM and
orthophotos. The resulting orthophoto image boasts a high resolution of 0.36 cm and is
shown in Figure 1.
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2.3. Methodology
2.3.1. ResNet

ResNet introduced by He et al. [34] is a prominent deep neural network architecture
designed to effectively address the vanishing gradient problem encountered in very deep
networks. The core innovation of ResNet lies in its use of residual blocks, which incorporate
shortcut connections (or skip connections) that bypass one or more layers. This design
allows the network to learn residual functions relative to the inputs of those layers. Rather
than learning direct mappings, ResNet learns the differences (residuals) between inputs
and outputs, facilitating improved training for significantly deep networks [35]. A notable
architecture within the ResNet family is ResNet-50, which comprises 50 layers featuring
multiple residual blocks that include convolutional layers, batch normalization, and recti-
fied linear unit (ReLU) activations. The skip connections promote efficient gradient flow
through these deep layers, enhancing training efficacy and enabling the construction of
networks with over a hundred layers. ResNet’s architecture has achieved exceptional per-
formance across various computer vision tasks, setting benchmarks in competitions such
as ImageNet. It has become a foundational model in deep learning, inspiring numerous
subsequent innovations and variants in the field due to its effective balance of depth and
training efficiency.

2.3.2. U-Net

U-Net is a CNN architecture specifically designed for biomedical image segmentation,
initially proposed by [36]. Named for its U-shaped symmetric structure, U-Net features a
contracting path that serves as a mechanism for feature extraction. This path consists of
successive convolutional layers with small 3 x 3 kernels and ReLU activations, followed
by max-pooling layers for down-sampling. The expansive path is responsible for up-
sampling to reconstruct the image resolution for pixel-wise classification through up-
convolution layers. A key aspect of U-Net’s architecture is the incorporation of skip
connections in the expansive path, which concatenate feature maps from corresponding
contracting path layers. This design ensures precise localization by merging low-level
and high-level features, thereby capturing fine details essential for accurate segmentation.
Notably, U-Net performs well with relatively small training datasets, making it particularly
advantageous for medical imaging tasks where annotated data are often limited. It has
demonstrated state-of-the-art performance in various segmentation challenges, including
cell tracking [37] and brain tumor segmentation [38]. Beyond biomedical applications,
U-Net'’s success has extended to other domains such as satellite imagery analysis [39], road
segmentation [40], and object detection [41], showcasing its robustness and versatility in
diverse image processing tasks.

2.3.3. Res-Unet

In this study, we proposed a novel approach for building extraction by integrating
the strengths of U-Net and ResNet architecture into a fused model called Res-Unet. This
integration can be achieved through two primary methods: either replacing all plain blocks
of U-Net with residual blocks from ResNet [42,43] or substituting U-Net’s encoder structure
with a specific ResNet network [44,45]. Residual blocks increase the depth and learning ca-
pacity of existing layers, while a ResNet encoder provides a more robust and sophisticated
feature representation from the outset. Incorporating a specific ResNet encoder typically
demands greater computational power and memory compared to merely adding residual
blocks. Additionally, substituting the encoder with ResNet inherently facilitates transfer
learning through pretrained weights, a benefit not directly achieved by simply integrating
residual blocks into U-Net. We adopted the latter approach, utilizing the ResNet-34 struc-
ture to replace the entire encoder of U-Net. This approach entirely substituted the encoder
component, enhancing feature extraction efficacy and network representational strength,
hence yielding substantial performance enhancements, particularly in intricate tasks and
extensive datasets. The proposed Res-Unet model, as illustrated in Figure 2, began with
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a7 x 7 convolutional layer (stride 2) and a 3 x 3 max-pooling layer (stride 2), followed
by four stages of residual modules cycling 3, 4, 6, and 3 times, respectively. To maintain
consistent input and output feature matrix shapes, the first residual blocks in the 2nd, 3rd,
and 4th stages were modified with stride 2 convolutions. Each residual structure incorpo-
rated batch normalization and ReLU activation functions, addressing internal covariate
shift, accelerating convergence, mitigating gradient vanishing, enhancing robustness to
changes in input data distribution, and introducing necessary nonlinearity for complex
feature representation. The decoder structure retains U-Net’s original design, employing
transposed convolutions for up-sampling and successive 3 x 3 convolutions to transform
low-level features into higher-level semantic information. This fusion of U-Net and ResNet
architecture leverages their respective strengths, potentially offering improved performance
in landslide hazard-bearing body identification compared to traditional methods.
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Figure 2. Res-Unet structure.

2.3.4. Res-Unet-Based Building Extraction from UAV Data

In this study, we developed a robust DL model for landslide image classification by
implementing a comprehensive data preparation and training process, as illustrated in
Figure 3 to create an effective training set. We applied various augmentation techniques
to the original orthophoto image, including translations with a 128 x 128 pixel stride,
256 x 256 pixel cropping, and 90-degree rotations, resulting in 1249 images of 256 x 256
pixel resolution. We also digitized sample annotations, yielding a sample collection of
66 samples, and extracted a comprehensive set of features, including pixel values, positions,
dimensions, and colors, resulting in 1458 feature samples. To enhance model robustness,
10% of the training data were set aside as a validation set. The model architecture combined
the U-Net model with the ResNet network, replacing the U-Net encoder with ResNet
residual unit blocks. The training process involved feeding the prepared dataset into the
model, computing the loss, and updating model parameters through backpropagation.
This iterative process continued until the loss function converged or the desired ACC was
achieved. Finally, the trained model was applied to the entire orthophoto of the landslide
to generate a classification map, serving as a basis for further analysis and discussion.
This structured approach enabled the model to achieve high ACC in classifying landslide
images, providing valuable insights for future research and applications in the field.

The Res-Unet model was performed on a Windows 11 Professional operating system,
employing a 14th-generation Inter(R) Core (TM) i9-14900K 3.20 GHz and an NVIDIA
GeForce RTX 4090 D graphics card with 64 GB of RAM. The batch size was set to 8, with
a total of 50 iterations, to optimize model performance and obtain optimal parameters
through the system’s training process.
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Figure 3. The overall workflow for building extraction from UAV data in a landslide-affected scattered
mountainous area based on Res-Unet.

2.4. Loss Function

In this study, we employed Cross-Entropy Loss (CE Loss) and dice loss [46] to evaluate
the performance of the Res-Unet-based model for building extraction from UAV data. CE
Loss, which represents the distance between two distributions, was utilized to characterize
the difference between predicted values and label values. This loss function was particularly
effective in quantifying the discrepancy between the model’s output and the ground
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truth, providing a robust measure of classification ACC. The CE Loss was mathematically
expressed as follows:

N
CE Loss = — Z yilogp, (1)
i=1 ’

where y; and y; represent the label value and the predicted value, respectively, and Py,
represents the probability of the predicted value.

The dice loss coefficient was mathematically equivalent to the intersection-over-union
ratio between the predicted result area and the ground truth area. The dice loss offers
several advantages in our context: it directly employs the segmentation effect evaluation
index as the loss function to supervise the network, and it mitigates the issue of imbalance
between positive and negative samples by disregarding a substantial number of back-
ground pixels during the intersection-over-union ratio calculation. Consequently, this
approach facilitates rapid convergence, making it particularly suitable for our landslide
image classification task. The dice loss is mathematically expressed as follows:

2% pigi

DiceLoss =1 — ——+—°——
N pF 4+ LN g7

()

where p; represents the predicted probability of pixel i belonging to the foreground class,
gi represents the ground truth label of pixel i (1 for foreground, 0 for background), and N
represents the total number of pixels in the image.

2.5. Validation Metrics

In the context of building extraction from UAV data, we employed a comprehensive
set of evaluation metrics to assess our model’s performance. These metrics are widely
used to evaluate the effects of researchers’” own semantic segmentation models [47-50].
Among them, precision quantifies the ratio of genuine positive samples to all predicted
positives, indicating the model’s accuracy in identifying the positive class. Recall denotes
the ratio of true positives accurately detected, demonstrating the model’s capacity to
recognize pertinent events. Accuracy is the proportion of right predictions to the total
instances, offering a comprehensive evaluation; yet, it may be deceptive in situations of
class imbalance. The Fl-score is the harmonic mean of precision and recall, effectively
balancing the significance of both measurements. Intersection over union (IOU) evaluates
the precision of segmentation tasks by measuring the intersection between the predicted and
actual regions. Collectively, these indicators provide a thorough foundation for assessing

model performance.
TP

Precision = TP+ ©)
Recall = 7TP1;—PPN (4)
TP+ T
ACC=1p7 TN—:— FII\’I+ FN ©)
Sy
TP
0U = 457N )

where true positives (TP) represent pixels correctly identified as buildings, true nega-
tives (TN) are pixels accurately classified as non-building areas, false positives (FP) occur
when non-building pixels are erroneously identified as buildings, and false negatives (FN)
represent building pixels incorrectly classified as non-building areas.
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3. Results and Discussions

In this study, we conducted a comparative analysis of three prominent image seg-
mentation models: our proposed Res-Unet model, Deeplabv3 [51], and PSP-Net [52]. The
selection of DeepLabv3 and PSP-Net as baseline models is attributed to their exceptional
efficacy in semantic segmentation tasks, sophisticated network designs, and multi-scale
feature extraction abilities. These models have attained superior performance on multiple
benchmark datasets, including Pascal VOC and Cityscapes, and are extensively utilized
and esteemed in numerous research publications. The experiment utilized orthophoto data
from the Fanjiaping landslide (Figure 1f) in the Three Gorges Reservoir area as the training
input. As evidenced by Table 2, the Res-Unet model consistently outperformed its coun-
terparts across all evaluation metrics. Notably, Res-Unet achieved superior F1-score and
IOU score values of 0.9892 and 0.9785, respectively, demonstrating its exceptional ACC and
coverage capabilities. The higher Fl-score indicates Res-Unet’s ability to effectively balance
precision and recall, while the elevated IOU score suggests a more precise delineation of
target areas. Furthermore, Res-U-Net’s improved recall rate signifies a reduced incidence
of missed extractions, a critical factor in comprehensive target area identification.

Table 2. Performance comparison of Res-Unet, Deeplabv3, and PSP-Net for building extraction from
UAV data. The best values are highlighted.

Model Precision Recall ACC F1 10U
Deeplabv3 0.9854 0.9808 0.9760 0.9831 0.9668
PSP-Net 0.9809 0.9680 0.9643 0.9744 0.9500
Res-Unet 0.9903 0.9881 0.9849 0.9892 0.9785

Figure 4 presents the loss function and ACC index across iterations for three models,
clearly demonstrating the superior performance of Res-Unet in terms of model optimization,
convergence speed, and feature extraction capabilities. The performance of PSP-Net exhibits
significant fluctuations during the iterative process, with its ACC and loss on the validation
set failing to show a continuous improvement trend. This indicates that while PSP-Net
undergoes continuous optimization and approaches an optimal solution, its parameter
adjustment and training process are less stable. In contrast, Res-Unet achieves a lower
final loss value compared to Deeplabv3, highlighting its efficient feature extraction that
not only accelerates the learning process but also enables the model to quickly identify
and utilize effective features, thereby enhancing overall performance. This streamlined
training process substantially reduces computational resource requirements and time
costs, underscoring Res-Unet’s considerable potential for practical applications in various
domains requiring efficient and accurate image segmentation.

Loy e @O0 e B0 e (0
] W | /\,/\./‘A\ P | W
0.8 y, 0.8 N \f/\ 0.8 /\/‘f
0.6 0.6 0.6
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-5 0 5 10 15 20 25 30 35 40 45 50 -5 0 5 10 15 20 25 30 35 40 45 50 -5 0 5 10 15 20 25 30 35 40 45 50
Epoch Epoch Epoch

Figure 4. CE Loss, dice loss, and ACC for Deeplabv3 (a), PSP-Net (b), and Res-Unet (c) during the
the iteration process.
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Figure 5 presents a qualitative comparison of three models, namely Deeplabv3, PSP-
Net, and Res-Unet, applied to typical drone images of rural areas. The analysis reveals
distinct performance characteristics for each model. Deeplabv3 exhibits limitations in
processing semantic information of rural buildings, evidenced by the misclassification
of roads and building-like structures as houses. While PSP-Net avoids misidentifying
roads, it struggles with accurate boundary delineation, often classifying ground adjacent
to houses as part of the structures. In contrast, Res-Unet demonstrates superior ACC
in identifying disaster-prone objects and successfully differentiating between adjacent
buildings. The figure highlights the challenges posed by rural environments, where disaster-
prone objects often share similar colors and materials with the surrounding landscape,
and lighting conditions can alter the appearances of roads and other features. In these
complex scenarios, Res-Unet showcases its advanced capabilities, leveraging its unique
architecture that combines residual network and U-Net structures. This design enables Res-
Unet to effectively utilize both global and local image information, resulting in more precise
segmentation. Furthermore, Res-Unet’s training process facilitates learning features across
diverse scenarios, enhancing its generalizability and ability to handle various complex
terrains and lighting conditions. This comprehensive performance underscores Res-Unet’s
potential as a robust tool for accurate object identification in challenging rural and disaster-
prone environments.

=

Ground truth PSPNet

Figure 5. Extraction results of five typical images (a—e) of scattered mountain buildings affected by
landslides obtained by different models.
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In this study, we also analyze building extraction results from previous research for
building extraction in scattered mountainous areas. As shown in Table 3, we illustrate the
challenges associated with building extraction in these regions compared to urban areas.
Most of the recognition accuracies in rural studies are relatively low. This is primarily due
to the sparse and irregular distribution of buildings, complex and diverse terrain types, and
high vegetation coverage in rural areas, which collectively increase the difficulty of building
extraction. Notably, compared to the previous best model, the IOU score of our model
is 4.37% higher, and the Fl-score is approximately 13.31% higher. These improvements
underscore the importance of enhancing the precision of building extraction in rural areas.

Table 3. A performance comparison of the method proposed in the current study with those reported
in previous works for building extraction in scattered mountainous areas.

References Model 10U (%) F1-Score (%)
Deng, et al. [53] VGG-16 + U-Net 81.79% /
Li, et al. [54] Attention-enhanced U-Net 74.85% 85.61%
Wang, et al. [55] ResNet152 + Mask R-CNN 63.6% 77.7%
Xue, et al. [56] Dilated convolution + pyramid representation + VGG16 93.48% /

The superior performance of Res-Unet in building extraction from UAV data can
be attributed to its innovative synergistic architecture, which combines the strengths of
ResNet and U-Net. This unique design facilitates efficient feature extraction and precise
segmentation, crucial for processing complex UAV imagery. The residual connections in
Res-Unet enable better gradient flow throughout the network, mitigating the vanishing
gradient problem common in deep networks and allowing for more effective training of
deeper architectures. The U-Net component enables multi-scale feature representation,
capturing both local and global contextual information, which is particularly beneficial for
building extraction. Enhanced information preservation through skip connections ensures
accurate boundary delineation, while the residual learning framework promotes efficient
learning of hierarchical features. The model’s robustness to input variations, optimal depth
without performance degradation, and efficient gradient flow during backpropagation
contribute to its effectiveness in handling the complex and varied nature of UAV data.
Furthermore, Res-Unet strikes a balance between capturing local details and global context,
making it particularly well suited for UAV imagery analysis. Its adaptability to diverse
scenarios, including varying building styles, urban densities, and environmental contexts,
further enhances its utility. These fundamental characteristics collectively enable Res-Unet
to effectively address the complexities and challenges associated with building extraction
from UAV data, resulting in its superior performance compared to traditional models.

The Res-Unet model demonstrates significant advantages in building extraction from
UAV data, consistently outperforming traditional models such as Deeplabv3 and PSP-Net
across various evaluation metrics. Its unique architecture, combining residual networks
and U-Net structures, enables rapid convergence, superior feature extraction, and ac-
curate boundary delineation, even in complex rural environments. The model exhibits
remarkable generalizability, effectively handling diverse terrains and lighting conditions
while minimizing misclassifications. Res-Unet’s efficient information flow, facilitated by
residual connections, mitigates the vanishing gradient problem, leading to stable and
efficient training.

Nonetheless, these benefits include specific trade-offs. The model’s complexity may
need greater computer resources for training and inference, and its performance is signifi-
cantly influenced by the quality and amount of the available training data. Overfitting risks
arise, especially with constrained datasets, and the model’s complexity complicates result
interpretation. Moreover, Res-Unet may exhibit sensitivity to hyperparameter optimization
and could transmit mistakes across its encoder—decoder architecture.
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The technique developed in this study can be used for other domains, including UAV
imagery for landslide crack segmentation and the detection and segmentation of landslides
utilizing satellite images.

4. Conclusions and Further Work

This study has demonstrated the significant contribution of building extraction in
landslide-affected dispersed mountainous areas to sustainable development, particularly
through enhanced disaster risk management, promoting sustainable land use, protecting
the environment, and supporting socio-economic development. The proposed Res-Unet
model, applied to the example of the Fanjiaping landslide in the Three Gorges Reservoir
area, has shown superior performance in extracting buildings from UAV data in landslide-
affected regions. Compared to traditional models like DeepLabV3 and PSP-Net, Res-Unet
achieved higher F1-score (0.9892) and IOU score (0.9785) values, along with better conver-
gence speed and feature extraction capability. These results highlight the effectiveness of
Res-Unet in handling complex rural environments, where accurate building identification
is critical for disaster risk assessment.

The potential application of the Res-Unet model to several types of remote sensing
data presents promising pathways for further exploration. For instance, the segmentation
of landslide cracks from UAV images and the detection and segmentation of landslides
using satellite imagery could significantly improve the model’s applicability and practical-
ity. Future research should investigate the model’s adaptability to various geographical
regions and its capacity to generalize across numerous environmental situations. Further-
more, integrating additional different data sources, such as temporal UAV imaging or
multi-sensor fusion, could enhance the model’s robustness and accuracy in dynamic and
developing environments.
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