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Abstract: Dryland ecosystems are highly sensitive to climate change, making vegetation monitoring
crucial for understanding ecological dynamics in these regions. In recent years, climate change, combined
with large-scale ecological restoration efforts, has led significant greening in China’s arid areas. However,
the mechanisms through which seasonal climate variations regulate vegetation growth are not yet fully
understood. This study hypothesizes that seasonal climate change affects net primary productivity
(NPP) of vegetation by influencing phenology. We focused on China’s Windbreak and Sand-Fixation
Ecological Function Conservation Areas (WSEFCAs) as representative regions of dryland vegetation.
The Carnegie–Ames–Stanford Approach (CASA) model was used to estimate vegetation NPP from
2000 to 2020. To extract phenological information, NDVI data were processed using Savitzky–Golay
(S–G) filtering and threshold methods to determine the start of season (SOS) and end of season (EOS). The
structural equation model (SEM) was constructed to quantitatively assess the contributions of climate
change (temperature and precipitation) and phenology to variations in vegetation NPP, identifying the
pathways of influence. The results indicate that the average annual NPP in WSEFCAs increased from
55.55 gC/(m2·a) to 75.01 gC/(m2·a), exhibiting uneven spatial distribution. The pathways through
which seasonal climate affects vegetation NPP are more complex and uneven. Summer precipitation
directly promoted NPP growth (direct effect = 0.243, p < 0.001) while also indirectly enhancing NPP by
significantly advancing SOS (0.433, p < 0.001) and delaying EOS (−0.271, p < 0.001), with an indirect
effect of 0.133. This finding highlights the critical role of phenology in vegetation growth, particularly in
regions with substantial seasonal climate fluctuations. Although the overall ecological environment of
WSEFCAs has improved, significant regional disparities remain, especially in northwestern China. This
study introduces causal mediation analysis to systematically explore the mechanisms through which
seasonal climate change impacts vegetation NPP in WSEFCAs, providing new insights into the broader
implications of climate change and offering scientific support for ecological restoration and management
strategies in arid regions.

Keywords: arid regions; causal mediation analysis; climate change; vegetation phenology; vegetation
net primary productivity

1. Introduction

Net primary productivity (NPP) refers to the net accumulation of organic matter by
vegetation through photosynthesis over a given period. It is a key metric for measuring
the carbon sources and sinks of ecosystems and plays a significant role in the study of the
global carbon cycle [1,2]. Arid–semi-arid ecosystems have been shown to exert a significant
influence on the trend and interannual variability of the global terrestrial carbon sink
over the past three decades [3]. These regions are particularly sensitive to climate change
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and are often considered “outposts” of global change [4,5]. Changes in NPP in arid and
semi-arid regions not only reflect the health of these ecosystems, but also exert a profound
influence on the global carbon cycle [6]. Consequently, the monitoring and assessment of
ecosystems in arid and semi-arid zones using indicators such as NPP represents a crucial
step in understanding the ecological dynamics of these vulnerable regions. Furthermore,
it provides invaluable data to support for the response to global climate change and the
sustainable development of ecosystems.

Vegetation phenology, as the response time of vegetation to seasonal changes, is among
the most sensitive ecological indicators of climate change [7,8]. In arid–semi-arid regions,
the extreme and fluctuating climatic conditions result in a more pronounced response of
phenology to environmental changes [9]. The dynamics of vegetation phenology in these
regions exert a direct influence on the seasonal fluctuations of NPP. In recent years, researchers
have identified that warmer temperatures and altered precipitation patterns in arid regions
may result in the advancement or postponement of climatic events [10,11], which in turn
amplifies or weakens the seasonal dynamics of NPP. Such dynamic changes influence the
carbon balance and ecosystem stability [12,13]. Consequently, a comprehensive investiga-
tion of vegetation phenology dynamics and its response to climate change in the arid zone
constitutes a crucial foundation for understanding ecosystem functions in the arid zone.

In addressing environmental challenges such as desertification and soil degradation,
China has established Windbreak and Sand-Fixation Ecological Function Conservation
Areas (WSEFCAs) and initiated a series of ecological restoration initiatives in arid and
semi-arid regions. Among these, the Three North Shelter Forest Project (TNSFP, 1979–2050)
stands out as a prominent example [14,15]. WSEFCAs have played a key role in preventing
wind and sand encroachment and safeguarding the ecological environment [16]. However,
these regions experience significant seasonal climate changes, with high temperatures and
droughts in the summer being particularly impactful on vegetation growth. These changes
not only affect the growth cycle of vegetation but also lead to significant fluctuations in
phenological events [17,18]. Drought has been shown to impair vegetation productivity [19],
whereas climate warming may prolong growing seasons, thereby increasing crop yields in
certain instances [20].

However, the effects of seasonal climate change on vegetation NPP are particularly
complex, exhibiting substantial spatial variability and inconsistency [21]. In particular, the
role that vegetation phenology plays in this phenomenon has not been widely explored [22].
To gain a deeper understanding of the complex mechanisms by which seasonal climate
change affects dryland vegetation NPP, this study employed structural equation modeling
(SEM). As a quantitative research method [23], SEM is capable of being widely utilized
to explore direct and indirect relationships between multiple factors by establishing links
between empirical data and theoretical analysis [24,25]. For example, Chen et al. [26]
employed SEM to examine the multifaceted impacts of climate change and human activ-
ities on vegetation cover alterations in northern China. Similarly, Liu et al. [27] utilized
SEM to ascertain the moderating influence of hydrothermal conditions on Normalized
Difference Vegetation Index (NDVI) responses. These studies have demonstrated the
unique advantages of SEM in revealing multifactor interactions in ecosystems. Accordingly,
the present study employs SEM models for mediating effect analysis, thereby facilitat-
ing a comprehensive investigation of the complex factors and interactions that influence
vegetation growth.

The present study sought to examine the intricate interrelationship between NPP and
climatic variables, as well as the associated phenological shifts, in arid and semi-arid regions
of China that are particularly vulnerable to ecological disruption. It hypothesized that the
quantitative contributions of climate and phenological changes to vegetation growth and their
impact pathways vary significantly across seasons. To validate this hypothesis, the principal
objectives of this study are as follows: (1) reveal the spatial and temporal dynamics of vege-
tation NPP in China’s arid protected areas during the period 2000–2020 and the contrasting
differences in different regions; (2) identify the regularity of vegetation phenology under
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different climatic and topographic conditions; (3) quantitatively analyze the mechanisms
of the contribution of climatic factors and changes in vegetation phenology to NPP and
their pathways of influence, especially to explore the regulatory mechanism of phenological
changes on NPP under seasonal climate changes. The findings of this study contribute to
our understanding of the dynamic processes by which dryland ecosystems respond to cli-
mate change. They also provide a scientific basis for the development of strategies for the
conservation of these ecosystems and for the sustainable management of arid zones.

2. Materials and Methods
2.1. Study Area

The WSEFCA is situated in the arid and semi-arid zones of northern China (Figure 1),
covering a total area of 374,000 square kilometers. The study area covers geographic re-
gions, from the Tarim River Basin in the Xinjiang Uygur Autonomous Region to the Horqin
and Maowusu Sandy lands in the Inner Mongolia Autonomous Region, featuring varied
topographies. This area is a desertification-sensitive and fragile zone under continental climate
conditions in China. The annual average temperature ranges from approximately 4 ◦C to
8 ◦C, and the annual precipitation increases gradually from 150 mm in the western part of
the region to 250 mm in the eastern part [28]. These climatic conditions pose significant
challenges for vegetation growth. At the beginning of this century, China launched a series of
sand-prevention and -control programs aimed at effectively combating land desertification
and wind erosion. These programs were designed to effectively address the threats of land
desertification and wind erosion. The implementation of these programs has contributed to
improved vegetation cover and mitigated the process of land desertification to some extent.

2.2. Data Sources

In this study, the years 2000, 2005, 2010, 2015 and 2020 were selected as the study
time points with the aim of comprehensively analyzing the characteristics and influence
mechanisms of vegetation NPP changes in the vegetation of the WSEFCA under climate
change within this period.

The NDVI is derived from the MODIS MOD13A3 product of the National Aeronau-
tics and Space Administration (NASA), with a spatial resolution of 1 km × 1 km and a
temporal resolution of 30 days. The MODIS data are widely applicable in the study of
global and regional vegetation changes, ecological monitoring and the response to natural
disasters and extreme climatic events, among other areas of research. The MODIS data
were employed to estimate vegetation NPP in the WSEFCA, thereby furnishing pivotal
information for an in-depth understanding of the research topic (Table 1).

Table 1. Sources of data.

Data Description Resolution Period Source

Vegetation type National 1:1,000,000
vegetation type map Raster/1 km

China National Data Center for Glaciology and
Geocryology, accessed on 10 November 2022.
(http://www.ncdc.ac.cn)

NDVI MOD13A3 Raster/1 km NASA, accessed on 14 May 2023.
(https://ladsweb.modaps.eosdis.nasa.gov/)

DEM

SETMDEMUTM Raster/90 m 2000
Geospatial data cloud, accessed on 3 July 2023.
(https://www.gscloud.cn)

ASTER_GDEM_30M Raster/30 m 2009
GDEMV2 Raster/30 m 2015
GDEMV3 Raster/30 m 2019

Meteorological data Precipitation and
temperature Gridded/0.5◦ 2000–2020 CRU TS v. 4.07, accessed on 15 November 2022.

(https://crudata.uea.ac.uk/cru/data/hrg/)

Solar radiation Gridded/0.1◦ 2000–2020
ERA5-Land monthly averaged data from 1981
to present, accessed on 15 November 2022.
(https://cds.climate.copernicus.eu)

Phenological data Start of Season Point 2001–2016

Vegetation phenology data set from major
ecological observation stations in China,
accessed on 27 July 2023.
(https://doi.org/10.11922/sciencedb.449)

http://www.ncdc.ac.cn
https://ladsweb.modaps.eosdis.nasa.gov/
https://www.gscloud.cn
https://crudata.uea.ac.uk/cru/data/hrg/
https://cds.climate.copernicus.eu
https://doi.org/10.11922/sciencedb.449
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Figure 1. Study area. (a) Tarim River Basin (Tarim); (b) Altun Desert Steppe (Altun); (c) Heihe River 
Basin (Heihe); (d) Maowusu Sandland (Maowusu); (e) Hunshandak Sandland (Hunshandak); (f) 
Horqin Sandland (Horqin). Field observation stations: Aksu (AKA); Linze (LZA); Haibei (HBG); 
Minle (MQD); Shapotou (SPD); Ordos (ESD); Luancheng (LCA); Yucheng (YCA); Guyuan (GYG); 
Inner Mongolia (NMG); Naiman (NMD); Shenyang (SYA). 
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available [29]. The radiometric data were derived from the ERA5-Land reanalysis prod-
uct, which was provided by the European Center for Medium-Range Weather Forecasts 

Figure 1. Study area. (a) Tarim River Basin (Tarim); (b) Altun Desert Steppe (Altun); (c) Heihe River
Basin (Heihe); (d) Maowusu Sandland (Maowusu); (e) Hunshandak Sandland (Hunshandak); (f) Horqin
Sandland (Horqin). Field observation stations: Aksu (AKA); Linze (LZA); Haibei (HBG); Minle (MQD);
Shapotou (SPD); Ordos (ESD); Luancheng (LCA); Yucheng (YCA); Guyuan (GYG); Inner Mongolia
(NMG); Naiman (NMD); Shenyang (SYA).

The temperature and precipitation data came from the CRU TS dataset of the UK
National Center for Atmospheric Science (NCAS), with a spatial and temporal resolution
of 0.5◦ per month. This dataset is one of the most widely utilized climate datasets currently
available [29]. The radiometric data were derived from the ERA5-Land reanalysis prod-
uct, which was provided by the European Center for Medium-Range Weather Forecasts
(ECMWF), with a spatial and temporal resolution of 0.1◦/month. The data have been
demonstrated to have significant utility in arid and semi-arid regions [30].

The phenology validation data were selected from the vegetation climate dataset of
major ecological observatories in China [31]. The dynamic thresholds for SOS and EOS
of vegetation were validated using the 2015 phenology observation data from 12 stations,
including Aksu, Ansai, Cele, Ordos, Haibei and Inner Mongolia.

The digital elevation model (DEM) data were obtained from the Geospatial Data
Cloud, which facilitated a deeper understanding of the interrelationships between topogra-
phy and vegetation and provided crucial support for the analysis of structural equation
modeling. Considering that the resolution of the radiation data in this study is 10 km, we
set the spatial resolution at 1 km to ensure data consistency and avoid errors caused by
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downscaling. All data were resampled to this uniform resolution, ensuring data uniformity
for subsequent analyses.

2.3. Methods

The objective of this study is to elucidate the role of vegetation phenology in complex
dryland ecosystems under the influence of climate change. The specific research focuses,
and technical route are as follows: First, based on remote sensing and meteorological
data, the Carnegie–Ames–Stanford Approach (CASA) model was constructed to estimate
vegetation NPP at different time periods, revealing the evolution of vegetation productivity
in the WSEFCA. NDVI was used to extract phenological information and analyze the
characteristics of changes in the growing season of vegetation within the study area. Second,
using Structural Equation Modeling (SEM), the contributions of climate and phenology to
vegetation NPP changes were quantified, establishing a causal mechanism chain between
climate, phenology and vegetation NPP. This clarified the pathways through which climate
change impacts vegetation growth in arid regions and identified the dominant factors
driving vegetation change. The technical route is shown in Figure 2.
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2.3.1. Estimation of Vegetation NPP

In this study, we employed an improved light use efficiency model to estimate vegeta-
tion NPP, which is better suited to the conditions in China than the classical CASA model
and has been extensively utilized in arid and semi-arid regions [32,33]. The NPP estima-
tion model, based on remote sensing, was constructed based on the following variables:
vegetation types, NDVI, temperature, precipitation and solar radiation data. The specific
model construction process is as follows:

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

In this equation, x represents the computational unit (pixel). t denotes the time scale
(months). APAR and ε are defined as photosynthetically active radiation absorbed by
vegetation and the actual light use efficiency, respectively. The formulas for calculating
APAR (x, t) and ε (x, t) are as follows:

APAR(x, t) = SOL(x , t)× FPAR(x, t)× 0.5 (2)

ε(x, t) = Tε1(x, t)× Tε2(x, t)× εmax (3)

In this context, SOL and FPAR represent the absorption rates of total solar radiation
and incident photosynthetically active radiation by vegetation, respectively. Tε1(x, t) and
Tε2(x, t) reflect the stress effects of low and high temperatures on light use efficiency. Wε is
the water stress coefficient, while εmax denotes the maximum light energy utilization under
ideal conditions, which varies in value depending on the vegetation type.

The global vegetation maximum light energy utilization [34] is not well-suited for
the present study area. To ensure the accuracy of the model, we selected the simulated
maximum light energy utilization data of Chinese vegetation types [35] for the calculation.
In the subsequent study, the reliability of the model was further enhanced through the
assurance that the number of rows and columns of the vegetation type data matched the
meteorological raster data.

2.3.2. Information Extraction of Vegetation Phenology

In the process of extracting vegetation surface phenology, satellite remote sensing data
were used as the primary source of information. However, as satellite data are affected by
atmospheric conditions, cloud cover and other factors, they exhibit irregularities and abrupt
changes, which present challenges to the accurate extraction of vegetation phenology [18].
The development of remote sensing technology has greatly improved the accuracy of
vegetation phenology extraction [36,37]. To address these challenges, we employed the
Savitzky–Golay (S–G) filtering method [38] to process the satellite remote sensing data
into a smooth time series. The S-G filtering can retain both the position and peaks of the
time series data while effectively eliminating noise in the data during the processing of the
time series data [39]. The characteristics of this method render it optimal for processing
satellite remote sensing data, thereby providing a more reliable and uniform foundation
for subsequent vegetation phenology extraction.

Yj =
∑i=m

i=−m CiYj+1

N
(4)

In this equation, Yj represents the NDVI series data after smoothing, Yj+1 denotes the
original NDVI time series data, Ci signifies the S-G filter coefficient and N represents the
size of the sliding window.

The most utilized methodologies for the extraction of vegetation phenology data
are primarily the threshold method and the maximum ratio method. In consideration of
the operational feasibility and spatio-temporal applicability [40], the dynamic threshold
method was employed for the extraction of climate parameters from the smoothed NDVI
time series. Following the introduction of the dynamic thresholding method for climate
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feature extraction, the recommendation of setting the threshold for SOS and EOS to 0.2 [41]
was widely adopted by numerous climate researchers. However, the determination of
thresholds is dependent on the specific plant species and geographical location in question,
and therefore requires careful consideration during the selection process. Accordingly, a
range of dynamic thresholds, spanning from 10% to 80%, were established in this study. The
results were validated using ground monitoring data (Table 2), and the dynamic thresholds
of 40% and 60% were ultimately selected for vegetation SOS and vegetation EOS, ensuring
that the extracted climatic parameters were consistent with the actual ground conditions.

NDVIradio =
NDVIt − NDVImin

NDVImax − NDVImin
(5)

Table 2. Phenology (SOS and EOS) extracted from different thresholds (A1/A2) and ground-based
monitoring data in 2015.

A1/A2 SOS EOS

10% 87.71 321.95
20% 92.51 316.79
30% 105.85 306.74
40% 119.05 297.19
50% 129.54 287.73
60% 141.69 278.00
70% 154.55 267.48
80% 168.98 255.84

Ground monitoring data 122.81 278.14

In this equation, NDVIradio is the first year in which the threshold is exceeded, NDVIt is
the NDVI value at a given time t, NDVImax and NDVImin are the maximum and minimum
values in the annual cycle of the NDVI time series, respectively.

2.3.3. Analysis of Causal Mediation

SEM is a multivariate statistical technique used to analyze complex relationships
between variables [42]. There are three key advantages of SEM over traditional regression
analysis in mediation effects analysis. First, SEM permits the incorporation of measurement
error into variables, thereby yielding more precise estimates than are possible with ordinary
regression analysis. Second, SEM is capable of handling multiple dependent and multiple
mediating variables simultaneously, facilitating the clear identification of the strength of
each relationship. Finally, SEM quantitatively distinguishes between direct and indirect
effects, thereby revealing the mediating mechanism. In recent years, SEM has been widely
applied in ecological research [43]. Based on these advantages, we utilized SEM to quantify
the mediating role of phenology between climate and vegetation NPP.

During the process of selecting model variables, we focused primarily on temperature
and precipitation as the key climatic factors. This choice was not only supported by existing
literature but also validated by the results of correlation analysis (Table 3). Although
other climatic factors, such as wind speed, may also have some influence on vegetation
growth, their relative impact was comparatively smaller and therefore not included in our
model. This simplified design helps to concentrate on the main driving factors, thereby
highlighting the direct regulatory effects of temperature and precipitation on NPP.
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Table 3. Correlation analysis results (* significant at the 0.05 level, ** significant at the 0.01 level).

Wind Speed Temperature SOS Precipitation NPP EOS

Wind Speed 1.000 −0.108 * 0.061 −0.040 −0.013 −0.005
Temperature −0.108 * 1.000 0.012 −0.291 ** −0.227 ** 0.077

SOS 0.061 0.012 1.000 0.035 −0.084 0.639 **
Precipitation −0.040 −0.291 ** 0.035 1.000 0.613 ** 0.045

NPP −0.013 −0.277 ** −0.084 0.613 ** 1.000 −0.056
EOS −0.005 0.077 0.639 ** 0.045 −0.056 1.000

If the model’s fit was insufficient, the path assumptions were revised in accordance
with the findings until the model achieved an acceptable level of fit. Once the SEM model
was successfully developed, the total effects were decomposed into direct and indirect
effects, and the significance of the indirect effects was tested using the Bootstrap method [44].
This allowed us to uncover both the causal relationships and the mediating mechanisms.
Figure 3 illustrates the workflow for developing the vegetation NPP change mechanism.

Sustainability 2024, 16, x FOR PEER REVIEW 9 of 21 
 

 
Figure 3. Model diagram of the driving mechanism of vegetation NPP change in the WSEFCA. 

2.3.4. Data Statistics and Analysis 
In this study, we conducted a statistical analysis of variables such as temperature, 

precipitation and NDVI to provide climate context and data support. According to Table 
4, the annual average precipitation is 16.37 mm, with a standard deviation of 13.224, 
indicating significant temporal and spatial variability in precipitation. The maximum 
precipitation recorded was 53.54 mm in 2010, while the minimum was 0.61 mm in 2020. 
The annual average temperature is 6.616 °C, with a standard deviation of 3.828, showing 
relatively stable fluctuations over time. The lowest temperature recorded was −5.424 °C 
in 2000, and the highest was 13.45 °C in 2020. The annual average NDVI is 0.1092, with a 
standard deviation of 0.1676; the maximum value is 0.6218 and the minimum is −0.1956, 
indicating relatively stable changes in vegetation cover in the region. Additionally, the 
average DEM of the study area is 1574.127 m, with a standard deviation of 1176.76 m, 
reflecting significant topographic variability in the region. 

These statistical analyses provide essential data support for subsequent in-depth 
studies on the impacts of climate change, vegetation NPP and phenological changes. 

Table 4. Statistical results of selected raw data. 

 Year Maximum Minimum Mean Standard Deviation 

Precipitation (mm) 

2000 1.34 47.57 15.011 11.021 
2005 2.073 49.575 15.293 11.952 
2010 1.104 53.538 17.402 13.942 
2015 1.518 40.80 16.515 12.976 
2020 0.61 48.461 17.624 16.23 

annual average 1.329 47.9888 16.369 13.2242 

Figure 3. Model diagram of the driving mechanism of vegetation NPP change in the WSEFCA.

2.3.4. Data Statistics and Analysis

In this study, we conducted a statistical analysis of variables such as temperature,
precipitation and NDVI to provide climate context and data support. According to Table 4,
the annual average precipitation is 16.37 mm, with a standard deviation of 13.224, indicating
significant temporal and spatial variability in precipitation. The maximum precipitation
recorded was 53.54 mm in 2010, while the minimum was 0.61 mm in 2020. The annual
average temperature is 6.616 ◦C, with a standard deviation of 3.828, showing relatively
stable fluctuations over time. The lowest temperature recorded was −5.424 ◦C in 2000,
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and the highest was 13.45 ◦C in 2020. The annual average NDVI is 0.1092, with a standard
deviation of 0.1676; the maximum value is 0.6218 and the minimum is −0.1956, indicating
relatively stable changes in vegetation cover in the region. Additionally, the average DEM
of the study area is 1574.127 m, with a standard deviation of 1176.76 m, reflecting significant
topographic variability in the region.

Table 4. Statistical results of selected raw data.

Year Maximum Minimum Mean Standard Deviation

Precipitation (mm)

2000 1.34 47.57 15.011 11.021
2005 2.073 49.575 15.293 11.952
2010 1.104 53.538 17.402 13.942
2015 1.518 40.80 16.515 12.976
2020 0.61 48.461 17.624 16.23

annual average 1.329 47.9888 16.369 13.2242

Temperature
(degree centigrade)

2000 −5.424 13.26 6.42 3.88
2005 −5.41 13.61 6.77 3.79
2010 −5.4 13.2 6.28 3.74
2015 −5.4 13.72 6.69 3.89
2020 −5.17 13.45 6.92 3.84

annual average −5.3608 13.448 6.616 3.828

NDVI

2000 −0.196 0.53 0.1 0.06
2005 −0.196 0.6 0.11 0.06
2010 −0.194 0.646 0.106 0.057
2015 −0.2 0.658 0.11 0.595
2020 −0.192 0.675 0.12 0.066

annual average −0.1956 0.6218 0.1092 0.1676

DEM (m) 66 6063 1574.127 1176.76

These statistical analyses provide essential data support for subsequent in-depth
studies on the impacts of climate change, vegetation NPP and phenological changes.

3. Results
3.1. Characteristics of Spatial and Temporal Changes of NPP in Typical Ecological Function
Reserve Areas

The NPP of WSEFCA showed a significant upward trend over the past two decades,
with the average value rising from 55.55 gC/(m2·a) in 2000 to 75.01 gC/(m2·a) in 2020
(Figure 4). The long-term pattern of vegetation NPP indicates a gradual improvement in
the ecological condition in the WSEFCA, particularly in the Hunsandak and Horqin.

As the ecological restoration efforts progressed, a noticeable diversification in the
spatial distribution of NPP became evident (Figure 4A). However, the NPP levels in the
Altun, the Tarim and the northern part of the Heihe remain relatively low, with values
ranging between 0 and 90 gC/(m2·a). However, an increase in NPP was observed in
some regions in 2010 and 2015. For instance, at the southeastern border of the Hunsandak
and Maowusu, the vegetation NPP gradually shifted from low to medium-high levels,
exceeding 200 gC/(m2·a) in most areas. Meanwhile, the Horqin demonstrated a sustained
high level of vegetation NPP.

With regard to seasonal fluctuations, the annual mean NPP in each region exhibited a
discernible upward trajectory from 2000 to 2020. This trend was particularly pronounced
during the summer months, when the mean vegetation NPP reached its highest point and
demonstrated a consistent annual increase, consistently remaining above 10 gC/(m2·a). By
2020, the mean summer vegetation NPP had reached 15.11 gC/(m2·a) (Figure 4B). This
highlights the significant influence of seasonal variations on vegetation growth. However, the
changes in vegetation NPP among different regions showed significant variation (Figure 4C).
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The highest annual mean vegetation NPP was recorded in the Horqin, followed by the
Hunsandak and the Maowusu, which demonstrated a substantial enhancement of NPP across
all three regions. In comparison, the vegetation NPP in the Tarim, Altun and Heihe exhibited
minimal alteration and lower mean values, suggesting that the ecological environment of
these regions situated in northwestern China still requires further enhancement.

Sustainability 2024, 16, x FOR PEER REVIEW 11 of 21 
 

 
Figure 4. Spatial and temporal evolution of vegetation NPP ((A) spatial pattern of vegetation NPP 
in the study area in 2000, 2005, 2010, 2015 and 2020; (B) changes in vegetation NPP in different years 
and seasons; and (C) changes in vegetation NPP in different regions (black lines indicate the years 
with the highest values). 

  

Figure 4. Spatial and temporal evolution of vegetation NPP ((A) spatial pattern of vegetation NPP in
the study area in 2000, 2005, 2010, 2015 and 2020; (B) changes in vegetation NPP in different years
and seasons; and (C) changes in vegetation NPP in different regions (black lines indicate the years
with the highest values).



Sustainability 2024, 16, 9835 11 of 19

3.2. Spatial and Temporal Characteristics of Vegetation Climatic Changes

From 2000 to 2020, the vegetation SOS in the WSEFCA exhibited a spatial pattern of
gradual delay from east to west (Figure 5A). Significant differences in SOS were observed
among regions. The Tarim and the Altun showed an overall trend of advancement, while
the Horqin and the Maowusu exhibited the opposite pattern, with SOS gradually advancing
as longitude increases. In contrast, the SOS in the Hunshandake and the northern part
of the Heihe has shown a delaying trend, reflecting the different climate responses in
these regions.
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Figure 5. Spatial and temporal evolution of SOS. (A) Spatial patterns of vegetation SOS in the study
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The spatial pattern of EOS showed similarities to that of SOS, yet also demonstrated
regional specificity (Figure 6A). In the Tarim, the advancement of EOS is particularly
pronounced, especially in the northwestern and southeastern regions. Meanwhile, the
overall change in the Hunshandake is relatively stable; however, a significant delay in EOS
was observed in the northeastern part in 2015. By comparison, the changes in EOS in the
Horqin and the Maowusu are relatively minor. These discrepancies illustrate the varying
effects of climate change on vegetation phenology across diverse topographic regions.

The interannual variation of SOS and EOS exhibits complexity within the subregions
(Figures 5B and 6B). In the Tarim and Altun, both SOS and EOS demonstrated notable
advancement, with SOS advancing by approximately 2 to 3 days and EOS advancing by 10
to 15 days per decade on average. The trend of SOS and EOS in the Horqin and Mauwusu
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was consistent, with advancement followed by postponement. In contrast, the mean values
of SOS in the Heihe and the Hunsandak exhibited a relatively stable 10-day difference over
the 20-year period.

Figure 6. Spatial and temporal evolution of EOS. (A) Spatial patterns of vegetation EOS in the study
area for the years 2000, 2005, 2010, 2015 and 2020. (B) Changes in vegetation EOS in different regions
(green boxes represent advancing times, orange represents delaying times).

3.3. Influence Pathways of Climate and Phenology Changes on Vegetation NPP Changes

The final model fitted by SEM is shown in Figure 7. This model provides effectively
captures the interactions among the variables and reveals the pathways through which
climatic factors influence vegetation NPP across multiple temporal scales (annual and
seasonal). The model showed strong goodness of fit at both the annual and seasonal scales
(Table 5), indicating robust explanatory power.

Table 5. Fitting of the model.

CHISQ GFI CFI RMR SRMR RMSEA

Annual scale 0.036 0.998 0.999 0.014 0.007 0.034
Seasonal scale 0.103 0.997 0.998 0.019 0.01 0.021

First, the pathways of climate change effects on vegetation NPP exhibited a significant
relationship from an annual scale perspective (Appendix A, Figure A1). The mean annual
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precipitation had a strongly significant effect on SOS and NPP (p < 0.001), but not on EOS
(p > 0.05). Furthermore, precipitation indirectly increased NPP via its influence (with an
indirect effect of 0.116 and a total effect amounting to 0.819). Although the direct effect of
precipitation on EOS was not significant, the total effect of precipitation on EOS was 0.432,
as indicated by the indirect effect of SOS on EOS (Appendix A, Table A1). Meanwhile,
EOS exhibited a significant negative direct effect on NPP (with an impact coefficient of
−0.220). Although DEM lacked a direct effect on NPP alterations, it exerted a modest total
effect on NPP via the indirect influences of SOS and EOS (with indirect effects of 0.077 and
0.022, respectively).
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Figure 7. The relationships between climatic factors and NPP, SOS and EOS on seasonal scales.
The values on the lines represent standardized throughput coefficients, and the thickness of the
arrows indicates the magnitude of the standardized coefficients. A solid line indicates a significant
relationship (p < 0.05), while a dashed line indicates a non-significant relationship. Black lines
indicate positive paths, and red lines indicate negative paths. The asterisks *** and ** indicate
significance levels of 0.001 and 0.05, respectively. R2 denotes the degree of coexplanation of the
variable in question.

The patterns observed at the annual scale demonstrated a greater complexity of
influence at the seasonal scale (Figure 7). Spring precipitation exerts a considerable direct
influence on NPP, with an effect coefficient of 0.441. This represents one of the most
pronounced direct effects of seasonal precipitation on NPP variability. This indicates
that spring precipitation plays a crucial role in regulating NPP. The impact of summer
precipitation on NPP was more intricate. It exerted a direct effect of 0.243 and also exerted
an indirect influence on NPP alterations through a substantial positive effect on SOS (with
an impact coefficient of 0.433) and a negative effect on EOS (with an impact coefficient
of −0.271). This indirect effect was 0.133, indicating that the contribution of summer
precipitation is influenced by the combined effects of multiple pathways, exhibiting a
complex pattern of indirect effects. The direct effect of fall and winter precipitation on NPP
was smaller, with values of 0.147 and −0.071, respectively. Additionally, the indirect effect
of winter precipitation on NPP through the EOS was −0.054, resulting in a total effect of
−0.125 (Table 6). This further demonstrates that the negative impact of winter precipitation
on NPP is indirectly mediated through the EOS pathway.

Another crucial climatic factor, temperature, also exerted diverse influences on NPP
at varying temporal scales. The mean annual air temperature exhibited a highly signifi-
cant direct effect on SOS (p < 0.001, with an effect coefficient of 0.372), whereas seasonal
air temperature effects demonstrated more nuanced differences. For example, summer
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temperatures had a significant negative effect on SOS (p < 0.05, with an impact coefficient
of −0.507). In contrast, the positive effects of spring and fall temperatures on SOS indirectly
supported NPP growth, reflecting that temperature changes in different seasons have
varying regulatory effects on vegetation growth.

Table 6. Results of direct, indirect and total effects of seasonal changes in temperature, precipitation,
SOS, EOS and NPP (slash indicates no indirect effect, NS indicates that the pathway is not significant,
spring precipitation (PRE-Spring), spring temperatures (TEMP-Spring)).

Paths Direct Effects Paths Indirect Effects Paths Total Effects

PRE-Spring → NPP 0.441 / / PRE-Spring → NPP 0.441
PRE-Summer → SOS 0.433 PRE-Summer → SOS → NPP 0.074 PRE-Summer → SOS 0.433
PRE-Summer → EOS −0.271 PRE-Summer → EOS → NPP 0.059 PRE-Summer → EOS −0.007
PRE-Summer → NPP 0.243 PRE-Summer → SOS → EOS 0.264 PRE-Summer → NPP 0.376
PRE-Autumn → NPP 0.147 / / PRE-Autumn → NPP 0.147
PRE-Winter → EOS 0.251

PRE-Winter → EOS → NPP −0.054
PRE-Winter → EOS 0.251

PRE-Winter → NPP −0.071 PRE-Winter → NPP −0.125
TEMP-Spring → SOS 0.37 TEMP-Spring → SOS → NPP 0.063

TEMP-Spring → SOS 0.37
TEMP-Spring → NPP NS TEMP-Spring → NPP 0.063

TEMP-Summer → SOS −0.507
TEMP-Summer → SOS → NPP −0.086

TEMP-Summer → SOS 0.37
TEMP-Summer → NPP NS TEMP-Summer → NPP −0.086
TEMP-Autumn → SOS 0.173

TEMP-Autumn → SOS → NPP 0.029
TEMP-Autumn → SOS 0.173

TEMP-Autumn → NPP NS TEMP-Autumn → NPP 0.029
TEMP-Winter → EOS −0.08

TEMP-Winter → EOS → NPP 0.016
TEMP-Winter → EOS −0.072

TEMP-Winter → NPP −0.072 TEMP-Winter → NPP −0.064
SOS → EOS 0.610 SOS → EOS → NPP −0.132 SOS → EOS 0.610
SOS → NPP 0.170 / / SOS → NPP 0.038
EOS → NPP −0.216 / / EOS → NPP −0.216

4. Discussion

This study reveals the spatial and temporal characteristics of the NPP of vegetation
in the WSEFCA over the past two decades. Overall, vegetation NPP has exhibited a
significant upward trend, which was closely related to changes in climatic conditions
within the region. In particular, the increase in vegetation NPP was especially in years when
precipitation increased precipitation, indicating that precipitation is the primary driving
factor influencing vegetation productivity [28]. However, when both precipitation and
temperature are considered together, the increase in NPP is not uniform. In fact, significant
differences are observed between seasons and regions. For example, the NPP elevation in
the Hunsandak, Maowusu and Horqin was particularly significant in years of relatively
abundant precipitation. The climate conditions in these regions are relatively mild, with
abundant rainfall, reaching over 300 mm annually. As a result, the vegetation in these areas
is highly responsive to water availability, which promotes vegetation recovery [45–47]. In
contrast, in regions with high temperatures and low precipitation, such as the Tarim River
Basin and the Arjin Desert Steppe, the increase in NPP was relatively modest, and the
overall level remained low. The ecosystem recovery in these regions is relatively delayed,
with extreme high temperatures and high evaporation rates severely limiting plant growth.
In the Tarim River Basin, summer temperatures often exceed 40 ◦C, while annual rainfall
is less than 50 mm. These extreme climatic conditions directly contribute to the low level
of vegetation productivity in the area [48,49]. Similarly, the Heihe River Basin exhibited
comparable outcomes, further indicating that in the arid regions of northwestern China,
NPP levels are typically low and highly susceptible to precipitation fluctuations due to a
significant scarcity of water resources [50]. Recent studies have also shown that vegetation
growth in these arid regions is more severely affected by climate change, with extreme
precipitation events posing additional challenges to ecosystem recovery [51,52].

Further exploring the impact of climate change and phenological changes on NPP, this
study reinforces the necessity of comprehending the interdependent relationships between
climate, phenology and vegetation. It has been demonstrated that there are notable differences
in the impact of climatic variables on vegetation phenology across different seasons. To illustrate,
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spring temperature has been demonstrated to exert a pronounced influence on SOS, whereas
fall precipitation has been shown to exert a significant impact on EOS [7,8]. This seasonal
difference has been validated to varying degrees in arid and semi-arid regions around the world,
thereby confirming the critical role of climatic factors on vegetation growth [5,53]. The results
demonstrated that the impact of climatic factors on SOS is generally more pronounced than that
on EOS. The positive effect of warmer spring temperatures on SOS is observed to be driven
by the promotion of early vegetation emergence and growth, which in turn led to an increase
in NPP. However, the rise in summer temperatures has a significant negative effect on SOS. It
is found that higher temperatures potentially led to an earlier growing season, which in turn
inhibited NPP accumulation by shortening the growing season. While warmer temperatures
often facilitate early growth, in extreme climatic conditions, this advancement may negatively
impact NPP on an annual basis [9]. Recent literature also supports this view, suggesting that
extreme climate events may have a significant impact on vegetation phenology and weaken the
potential for NPP growth [54]. Additionally, the rise in precipitation has a considerable positive
impact on SOS, yet a detrimental effect on EOS. This suggests that, while increased precipitation
typically fosters vegetation growth, excessive precipitation may alternatively precipitate water
stress in arid ecosystems, thereby constraining vegetation expansion [55,56]. This underscores
that the impact of phenological shifts on NPP is not solely contingent on the overall precipitation
levels but is also profoundly shaped by the cumulative effect of local precipitation patterns and
climate variability.

Furthermore, the prolongation of vegetation phenology resulting from climate change
may augment NPP in the immediate term. However, in the long term, recurrent extreme
climatic occurrences may offset this impact, particularly in regions characterised by elevated
climate variability [57]. This intricate dynamic indicates that future research must prioritize
investigating the direct and indirect impacts of climate change on phenological events.
A multi-scale and multi-factor analysis approach will facilitate a more comprehensive
understanding of the mechanisms through which climate change affects NPP, thereby
providing a scientific foundation for the management and restoration of ecosystems.

The results demonstrated that the duration of the vegetation growing season was
progressively extended with the intensification of seasonal precipitation and temperature
fluctuations, which led to an increase in vegetation NPP. However, ecosystems may experi-
ence heightened levels of water stress and heat stress as summer temperatures continue to
rise and precipitation patterns become increasingly erratic [58,59]. In dryland ecosystems,
there is considerable spatial heterogeneity in temperature and precipitation, with a high
degree of uncertainty [22]. It is therefore imperative that future ecological restoration
strategies give special consideration to the potential challenges posed by water carrying
capacity and seasonal climate change in these regions. The spatial distribution of wa-
ter and heat is significantly influenced by local topography and soil conditions, thereby
increasing the complexity of ecological restoration. In order to effectively address the
uncertainties posed by future climate change, ecological restoration strategies must pri-
oritize nature-based solutions and incorporate a comprehensive assessment of the dual
impacts of local climate variability on vegetation growth. In particular, when considering
the restoration of windbreaks in future climate scenarios, it is essential to address both the
enhancement of plant water use efficiency and the sustainable management of soil moisture.
It is imperative to increase ground cover in order to enhance soil moisture retention and
to adapt to climate change by optimizing vegetation structure. Furthermore, in regions
experiencing prolonged periods of drought, it is essential to implement more adaptive
vegetation-restoration strategies that prioritize the introduction of drought-tolerant species
and the effective management of water resources. This approach is crucial to ensure the
long-term resilience and stability of the ecosystem. Furthermore, future restoration strate-
gies should prioritize the monitoring of vegetation phenology dynamics under climate
change scenarios, with a particular emphasis on the study of response mechanisms to
seasonal climate change.
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Although this study focuses on the effects of climatic and phenological changes on
vegetation growth, while the effects of human activities are relatively less addressed.
Anthropogenic activities exert a more pronounced influence on vegetation cover (e.g.,
ecological restoration projects) within the study area. However, a more comprehensive
investigation is required to elucidate the precise nature of these impacts. Subsequent
studies will investigate the role of human activities in ecological restoration in greater detail,
particularly in the context of interactions with climate change. This will provide a crucial
foundation for the development of more precise and sustainable restoration strategies.

5. Conclusions

This study focuses on WSEFCA, utilizing an SEM model to construct a relational net-
work that quantitatively evaluates the impact of climatic factors and phenological events on
vegetation NPP. It reveals the crucial role phenology plays in climate-driven NPP changes
under arid and semi-arid conditions. The results indicate that while the overall ecological
environment of these conservation areas has improved, significant regional disparities per-
sist, particularly in northwestern China, where further ecological improvements are needed.
In the arid and semi-arid regions, summer precipitation notably advances spring SOS and
delays autumn EOS, thereby indirectly enhancing the growth potential of vegetation NPP.
The study further demonstrates that climate change indirectly influences vegetation growth
cycles and productivity by regulating phenological events.

This research provides a basis for formulating more precise strategies for ecological
protection and restoration. In other similar arid regions, ecological restoration efforts
should also focus on the relationship between regional climate and phenological changes,
in order to develop location-specific strategies to address the impact of climate change on
vegetation productivity. Future ecological management strategies should fully consider
the regulatory effects of climate change on phenology and NPP to effectively address the
challenges of ecological restoration in global arid zones.
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Appendix A

Table A1. Results of direct, indirect, and total effects of annual changes in temperature, precipitation,
SOS, EOS, and NPP (slashes indicate no indirect effects, NS indicates the path is not significant).

Paths Direct Effects Paths Indirect Effects Paths Total Effects

PRE → SOS 0.703 PRE → SOS → NPP 0.116 PRE → SOS 0.703
PRE → EOS NS PRE → EOS → NPP NS PRE → EOS 0.432
PRE → NPP 0.748 PRE → SOS → EOS 0.432 PRE → NPP 0.819

TEMP → SOS 0.372 TEMP → SOS → NPP 0.061 TEMP → SOS 0.372
TEMP → SOS → EOS 0.229 TEMP → EOS 0.229

TEMP → SOS 0.061
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Table A1. Cont.

Paths Direct Effects Paths Indirect Effects Paths Total Effects

DEM → SOS 0.464 DEM → SOS → EOS 0.285 DEM → SOS 0.464
DEM → EOS −0.101 DEM → SOS → NPP 0.077 DEM → EOS 0.149

DEM → EOS → NPP 0.022 DEM → NPP 0.099
SOS → EOS 0.615 SOS → EOS → NPP −0.135 SOS → EOS 0.615
SOS → NPP 0.165 SOS → NPP 0.030
EOS → NPP −0.220 / EOS → NPP −0.220
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