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Abstract: The industrial shift from Industry 4.0 to Industry 5.0 has transformed organizational
thinking, moving the focus from purely technological implementation to a more human-centered
approach. The current study has focused on the Industry 5.0 technological capabilities to bring
into circular economy practices aligned with sustainable development goals, aiming to enhance
sustainable performance. Moreover, the resource-based theory has grounded the development of the
comprehensive framework on Industry 5.0 technological capabilities (artificial intelligence capabili-
ties, big data analytical capabilities, Internet of Things capabilities, machine learning capabilities, and
blockchain technology capabilities) and circular economy practices (eco-design, management system,
and investment recovery) to achieve sustainable performance (environmental performance, social
performance, and economic performance). Data have been collected from 179 respondents from the
Chinese manufacturing industry. Additionally, data have been analyzed using the structural equation
modeling technique. The results showed that Industry 5.0 technological capabilities directly affect
sustainable performance. Moreover, circular economy practices played a dual, moderating, and medi-
ating role between Industry 5.0 technological capabilities and sustainable performance. The current
study has contributed to filling a gap in the literature on Industry 5.0 capabilities, especially in the
circular economy and sustainable performance perspective. The practical contribution recommended
is that if organizations focused on their Industry 5.0 technological capabilities, it would boost circular
economy practices and sustainable performance to achieve sustainable development goals.

Keywords: Industry 5.0 capabilities; internet of things; artificial intelligence; big data; blockchain;
machine learning; circular economy practices; sustainability; structural equation modelling

1. Introduction

The Industry 5.0 (I5.0) revolution has radically changed thinking styles, strategies,
practices, and concepts from a technological perspective to a human-centric approach [1].
I5.0 has three main pillars: it is sustainable, resilient, and human-centric [2]. The human pil-
lar has focused on empowerment, diversity, and talent. The resilient pillar has concentrated
on agility and flexibility, using advanced information technologies, while the sustainability
pillar has focused on environmental, economic, and social benefits [2].

I5.0 is an emerging concept introduced in the European Union workshops in 2020 [3].
In 2023, the market size of I5.0 was USD 52.2 billion, and it is expected to reach
USD 255.7 billion in 2029. The compound annual growth rate of I5.0 is 31.2%, indicating
rapid growth [4]. Additionally, I5.0 has increased society’s well-being by empowering
teams through training and developing evolving skills to gain a competitive advantage by
reducing resource utilization and caring for the environment [2].
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The impact of technological capabilities on economic growth was established in the
early 1900s [5] because technological capabilities bring innovative performance [6]. The
Brazilian economy grew 200% in the first decade of the twentieth century, even though,
at that time, Brazil had low and medium-low technological industries [5,7]. In the con-
temporary era, Internet of Things capabilities (IoTCs) enhance the green supply chain
performance [8]. The literature has focused on artificial intelligence—big data analytical
capabilities (AI–BDACs) from the perspective of supply chain agility [9]. Additionally, big
data analytics (BDA) has sharpened the supply chain performance and overall organiza-
tional performance [10,11].

RQ1: How do technological capabilities contribute to enhancing sustainable performance?

Circular economy (CE) has focused on environmental factors while aiming to gain
economic, social, and environmental benefits. CE has focused on reducing raw material
use, waste, and emissions through the reuse, repair, and recycling of products as much
as possible [12,13]. Circular economy practices (CEPs) have a direct relationship with
sustainable development goals (SDGs) to develop business models [14]. Additionally, a
meta-analytic structural equation modeling study was conducted to find the CEP effect
on the manufacturing firm’s performance [15]. AI has played a vital role in this relation-
ship [16].

I5.0 technological capabilities and CEPs play critical roles in achieving SDGs. Addi-
tionally, I5.0 technological capabilities and CEPs share the goal of protecting resources and
the environment to boost sustainable performance (SusP), and both I5.0 and CE are crucial
to achieving SDGs. Despite the importance of I5.0 technological capabilities and CEPs in
achieving SusP, their study was missing in the literature and practice.

RQ2: How do CEPs play a role in integrating I5.0 technological capabilities and SusP?

This study has theoretically contributed to three perspectives. First, the current
study has focused on I5.0 technological capabilities, while previous studies have either
focused on Industry 4.0 or the implementation of advanced information technologies in
organizations to enhance sustainable performance [17–19]. Second, the current study is
grounded on the resource-based view (RBV) theory, while most studies have focused on
the technological–organizational–environmental view (TOE) [17], the natural resource-
based view (NRBV) [18], and the practice-based view (PRB) [19]. So, inconsistencies are
found in the literature. Third, this study has developed and analyzed the comprehensive
framework of the relationship between I5.0 technological capabilities, CEPs, and SusP,
which was not found in the literature. So, this study has made a theoretical contribution to
the literature [20].

In practice, the rapid boost of information technologies in the manufacturing industry
is driving the industrial revolution from Industry 1.0 of mechanization to I5.0 of personal-
ization. This evolution not only has fruitful results, but at the same time, it brings challenges
for human beings. In I5.0, the biggest challenge is understanding the real capabilities of
using advanced information technologies more efficiently in their operations for SusP. So,
this study has contributed to filling a theoretical and practical gap. The current study has
focused on technological-related I5.0 capabilities to perform CEPs and achieve SusP.

The current study follows the scientific method. The following section presents
a literature review on I5.0 technological capabilities, CEPs, and SusP, which leads to
integrating the resource-based theory to develop the theoretical foundation and hypotheses.
After developing the hypotheses, the methodology section elaborates on the measurement
and data collection methods. In the next section, results are interpreted using their threshold
values. In the last section, conclusions are drawn, and limitations and recommendations
are elaborated.
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2. Literature Review

In this literature review section, the described literature on I5.0 technologies elaborates
on the important technologies used in the fifth industrial revolution era, which needed to
be focused on to develop the relevant skills and capabilities. CEPs have focused on the
major practices employed by organizations in their operations to achieve SDGs. Ultimately,
SusP has focused on the critical aspects of social, economic, and environmental advantages.

2.1. Resource Based View Theory

RBV theory has examined the antecedents for SusP as the deployment of organiza-
tional resources and capabilities to gain a competitive advantage by non-imitability, rarity,
value, and non-substitutability [21,22]. RBV theory has further explored how organizational
resources can be turned into capabilities to reduce costs and improve quality. Moreover,
RBV has considered human, physical, and organizational capital as basic organizational
resources [23]. Additionally, RBV has categorized resources into tangible, like IT infrastruc-
ture, and intangible, like knowledge and experience, which contribute to the non-imitability
of production and logistics [24]. In contrast, capabilities are the ability to perform specific
tasks, leading to core competencies. These have been utilized to make organizational
processes and activities more efficient to gain long-term competitive advantage [25,26].

In this study, RBV theory establishes the conceptual framework of I5.0 technological
capabilities and CEPs based on the core organizational capabilities to gain SusP. Moreover,
I5.0 capabilities focus on technological abilities, and organizations must train employees
to use these technologies. This creates an interaction between humans and technologies
but has a more human-centric approach. These capabilities are challenging to replicate and
establish a sustainable competitive advantage, which aligns this study’s framework with
RBV theory.

2.2. Industry 5.0 (I5.0) Technologies

In the I5.0 literature review, technologies were categorized into three distinct view-
points; the first is the extension and continuation of existing technologies like industrial
robots, blockchain (BC), IoT, cybersecurity and cryptography, big data, and enterprise
systems. The second is related to revolutionary technologies like AI, humanoid robots, and
the Internet of Medical Things. The third approach emphasizes adaptive (cognitive) robots,
human recognition technologies, the Internet of Everything, and smart energy manage-
ment systems [27]. Moreover, the major three I5.0 technologies are IoT, BDA, and BC [28].
Additionally, technologies have extended to IoT, AI, machine learning (ML), big data, BC,
and cloud computing from the perspective of CE [29]. In the literature, the I5.0 technologies
are cloud/IoT, Cobot, cyber–physical systems, digital twins, radio frequency identification,
and edge computing [30].

The present study only concentrated on five prominent I5.0 technologies: AI, big
data, IoT, ML, and BC. These were chosen because they align with the previous literature
linking the relationship between selected technologies and CE. The literature established
the relationship between AI capabilities and circular business models [31]. Additionally,
generative AI had a positive and significant impact on CEPs and sustainable supply chain
performance [32]. In the previous literature, the relationship between big data analytical
capabilities and the CE performance of the Czech manufacturing industry was studied [33].
Moreover, big data analytical capabilities’ positive impact on CEPs was found in the
Indian [34] and Brazilian [35] manufacturing industries.

A bibliometric analysis established a relational framework between IoT and CE within
the manufacturing sector [36]. Additionally, a systematic literature review supported the
relationship between IoT and CE [37]. Moreover, the literature found a positive impact of
Industrial IoT on CE in Jordan SMEs [38]. Following the same pattern, the relationship
between ML and CE was developed in a bibliometric analysis and systematic literature
review [39]. Furthermore, the ML approach was employed for CE initiatives in the plastic
sector [40]. The fourth industrial revolution digital technologies affect CE, and it is aligned
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with SDGs [41]. Building on the previous logic, a systematic literature review was con-
ducted on the relationship between blockchain and CE to bridge the gap in practice and
research [42]. The multiple aspects of blockchain technology affect CE [43]. Additionally,
blockchain affects CEPs [44].

2.3. Circular Economy Practices (CEPs)

CEP activities involve reusing, recycling, and repairing the products as long as possi-
ble. Additionally, CEPs have focused on reducing the utilization of resources and increasing
the output, which was found in the supply chain literature [45]. Moreover, recycling and
remanufacturing, circular design, and circular manufacturing constitute three principles of
CEPs [26]. Furthermore, CEPs have governance initiatives, economic initiatives, cleaner
production, product development, management support, and knowledge found in the
recent literature [46]. Likewise, CEPs have eco-design (ED), management support (MS),
and investment recovery (IR) [47,48]. Extensive research was performed to validate the
relationships between CEPs and SusP found in the prior literature using meta-analysis [49].
Additionally, the positive effect of CEPs on SusP was found in the supply chain litera-
ture [50]. A literature review was performed to identify the CEPs (green manufacturing,
investment recovery, eco-design, internet environment management) with sustainable
performance from the viewpoints of SP, EP, and EVP [51].

2.4. Sustainable Performance (SusP)

SusP represents organizational performance that is interlinked with the environment.
It comprises three pillars: environmental performance (EVP), social performance (SP),
and economic performance (EP) [46–48]. Sustainable supply chain performance has been
measured through EVP, EP, and SP [26]. The literature established a connection between
CEPs and SusP in Vietnam SMEs [52]. Additionally, a meta-analysis was conducted to find
the relationship between CEPs and SusP [49]. In the supply chain literature, CEPs had an
impact on sustainable supply chain performance [53]. On the other hand, the relationship
between CE and SusP was found within the Mexican manufacturing sector [54].

2.5. Research Gap

The comprehensive literature review on the relationship among I5.0, CEP, and SusP
identified several research gaps. The key research gaps are listed below.

1. Studies have elaborated on adopting and implementing advanced technologies, but
the literature is scant and has focused on technological capabilities. This study has
focused on I5.0 technological capabilities.

2. The discrepancies were found in the theoretical perspective, especially the TOE,
Natural Resource-Based View (NRBV), and Practice-Based View (PRB). So, the most
appropriate theory is needed.

3. All the literature has focused on Industry 4.0, and no study has yet been published
that has focused on I5.0. This study has established the relationship among I5.0 tech-
nological capabilities, CEPs, and SusP.

The literature summary in Table 1 elaborates on the research gaps as mentioned earlier.

Table 1. Literature summary.

Year First Author Theory Method Technology Circular
Economy

Sustainable
Performance Ref.

2024
Mohammad

Nurul Hassan
Reza

Technology–Organization–
Environment (TOE) Survey Industry 4.0 - Sustainable

Performance [17]

2024 Farrukh Shahzad,
M.

Natural Resource-Based View
(NRBV) Survey Industry 4.0

Circular
Economy
Practices

Sustainable
Performance [18]
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Table 1. Cont.

Year First Author Theory Method Technology Circular
Economy

Sustainable
Performance Ref.

2024 Zhibin Tao Practice-Based Theory, Information
Processing Theory Survey Industry 4.0

Green Supply
Chain

Management
Practices

Sustainable
Performance [19]

2023 Oguzhan Yavuz
Natural Resource-Based View

(NRBV), and Technology–
Organization–Environment (TOE)

Survey Industry 4.0
Sustainable
Operations

Practices

Sustainable
Performance [55]

2023 Sachin S. Kamble Organizational capability theory
(OCT) Survey Industry 4.0

Circular
Economy
Practices

Sustainable
Performance [48]

2023 N. Harikannan - Survey Industry 4.0
Sustainable

Manufacturing
Practices

Organizational
Sustainable

Performance
[56]

2023 Dounia Skalli Practice-Based Theory (PBT) Survey Industry 4.0 Circular
Economy

Sustainable
Organizational
Performance

[57]

2022 Priya Rani
Bhagat

Natural Resource-Based View
(NRBV) Survey Industry 4.0 Green Practices Firm

Performance [58]

2021
Reza,

Mohammad
Nurul Hassan

Technology–Organization–
Environment (TOE) Survey Industry 4.0 - Sustainable Firm

Performance [59]

2020 Sachin Kamble - Survey Industry 4.0
Lean

Manufacturing
Practices

Sustainable
Organizational
Performance

[60]

2.6. I5.0 and SusP

I5.0 has simultaneously influenced economic, social, and environmental contributions
at both the micro- and macro-levels. From the economic standpoint, economic transparency,
supply chain resilience, and supply chain adaptability represent the macro-level impacts,
while resilient industrial operations, workforce productivity, resource efficiency, opera-
tional efficiency, material flow efficiency, and circular manufacturing constitute micro-level
economic contributions [27].

Environmental macro-level contributions include waste and pollution reduction, sup-
ply chain productivity, preventing over-consumption, a circular supply chain, diminished
post-consumer waste, and reduced rebound effects, while emission reduction, end-to-end
environmental transparency, prolonged product life cycle, renewable resources, and waste
reduction are the key environmental contributions at the micro-level [27].

From the social perspective, ethical value creation, higher product accessibility, em-
ployment growth, improved consumer experience, equal employment opportunity, and
human-centric technology development are the macro-level impacts. At the same time,
workplace dignity, enhanced working environment, customer satisfaction, workplace safety,
sustainability talent management, and job satisfaction are micro-level social contributions
and impacts [27].

The correlation between AI-BDACs and supply chain performance [61] and supply
chain analytics and environmental performance [62] was found. Additionally, IoT capa-
bility had a direct effect on firm performance with the mediating effects of IoT-enabled
supply chain integration and supply chain capability from the retail industry in the United
Kingdom [63]. Moreover, the relationship between IoT capabilities and green supply
chain performance was proved in a previous study [8]. Furthermore, the direct relation-
ship between BDACs and sustainable supply chain performance was tested in the Indian
manufacturing industry [47].

As mentioned, the literature has grounded the foundation for CEPs’ role in techno-
logical capabilities and performance. Consequently, according to the same rationale and
the scarcity of literature on I5.0 technological capabilities and SusP, the literature gap was
confirmed during a literature search of the WoS and Scopus databases. Not a single paper
has developed the relationship between I5.0 capabilities and SusP because the I5.0 concept
was introduced in 2020 [3], as it is still an emerging concept. Hence, this has enabled
the researcher to consider the logic mentioned above from the literature to establish the
following hypothesis.
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Hypothesis 1: I5.0 technological capabilities enhance SusP.

2.7. I5.0, CEPs, and SusP

CEPs have served a mediating role in business studies. In the previous literature,
information system capabilities have a direct effect on business performance, and CEPs
play the mediating role, while environmental uncertainty has a moderating effect between
CEPs and business performance [64].

In the Industry 4.0 (I4.0) literature, CEPs were found to be a mediator between I4.0
and sustainable performance. Moreover, the implementation of I4.0 technologies directly
impacts sustainable supply chain performance, and indirectly, I4.0 technologies’ mediating
effects through green supply chain management practices and CEPs were found in the
garment sector in Bangladesh [26].

India’s manufacturing industry has focused on the direct relationship between I4.0
and SusP, the mediating effect of CEPs between I4.0 and SusP, and the moderated effect of
CEPs between I4.0 and SusP [48]. Additionally, BDACs have a direct effect on sustainable
supply chain performance and mediating effect through CEPs [46,47], and sustainable
supply chain flexibility was found in the manufacturing industry in India [47].

The I4.0 literature previously cited has established the basis for the role of CEPs
between technological capabilities and performance. Therefore, the same arguments are
used, considering the scarcity of research on I5.0 technology capabilities, CEPs, and SusP.
A literature search using the WoS and Scopus databases validated the lack of research on the
association between I5.0 capabilities, CEPs, and SusP. This is because I5.0 was proclaimed
in 2020 [12]. The researcher has developed the following hypotheses by considering the
logic from the I4.0 literature that was previously cited.

Hypothesis 2: CEPs have a moderating role between I5.0 and SusP.

Hypothesis 3: CEPs have a mediating role between I5.0 and SusP.

Based on the literature review and hypotheses, the conceptual framework is estab-
lished and depicted in Figure 1.
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3. Materials and Methods

This section elaborates on the measurement scale and explains how it was developed.
It also explains the sample, sampling size, and population. Moreover, it elaborates on the
data collection techniques.
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3.1. Measurement Scale

The present study examined three primary constructs: I5.0 capabilities, CEPs, and SusP.
Each construct is founded on subconstructs, measured through different measurement
items. Every item was measured on a five-point Likert scale. The I5.0 capabilities were mea-
sured through AICs, BDACs, IoTCs, machine learning capabilities (MLCs), and Blockchain
technological capabilities (BCTCs). AICs, BDACs, and IoTCs have four, and MLCs and
BCTCs have five items of each sub-construct developed using ChatGpt. CEPs have three
subconstructs: MS, ED, and IR. MS was measured using six, and ED and IR were measured
using five items for each subconstruct, adapting from the prior literature [47,65–67]. SusP
comprises three subconstructs, EP, EVP, and SP, with each subconstruct measured using
five items adapted from the previous literature [47,60,68,69]. Instruments were adapted
from the previous literature because these instruments have already measured the same
constructs and subconstructs in similar aspects. Additionally, the reliability and validity
of the instruments have been established, and the instruments measure the core concepts
that are the focus of this study. If the items had a factor loading less than 0.70, they were
deleted [70]. The measurement items are attached in Appendix A.

3.2. Population and Sample

The Chinese manufacturing industry has been at the top for the last 14 years. In 2023,
the manufacturing industry reached USD 5.57 trillion, which indicates the importance of the
manufacturing sector [71]. Additionally, the “Little Giant” means small and medium-sized
enterprises have boosted their production using cutting-edge technologies, contributed to
the niche market, and kept the competitive advantage [71].

The sample was a subset of the population. The sample size was calculated using
G*power Software version 3.1.9.7 [72,73]. “F Tests” were considered a test family, and the
statistical test was “Linear multiple regression: Fixed model, R2 deviation from zero”. The
effect size “F2” was set as medium “0.15”, and the number of predictors considered was
“eight”. The software had suggested a “160” sample size. In this study, the total sample
size examined was 179, higher than the recommended sample size.

3.3. Data Collection Method

I5.0 is purely related to industry and manufacturing, with CEPs and SusP focused
on the manufacturing industry. So, in this study, data were collected from the Chinese
manufacturing industry through a survey using an online questionnaire method, which
aligns with previous studies that have focused on the manufacturing industry [47,48]. In
this study, with the support of a third party, 179 responses were collected from different
experts in the manufacturing industry, which can be used for subsequent analysis.

3.4. Research Method

The partial least square–structure equation modeling (PLS-SEM) technique was em-
ployed to analyze the data using SmartPLS 4.1. There are two main reasons for choosing
this method. First, the constructs I5.0 and its effect are at the exploratory stage, and there is
no sufficient research conducted in this field. Second, PLS-SEM is not based on distribution
assumptions and can work on a small sample size [70]. Additionally, PLS-SEM has been
used to analyze measurement and structural models.

4. Results

This section presents the empirical results in both tabular and graphical form. The
results are also interpreted and referenced where necessary.

4.1. Respondent’s Profile

In this section, the respondents’ demographic factors are elaborated on. In this study,
the majority of the respondents have experience between 7 and 9 years, 37.43%, and the
occupational level is skilled worker, 42.46%, and working, 34.08%, in electronics and
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electrical equipment in the manufacturing sector. The overall results are presented in
Table 2.

Table 2. Respondents’ profile.

Characteristics Distribution Frequency Percentage

Experience 1–3 years 24 13.41
4–6 years 42 23.46
7–9 year 67 37.43

Ten or above 46 25.70
Occupational Level Entry level 33 18.44

Skilled worker 76 42.46
Supervisor 41 22.91
Manager 29 16.20

Industry Automobiles and Automotive Parts 41 22.91
Machinery and Equipment 43 24.02

Electronics and Electrical Equipment 61 34.08
Textiles and Apparel 34 18.99

4.2. Measurement Model

In this section, the conceptual model is analyzed using the algorithm in SmartPLS 4.1
to examine the data’s factor loadings, validity, reliability, and collinearity. The results are
mentioned in Table 3.

Table 3. Factor loadings, reliability, validity, and average variance extract.

Variable Item Factor Loadings VIF Alpha CR AVE

Artificial Intelligence Capabilities (AICs) 0.884 0.920 0.743
AIC1 0.880 2.689
AIC2 0.872 2.500
AIC3 0.816 1.930
AIC4 0.877 2.491

Big Data Analytical Capabilities (BDACs) 0.86 0.905 0.705
BDAC1 0.837 2.038
BDAC2 0.847 2.072
BDAC3 0.846 2.047
BDAC4 0.827 1.860

Internet of Things Capabilities (IoTCs) 0.866 0.909 0.713
IoTC1 0.827 1.910
IoTC2 0.848 2.181
IoTC3 0.838 1.994
IoTC4 0.865 2.208

Machine Learning Capabilities (MLCs) 0.885 0.916 0.685
MLC1 0.804 1.995
MLC2 0.833 2.391
MLC3 0.819 2.244
MLC4 0.858 2.435
MLC5 0.823 2.156

Blockchain Technology Capabilities (BCTCs) 0.886 0.917 0.688
BCT1 0.868 2.671
BCT2 0.820 2.088
BCT3 0.789 1.829
BCT4 0.856 2.547
BCT5 0.813 1.951

Eco-Design (ED) 0.891 0.92 0.696
ED1 0.837 2.238
ED2 0.837 2.19
ED3 0.849 2.452
ED4 0.844 2.39
ED5 0.804 1.926
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Table 3. Cont.

Variable Item Factor Loadings VIF Alpha CR AVE

Management System (MS) 0.905 0.927 0.679
MS1 0.851 2.632
MS2 0.845 2.541
MS3 0.834 2.433
MS4 0.828 2.508
MS5 0.781 1.986
MS6 0.802 2.163
Investment Recovery (IR) 0.883 0.914 0.681
IR1 0.821 2.202
IR2 0.816 2.059
IR3 0.863 2.632
IR4 0.824 2.103
IR5 0.801 2.024

Environmental Performance (EVP) 0.881 0.913 0.677
EVP1 0.798 1.923
EVP2 0.812 1.968
EVP3 0.827 2.087
EVP4 0.866 2.594
EVP5 0.809 2.08

Social Performance (SP) 0.895 0.923 0.705
SP1 0.829 2.168
SP2 0.827 2.125
SP3 0.823 2.144
SP4 0.846 2.282
SP5 0.874 2.787
Economic Performance (EP) 0.9 0.926 0.715
EP1 0.869 2.792
EP2 0.829 2.136
EP3 0.823 2.13
EP4 0.855 2.483
EP5 0.851 2.436

Table 3 indicates that all the factors possess factor loadings greater than 0.70, indicating
that there are no items that need to be deleted [70,74]. The variance inflation factor (VIF)
is lower than 5, indicating there is no collinearity issue [70,74]. The indicator’s reliability
using Cronbach Alpha and the composite reliability of each indicator is higher than 0.70,
indicating that all items are reliable [70,74]. Additionally, the average variance extracted
(AVE) values are higher than 0.50 [70,74], which indicates that no convergent validity issue
was found in this study.

4.3. Discriminant Validity

This type of validity indicates that the research constructs are distinct. The discrim-
inative validity was measured through the Fornell–Larcker criterion and Hetero-trait
Mono-trait (HTMT) methods, Tables 4 and 5 represent the results, respectively.

The diagonal bold and italic values represent the square root of AVE values, which
must be higher than the corresponding inter-correlational values [75]. In this study, all the
diagonal values are higher than the inter-correlational values, showing no discriminant
validity issue.

The HTMT is employed to assess the validity of the discriminant. The HTMT values
must be less than 0.850 [76]. In Table 5, no value is higher than the HTMT threshold value,
indicating no discriminant validity issue.
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Table 4. Fornell–Larcker criterion method.

Construct 1 2 3 4 5 6 7 8 9 10 11

1. AICs 0.862
2. BCTCs 0.721 0.830
3. BDACs 0.716 0.574 0.839

4. ED 0.644 0.613 0.62 0.834
5. EP 0.667 0.619 0.628 0.672 0.846

6. EVP 0.685 0.634 0.619 0.663 0.613 0.823
7. IR 0.634 0.683 0.648 0.682 0.668 0.613 0.825

8. IoTCs 0.682 0.587 0.640 0.685 0.678 0.623 0.681 0.845
9. MLCs 0.701 0.669 0.64 0.700 0.621 0.678 0.656 0.684 0.827
10. MS 0.672 0.592 0.634 0.694 0.728 0.614 0.620 0.617 0.711 0.824
11. SP 0.659 0.705 0.605 0.694 0.565 0.728 0.665 0.53 0.673 0.681 0.840

Table 5. Hetero-trait Mono-trait (HTMT).

1 2 3 4 5 6 7 8 9 10 11

1. AICs
2. BCTCs 0.813
3. BDACs 0.822 0.658

4. ED 0.724 0.689 0.707
5. EP 0.748 0.692 0.715 0.749

6. EVP 0.774 0.716 0.711 0.746 0.688
7. IR 0.715 0.772 0.741 0.769 0.747 0.692

8. IoTCs 0.779 0.667 0.741 0.778 0.764 0.711 0.778
9. MLCs 0.792 0.756 0.735 0.788 0.694 0.767 0.743 0.78
10. MS 0.751 0.659 0.716 0.772 0.806 0.687 0.691 0.695 0.793
11. SP 0.738 0.791 0.690 0.775 0.628 0.818 0.745 0.600 0.754 0.756

4.4. Structural Model

The subsequent phase of structural equation modeling involves testing the structural
model [70,74]. The hypotheses were tested in the structural model, and the results are
mentioned in Table 6.

Table 6. Hypotheses, results, and decisions.

Hypothesis β t-stat. p-Values Decision

H1: I5.0 → SusP 0.595 5.337 0.000 Supported
H2: CEP × I5.0 → SusP 0.274 3.591 0.000 Supported

H3: I5.0 → CEPs → SusP 0.473 5.079 0.000 Supported

Table 6 presents the hypotheses, coefficient (β) values, t-statistics, p-values, and deci-
sions. The p-values are less than 0.05, which indicates that all the hypotheses have been
accepted. Additionally, the structural model is mentioned in Figure 2.

4.5. Model Fit

The comprehensive model fit was analyzed using goodness of fit [77–79]. The good-
ness of fitness is mentioned in Table 7.

The results of the goodness of fit support the model fit. In addition, the model fit was
evaluated using SmartPLS. The standard root mean square (SRMR) values are closer to
zero, and the normed fit index (NFI) is closer to 1, indicating that the proposed model is
fit [80,81].
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Construct AVE R Square

CEPs 0.777 0.752
SusP 0.757 0.834
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Goodness of Fit 0.779

Note: SmartPLS model fit values are SRMR = 0.057 and NFI = 0.855.

5. Discussion and Conclusions

The Industrial Revolution has rapidly transformed organizations’ thinking and operat-
ing styles. I5.0 has shifted the trend from adopting and utilizing advanced information tech-
nologies to becoming a more human-centric approach [82]. Without considering humans,
organizations cannot achieve optimal financial benefits, gain a competitive advantage,
protect the environment, and improve organizational processes [82].

The present study has identified five key I5.0 technological capabilities: AICs, BCTCs,
BDACs, IoTCs, and MLCs, which were calculated by way of the second-order construct
as I5.0 technological capabilities, CEPs were derived from ED, MS, and IR, and SusP was
measured on the same pattern grounded on EVP, EP, and SP. AICs enable organizations to
automate organizational tasks to be accomplished efficiently and accurately. Additionally,
generative AI has a positive and significant impact on CEPs and sustainable supply chain
performance [32]. BCTCs can maintain high security, reduce fraud, and streamline orga-
nizational processes. Additionally, blockchain has a positive effect on CEPs [44]. BDACs
empower organizations to manage, retrieve, and visualize the results from big data to
make data-driven decisions. Moreover, BDACs’ positive impact on CEPs was found in the
Indian [34] and Brazilian [35] manufacturing industries. IoTCs support organizations in
tracking products and processes in real time using the internet. Moreover, the literature
has found the positive impact of Industrial IoT on CE in Jordan SMEs [38]. MLCs use
algorithms and models to predict the future using large amounts of data. This will enable
organizations to make data-driven, accurate decisions. Additionally, the ML approach has
been used for CE in the plastic industry [40].

The current study has focused on gaining a competitive advantage through the unique
and specific capabilities required to work efficiently and smartly using advanced infor-
mation technologies focused on I5.0. Organizations realize the importance of RBV theory,
which posits that distinctive and non-imitable capabilities can give a competitive advan-
tage [21,22]. In this study, RBV provided the foundation for developing the conceptual



Sustainability 2024, 16, 9952 12 of 17

framework. Additionally, capabilities can create a difference in work efficiency. Organiza-
tions using advanced information technologies are far ahead of their competitors [21,22].

Data from the Chinese manufacturing industry was collected to analyze the conceptual
framework empirically. From the hypothetical perspective, H1 has established a direct
and positive relationship between I5.0 technological capabilities and SusP. The results are
aligned with the results found in the previous I4.0 literature [47,83]. H2 has established
the moderated effect of CEPs between I5.0 and SusP. The findings have supported the
hypothesis. However, the direct moderated effect of CEPs between I5.0 capabilities and
SusP was not found in the previous literature. However, the I4.0 literature has supported
this relationship. H3 has developed the mediating effect of CEPs between I5.0 and SusP.
The results are in favor of the hypotheses. The same mediating relationship of CEPs with
the technological perspective was found in the I4.0 literature [26,47].

The present study has concentrated on I5.0 capabilities, CEPs, and SusP, filling the
literature gap. Because I5.0 is still emerging, and the scarcity of literature has not established
this relationship. Moreover, most studies have only focused on I4.0, which is missing the
human factor, and technologies cannot do anything. So, this study has highlighted and
addressed this practical and theoretical gap. Moreover, organizations have focused on
I5.0 technological capabilities to achieve better SusP regarding EP, EVP, and SP. Addition-
ally, organizations with better technological capabilities facilitate them to adopt circular
practices in their operations. This will establish a competitive advantage in achieving
long-term SDGs.

5.1. Implications

This study has contributed to the knowledge because I5.0 is an emerging concept [3],
and no sufficient literature has been published. So, the literature still lacks literature
integrating the I5.0 technological capabilities to perform CEPs and achieve SusP. RBV
has provided the foundation to develop the relationship, opening new horizons for the
researchers to think from different perspectives and contribute to the literature.

The current research has provided the foundations that were beneficial for the manu-
facturing industry, managers, policymakers, and researchers. Specifically, I5.0 technological
capabilities will enable managers to learn new techniques and implement new technologies
in organizational processes. They will improve ED, MS, and IR as CEPs and automatically
enhance organizational SusP regarding EVP, EP, and SP.

This study provides guidelines for policymakers because all the SDGs (17 goals) and
targets (169 targets) were interlinked with the implementation of advanced information
technologies to achieve sustainability [84]. More specifically, this study is helpful for poli-
cymakers to develop policies regarding SDG 8 on work and economic growth, specifically
targeting 8.2 to achieve higher productivity through technological upgradation and innova-
tion because this study has focused on I5.0, which is the revolution from I4.0. Target 8.4
focuses on improving resource efficiency with economic and environmental benefits, and
I5.0 is considered more efficient as compared to I4.0. SDG 9, regarding industry, innovation,
and infrastructure, specifically target 9.2, focuses on sustainable industrialization, and I5.0
is more concerned about sustainability. Target 9.4 focuses on upgrading infrastructure
through technological and environmental perspectives, and I5.0 is upgraded and is more
concerned with the environment. SDG 17 focuses on the partnerships to achieve the goals,
specifically target 17.16, which focuses on sharing knowledge, expertise, and technologi-
cal resources, and this study has focused on learning and developing new technological
capabilities that align the current study with SDGs and their targets.

5.2. Limitations and Future Directions

In this study, only technological capabilities have been considered. To improve SusP,
it is recommended that relational capabilities and learning capabilities be focused on in
future studies. This study has focused only on five technological capabilities. Still, in future
studies, researchers can consider the technologies and capabilities for specific operations



Sustainability 2024, 16, 9952 13 of 17

like the Internet of Medical Things, humanoid robots, and industrial control systems.
Additionally, this study has ignored the resilience, agility, and human–computer interaction
factors that can be considered in future studies.

The current study used cross-sectional data, which was collected once. However,
in future studies, longitudinal data can be collected and used for comparative analysis.
Second, the data can be collected from different countries. This will also provide meaningful
insights and comparisons of I5.0 technological capabilities, CEPs, and SusP among different
countries, which will comprehensively generalize this new concept.
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Appendix A

Artificial Intelligence Capabilities

• AI systems can perform complex tasks with high accuracy.
• I believe AI can analyze large datasets more efficiently than humans.
• AI technologies can make beneficial autonomous decisions.
• I trust AI capabilities in critical areas like manufacturing and supply chain.

Big Data Analytical Capabilities

• Big data analytics can process and analyze large amounts of data with high precision.
• I believe big data analytics provides valuable insights that traditional methods can’t.
• Big data analytics can identify trends and patterns for strategic decision-making.
• I trust big data analytics to enhance efficiency and innovation in industries.

Internet of Things Capabilities

• IoT devices can collect and transmit data in real-time with high accuracy.
• I believe IoT technology can greatly improve daily operations in industries.
• IoT systems can provide better connectivity and automation for smart environments.
• I trust IoT to improve safety and security in smart manufacturing and industrial settings.

Machine Learning Capabilities

• Machine learning algorithms can improve performance over time without explicit
programming.

• I believe machine learning can accurately predict outcomes using historical data.
• Machine learning models can find complex patterns in large datasets that humans

can’t see.
• I trust machine learning to automate decision-making in various industries.
• Machine learning can personalize services and products based on user data.

Blockchain Technological Capabilities

• Blockchain technology offers high security and transparency in transactions.
• I believe blockchain can prevent fraud and unauthorized access in digital transactions.
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• Blockchain can ensure data integrity and immutability across networks.
• I trust blockchain to streamline and enhance supply chain management efficiency.
• Blockchain can enable trustless interactions by removing the need for intermediaries.

Management System

• Environmental TQM.
• Audit programs related to the environment
• Eco-labelling
• Pollution prevention program
• Internal performance evaluation system
• Our firm generates environmental reports for internal evaluation purposes.

Eco-Design

• Reduce consumption of materials and energy focus in design.
• 3R focus on product design
• Reduced use of hazardous products in design
• Waste minimization focus in process design
• Use environmental packaging by suppliers

Investment Recovery

• Sales of excess inventories/ materials
• Sell scrap and used materials at regular intervals
• Sale of excess capital equipment
• End-of-life products and materials are collected and recycled.
• Availability of recycling system.

Economic Performance

• Production costs
• Profits
• NPD costs
• Energy usage
• Inventory holding costs

Social Performance

• Working conditions
• Workplace safety
• Employee health
• Labor relations
• Satisfies employees

Environmental Performance

• Solid waste
• Liquid waste
• Gas emissions
• Energy consumption
• Consumption of hazardous and harmful product
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