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Abstract: With rapid economic development and a continuous increase in motor vehicle numbers,
traffic congestion on highways has become increasingly severe, significantly impacting traffic effi-
ciency and public safety. This paper proposes and investigates a traffic congestion prediction and
emergency lane development strategy based on object detection algorithms. Firstly, the YOLOv11
object detection algorithm combined with the ByteTrack multi-object tracking algorithm is employed
to extract traffic flow parameters—including traffic volume, speed, and density—from videos at
four monitoring points on the Changshen Expressway in Nanjing City, Jiangsu Province, China.
Subsequently, using an AdaBoost regression model, the traffic density of downstream road sections
is predicted based on the density features of upstream sections. The model achieves a coefficient of
determination R2 of 0.968, a mean absolute error of 11.2 vehicles/km, and a root mean square error of
19.9 vehicles/km, indicating high prediction accuracy. Building on the interval occupancy rate model,
this paper further analyzes the causes of traffic congestion and designs decision-making processes
for the activation and deactivation of emergency lanes. By real-time monitoring and calculating the
vehicle occupancy rate of the CD interval, threshold conditions for activating emergency lanes are
determined. When the interval occupancy rate KCD(t) exceeds 80%, the emergency lane is proac-
tively opened. This method effectively alleviates traffic congestion and reduces congestion duration.
Quantitative analysis shows that after activating the emergency lane, the congestion duration in the
CD section decreases from 58 min to 30 min, the peak occupancy rate drops from 1 to 0.917, and
the congestion duration is shortened by 48.3%. Additionally, for the Changshen Expressway, this
paper proposes two optimization points for monitoring point layout, including setting up monitoring
points in downstream sections and in the middle of the CD section, to further enhance the scientific
and rational management of emergency lanes. The proposed strategy not only improves the real-time
extraction and prediction accuracy of traffic flow parameters but also achieves dynamic management
of emergency lanes through the interval occupancy rate model, thereby alleviating highway traffic
congestion. This has significant practical application value.

Keywords: traffic management; emergency lane; object detection (YOLOv11); ByteTrack; interval
occupancy rate; congestion prediction

1. Introduction

With rapid economic development, the traffic load on highway systems is increasing
daily, leading to increasingly severe traffic congestion problems, especially during holi-
days. Frequent traffic congestion not only affects people’s quality of life but also causes
significant economic losses. According to reports, in 2011, the global economic loss due to
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travel delays and fuel consumption reached as high as USD 121 billion [1]. In China, the
estimated economic loss caused by traffic congestion in the top 15 cities each day amounts
to CNY 1 billion [2]. Additionally, traffic congestion exacerbates air pollution and fuel
consumption [3], further impacting residents’ quality of life and production efficiency [4].
Simultaneously, traffic congestion severely hinders the timely response capabilities of
emergency vehicles such as ambulances and fire trucks.

During highway construction, emergency lanes are usually added on the right side
to cope with engineering rescue, firefighting, medical aid, and other emergencies. As
lifesaving channels, emergency lanes are closed to arbitrary occupation. However, if they
can be used under reasonable circumstances—such as by monitoring the upstream and
downstream traffic flow of a certain road section, predicting potential congestion, and
opening the emergency lane in the absence of accidents to timely reduce traffic density—it
is expected that large-scale congestion can be avoided [5]. Studies have shown that opening
emergency lanes can significantly enhance highway traffic capacity and reduce response
times in emergencies. By rationally utilizing emergency lanes, vehicles can bypass traffic
congestion and quickly pass through accident or fault sections, thereby reducing traffic
delays [6,7]. In this context, alleviating traffic pressure and effectively utilizing existing
road resources have become primary tasks for traffic management departments, and the
flexible use of emergency lanes is regarded as a potential solution [8,9].

Traffic congestion prediction and mitigation methods can be categorized into model-
based and data-driven approaches [10]. Model-based methods predict future traffic pa-
rameters (e.g., occupancy, flow, or speed) by constructing traffic models, such as the Cell
Transmission Model [11], queuing theory [12], and macroscopic traffic flow models [13].
These methods provide straightforward interpretations due to their clear physical foun-
dations (e.g., flow dynamics). However, their idealized modeling assumptions struggle
to accommodate the increasing traffic volume and complexity of modern transportation
networks, leading to limitations in predictive accuracy for practical applications. Data-
driven methods predict travel times and congestion by extracting features from traffic
data. Traditional data-driven approaches include linear regression [14,15], autoregressive
models [16], Kalman filtering [17,18], and Bayesian inference [19], which make predictions
based on assumed probability distributions of the data. In recent years, machine learning
methods such as k-Nearest Neighbors (kNN), Support Vector Machines (SVM), Artificial
Neural Networks (ANN), and Random Forests (RF) have been widely applied in traffic
flow prediction [20,21]. Deep learning models, in particular, have achieved significant
progress through specific framework designs and improvements, as summarized in Table 1.

Table 1. Recent Deep Learning Frameworks for Traffic Congestion Prediction.

References Time Method Results

Jiang et al. [22] 2024

AMCNN-ED
(Attention-based

multi-context
convolutional

encoder-decoder neural
network)

Evaluated using four-year Maryland traffic data,
achieving 5–34% reduction in speed prediction

error, 11–29% in queue length, 6–17% in
congestion timing, and 5–7% improvement in

incident prediction accuracy compared to
baselines.

Wang et al. [23] 2024

Hybrid model
combining ARIMA,

CNN-LSTM, and
XGBoost

Demonstrated superior predictive accuracy with
R2 reaching 0.9874, significantly outperforming

benchmark models.

Zechin et al. [24] 2023 Variational LSTM
Effectively controlled traffic anomalies while
handling multiple independent variables and

integrating with traffic management strategies.

Zhang et al. [25] 2024

Hybrid architecture
combining Graph

Neural Networks and
Temporal Convolutional

Networks

Achieved enhanced prediction accuracy
compared to existing baselines, effectively

forecasting different congestion levels (mild,
moderate, severe) with computational efficiency

suitable for large-scale road networks.
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Table 1. Cont.

References Time Method Results

Gao et al. [26] 2022
Improved

CEEMDAN-FE-TCN
model

Enhanced CEEMDAN algorithm successfully
decomposed traffic flow time series of different

frequencies, achieving significantly higher
prediction accuracy after reconstruction.

Li et al. [27] 2024

Spatio-Temporal Graph
Convolution Network

with embedded location
and time features

(STEGCN)

Demonstrated superior performance in handling
large-scale, structurally complex data compared

to traditional methods (VAR, ARIMA, SVR),
achieving RMSE = 23.71 on the PEMS08 dataset.

However, deep learning models face significant challenges due to their black-box
nature and the complexity of traffic flow data (i.e., spatiotemporal dependencies) [28].
Ei Leen et al. [29] reviewed machine learning applications in mitigating traffic congestion
for smart and sustainable cities, highlighting deficiencies in data reliability and model
interpretability. Modi et al. [30] comprehensively reviewed intelligent traffic management
using machine learning algorithms, noting that varying weather conditions and population
densities make intelligent traffic management systems a challenging research task requiring
further improvements in traffic flow and congestion prediction.

Current GCNN and DCNN-based models, despite their excellent performance on
specific datasets, exhibit poor generalization capabilities, primarily because they treat
spatial dependencies as static values without considering dynamic changes in input and
traffic conditions. Hayeri et al. [31], after analyzing over 100 articles, found that 74% of
studies focus on prediction alone, lacking targeted emergency lane activation strategies.
Furthermore, traditional traffic flow parameter collection methods (e.g., induction loops,
microwave radars, and video detectors) suffer from high installation and maintenance
costs, limited coverage, and environmental sensitivity [32,33].

To address these challenges, this paper proposes an emergency lane activation strategy
based on the YOLOv11 object detection algorithm. The strategy offers three key innovations:

1. Utilizes existing surveillance camera infrastructure for traffic flow parameter extrac-
tion without additional hardware investment;

2. Employs deep learning object detection algorithms for traffic flow parameter
extraction, enhancing model intuition and interpretability;

3. Designs emergency lane activation and deactivation strategies based on inter-
val occupancy rates, incorporating clear physical significance for improved applicability
and reliability.

2. Data

The video data used in this study come from four traffic monitoring points on the
Changshen Expressway in Nanjing City, Jiangsu Province, China. The specific locations are
shown in Figure 1. From upstream to downstream, the four monitoring points are named
A, B, C, and D, respectively. The duration statistics of the surveillance videos obtained
from these four intersections are summarized in Table 2. Considering that traffic congestion
frequently occurs in the CD section, designing a reasonable emergency lane activation
strategy for this section has significant practical importance.
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Figure 1. Locations of the four video monitoring points (Cameras E and F do not currently exist;
they are proposed monitoring points to be added later in this paper to optimize the emergency lane
activation strategy).

Table 2. Statistics of video information at the four observation points.

Observation Point Start Time End Time Total Duration

A 2024-05-01 11:41:03 2024-05-01 16:14:32 4 h 33 min 29 s
B 2024-05-01 11:52:27 2024-05-01 15:28:20 3 h 35 min 53 s
C 2024-05-01 11:35:43 2024-05-01 16:09:12 4 h 33 min 29 s
D 2024-05-01 12:56:47 2024-05-01 15:20:04 2 h 23 min 17 s

3. Methodology

This paper combines video data from highway intersections to establish a traffic
congestion prediction and emergency lane decision-making framework based on object de-
tection algorithms. As shown in Figure 2, the system framework is a four-layer architecture
consisting of the perception layer, data processing layer, software layer, and application
layer. The perception layer collects traffic data using various cameras; there are already four
cameras (A–D) on the Changshen Expressway, and cameras E and F are proposed in this
paper to further enhance the rationality of the decision-making framework. The data pro-
cessing layer uses YOLOv11, ByteTrack, and the Line-crossing Statistics method designed
in this paper to obtain traffic flow data (q, u, ρ). The software layer includes real-time traffic
monitoring, data visualization, historical data analysis, and congestion prediction modules.
Finally, the application layer implements functions such as traffic monitoring processing,
interval occupancy rate monitoring, and emergency lane deployment.
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3.1. YOLOv11

Deep learning-based object detection methods mainly include two categories: two-
stage detection algorithms (e.g., R-CNN [34], Fast R-CNN [35], Faster R-CNN [36,37])
and one-stage detection algorithms. While two-stage algorithms offer high accuracy, their
complex processes limit real-time applications. In contrast, one-stage algorithms like YOLO
series [38] and SSD [39] achieve efficient real-time detection and have gained widespread
practical applications [40].

The YOLO series has evolved continuously to its latest version, YOLOv11 [41], released
by Ultralytics in 2024. YOLOv11 adopts a Feature Pyramid Network (FPN) [42] structure
with three main components: backbone network for feature extraction, neck for multi-scale
feature fusion, and detection head for object detection and classification [43], as shown in
Figure 3. Compared to previous versions, YOLOv11 introduces an efficient feature fusion
mechanism and optimized lightweight design, enabling faster detection while maintaining
high accuracy.
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In this study, we employ YOLOv11m, which achieves an optimal balance between
detection accuracy and computational efficiency. With 22% fewer parameters compared
to YOLOv8m while maintaining high precision, YOLOv11m provides efficient and ac-
curate vehicle detection capabilities for real-time traffic flow parameter extraction and
congestion prediction.

3.2. ByteTrack

ByteTrack [44] is a multi-object tracking algorithm based on object detection, aiming
to achieve precise object tracking by associating all detection boxes—including both high-
confidence and low-confidence detection boxes. Unlike traditional multi-object tracking
algorithms that only use high-confidence detection boxes, ByteTrack fully considers low-
confidence detection results, significantly improving tracking performance in complex
scenes such as object occlusion and rapid movement.

In the ByteTrack algorithm, an object detector (such as the YOLOv11m used in this
paper) is first used to perform object detection on each frame, obtaining a series of detection
boxes and their corresponding confidence scores. Then, based on a preset confidence thresh-
old, the detection boxes are divided into high-confidence and low-confidence categories.
For high-confidence detection boxes, the Hungarian algorithm [45] is used to perform data
association based on the Intersection over Union (IoU) between the detection boxes and
existing trajectories, achieving reliable tracking of high-confidence objects. Specifically,
the IoU distance between high-confidence detection boxes in the current frame and the
predicted positions of trajectories in the previous frame is calculated to construct a cost
matrix, and the Hungarian algorithm is used to solve the optimal matching.

For unmatched low-confidence detection boxes, ByteTrack includes them in the associ-
ation process and performs matching again to supplement and refine object trajectories.
This effectively solves tracking interruption problems caused by object occlusion or fluctua-
tions in detector confidence.

Steps of the ByteTrack algorithm can be summarized as follows:

1. Object Detection: Perform object detection on the input frame to obtain all detection
boxes and their confidences.
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2. Classification: Divide detection boxes into high-confidence and low-confidence cate-
gories based on the confidence threshold.

3. First Matching: Use the Hungarian algorithm to perform the first matching between
high-confidence detection boxes and existing trajectories.

4. Second Matching: For unmatched trajectories and low-confidence detection boxes,
perform matching again to further refine trajectory information.

5. Update Trajectories: Update trajectory states and output tracking results.

By fully utilizing all available detection information, ByteTrack can achieve significant
performance improvements in multi-object tracking tasks, making it particularly suitable for
vehicle tracking in real-time traffic monitoring. The algorithm is simple and efficient, easy
to implement, and can maintain high tracking accuracy in complex traffic environments.

3.3. Vehicle Line-Crossing Statistics

In video analysis, by predefining a counting line, when a vehicle’s movement trajectory
intersects with this line, it is considered that the vehicle has passed that position, thereby
achieving vehicle line-crossing statistics.

As shown in Figure 4, the horizontal straight line is the counting line, and the curve
represents the vehicle’s movement trajectory. Let the endpoints of the counting line be
P1(x1, y1) and P2(x2, y2), and the endpoints of the trajectory segment formed by the ve-
hicle’s positions in two adjacent frames be Q1(x3, y3) and Q2(x4, y4). By calculating the
direction vectors of the two line segments and their cross products, it can be determined
whether the line segments intersect.
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The direction vector of the counting line segment is

D1 = P2 − P1 = (x2 − x1, y2 − y1) (1)

The direction vector of the vehicle trajectory line segment is

D2 = Q2 − Q1 = (x4 − x3, y4 − y3) (2)

Calculate the vector cross product d = D1 × D2. If d = 0, the two vectors are parallel
or colinear, and the line segments do not intersect, meaning the vehicle did not pass the
counting line. If d ̸= 0, further calculate the parameters t and u:

t =
(Q1 − P1)× D2

d
(3)
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u =
(Q1 − P1)× D1

d
(4)

If 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, it indicates that the two line segments intersect, and the
vehicle is determined to have passed the counting line.

Calculation of Basic Parameters
By combining YOLOv11 with ByteTrack and vehicle line-crossing statistics, we can

obtain the total number of vehicles crossing the line, the average speed of the current
vehicles, and the number of vehicles currently in the video. Based on these data, we can
further calculate the three basic parameters of traffic flow: flow rate q, density ρ, and
speed u.

Flow rate q(x, t): The number of vehicles passing through position x within time t,
measured in vehicles per hour (vehicles/h).

Density ρ(x, t): The number of vehicles per unit length at position x at time t, measured
in vehicles per kilometer (vehicles/km).

Speed u(x, t): The average speed of vehicles passing through position x at time t,
measured in kilometers per hour (km/h).

The calculation methods for each parameter are as follows:
1. Flow Rate q(x, t)
Flow rate represents the number of vehicles passing a certain position per unit time.

Let Nn be the cumulative total number of vehicles crossing the line by the end of the n-th
minute, then the flow rate in the n-th minute is

qn =
Nn − Nn−1

∆t
(5)

where ∆t is the statistical time interval, in minutes. Similarly, the flow rate q(x, t) for each
time period can be calculated.

2. Density ρ(x, t)
Density represents the number of vehicles per unit length. Let Nn be the average

number of vehicles in the n-th minute, and L be the effective length of the road within the
camera’s field of view. Then, the density in the n-th minute is

ρn =
Nn

L
(6)

Similarly, the density ρ(x, t) for each time period can be calculated.
3. Speed u(x, t)
Speed represents the average driving speed of vehicles passing through a certain

position. Let vn be the average vehicle speed in the n-th minute (unit: pixels/s). A unit
conversion is needed to obtain km/h. Assuming the unit conversion factor is k, then the
speed in the n-th minute is

un = vn × k (7)

Similarly, the speed u(x, t) for each time period can be calculated.

3.4. AdaBoost Regression

The AdaBoost regression algorithm is a classic ensemble learning algorithm based on
an adaptive boosting strategy proposed by Freund and Schapire in 1996. The algorithm
forms a stronger regression model by combining multiple weak regressors [46]. Through
this combination, the overall predictive ability of the model can be significantly improved.
The schematic diagram of the algorithm is shown in Figure 5.
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In the adaptive iterative process, multiple weak regressors are interrelated, and the
prediction error of each weak regressor will affect the weight distribution of samples in the
next iteration [47]. Through this weight update mechanism, AdaBoost guides the model
to focus more on samples that are difficult to predict in subsequent iterations, thereby
improving the predictive performance of the overall model. Specific steps are as follows:

1. Initialization: In the initial stage of the algorithm, all training samples are assigned
equal weights. At this time, each sample has the same importance for model training.

D1(i) = (w1, w2, . . . , wN) =
1
N

(8)

2. Iteration: Execute the iterative process, setting the number of iterations as
t = 1, . . . , T, where X represents the input space, yi represents the actual target value,
and ht(xi) is the predicted value from the weak regressor.

3. Compute Error: Calculate the error ϵt of the weak regressor ht(X ) under the weight
distribution Dt, which measures the predictive effect of the current weak regressor on the
overall samples.

ϵt =
∑N

i=1 wn(t) · |ht(xi)− yi|
∑N

i=1 wn(t)
(9)

The error ϵt is the weighted absolute error, reflecting the performance of the current
weak regressor.

4. Compute Regressor Weight: Calculate the weight αt of the weak regressor in the
final model based on the size of the error. The weight reflects its importance in the combined
model; the smaller the error, the higher the weight.

αt = log
(

1 − ϵt

ϵt

)
(10)

5. Update Sample Weights: Update the weight distribution Dt+1 of each sample.
Samples with larger errors will receive higher weights, while samples with better prediction
effects will reduce their weights.

Dt+1(i) = Dt(i) · exp(|ht(xi)− yi|) (11)

This process ensures that in subsequent iterations, the model will increasingly focus
on samples with larger prediction errors, continuously optimizing the predictive effect of
the model.
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6. Final Model Formation: After T iterations, AdaBoost forms the final strong regres-
sion model by combining all the weak regressors and weighting them according to their
weights αt:

H(x) =
T

∑
t=1

αt · ht(x) (12)

3.5. Interval Occupancy Rate Model

As shown in Figure 6, taking the BC interval as an example, suppose the vehicle flow
rates at point B and point C at time t are qB(t) and qC(t), respectively. When qC(t) continues
to be less than qB(t), it indicates that fewer vehicles are exiting than entering, leading to
an increasing number of vehicles within the BC interval. These accumulated vehicles will
reach the downstream CD section after some time. Therefore, when the vehicle occupancy
rate within the BC interval reaches 80% of its maximum capacity Qm, the emergency lane
of the CD section should be activated in advance.
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Benefits of activating the emergency lane in advance:
1. Alleviate Upstream Congestion: Since the CD section is downstream, after opening

the emergency lane, its traffic capacity is enhanced, increasing the flow rate qC(t) at point
C, thereby alleviating the traffic pressure in the BC interval.

2. Provide Buffer Space: The activation of the emergency lane can accelerate the
clearing of vehicles within the CD section, providing a larger buffer space for incoming
vehicles and reducing congestion risk.

3. Increase Traffic Capacity: Opening the emergency lane directly increases the traffic
capacity of the CD section, preparing for the large inflow of vehicles and preventing the
occurrence of traffic congestion.

Let Qm (unit: vehicles) be the maximum vehicle capacity of the BC interval, and Q0 be
the number of vehicles in the interval at the initial moment (t = 0). Then, the total number
of vehicles Q(t) within the BC interval at time t is

Q(t) = Q0 +
∫ t

0
[qB(τ)− qC(τ)]dτ (13)

where τ is the integration variable, and qB(τ)− qC(τ) represents the net inflow at time τ.
To determine whether it is necessary to open or close the emergency lane, define the vehicle
occupancy rate KBC(t) of the BC interval as

KBC(t) =
Q(t)
Qm

=
Q0 +

∫ t
0 [qB(τ)− qC(τ)]dτ

Qm
(14)
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When KBC(t) exceeds 80%, it indicates that the number of vehicles in the BC interval
has reached 80% of its maximum capacity. At this time, congestion may form, and the
emergency lane of the downstream CD section should be activated in advance:

If KBC(t) > 0.8, then open the emergency lane (15)

Conversely, when KBC(t) drops below 60%, it indicates that the number of vehicles in
the interval has significantly decreased, and the emergency lane can be closed to ensure its
normal function for emergency passage:

If KBC(t) < 0.6, then close the emergency lane (16)

Therefore, by calculating the vehicle occupancy rate KBC(t) in real time, the traffic
conditions of the BC interval can be effectively monitored, and strategies for opening or
closing the emergency lane can be timely implemented, enhancing road traffic efficiency
and safety.

4. Results
4.1. Traffic Flow Data Extraction Results and Analysis

As illustrated in Figure 7, the process of extracting traffic flow data using YOLOv11
combined with the ByteTrack algorithm and the line-crossing statistics method is shown.
The black lines correspond to vehicle trajectories, and the ID numbers are assigned to
each vehicle by the object tracking algorithm. “Conf” represents the confidence level of
the detection results from the object detection algorithm, and a higher confidence level
indicates a higher probability that the detected object is a vehicle.
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The obtained flow rate, density, and speed data are plotted as time–history curves, as
shown in Figure 8. It can be observed that the flow rate and density curves exhibit very
similar trends, showing higher values in the earlier period and lower values later. This
indicates that at the beginning of the observation, vehicle traffic was relatively dense, and
as time progressed, the traffic volume gradually decreased. After smoothing the density
curves (as shown in Figure 9), the consistency of the trends and propagation characteristics
of the traffic flow parameters are more clearly demonstrated. The density curves of the four
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observation points all display similar “Z”-shaped characteristics, that is, they are higher
initially and lower later along the time axis. This trend has a certain transmission over time,
manifesting as sequential propagation from the upstream intersections A, B, and C to the
downstream intersection D.
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Specifically, due to the distances between the intersections, vehicles require a certain
travel time from upstream to downstream, resulting in a time lag effect in the traffic flow
parameters. The distances between observation points A, B, and C are relatively close
(approximately 1 km), so the time lag ∆t is small. The distance between observation point
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D and point C is greater (3 km), so the time lag is more significant, with ∆t being relatively
large. Additionally, due to traffic congestion occurring at intersection D, the flow rate and
speed curves at this point show significant differences from those at upstream intersections
A, B, and C, especially in the speed curve. This difference reflects the impact of traffic
congestion on downstream traffic flow and validates the effectiveness of the traffic flow
parameter extraction method based on video data proposed in this paper.

4.2. Traffic Flow Density Prediction

Based on the previous analysis, it is evident that the upstream traffic flow on the high-
way will reach the downstream section after a certain time delay, indicating a correlation
between the traffic flow densities of the upstream and downstream. Therefore, this section
aims to utilize the density characteristics of the upstream observation points A, B, and C to
predict the traffic flow density at the downstream observation point D using the AdaBoost
regression model.

First, a correlation analysis of the density characteristics between observation points
was conducted. As shown in Figure 10, the correlation heatmap of the density characteristics
between the observation points is presented. The results indicate that the correlation
coefficients between the densities at observation points A, B, and C over the previous 10 min
and the density at observation point D are 0.73, 0.75, and 0.79, respectively—all exceeding
0.7. This demonstrates a strong positive correlation between the density characteristics
of the upstream observation points and the density at the downstream observation point
D. Moreover, considering the distance relationships between the observation points (i.e.,
AD > BD > CD), the magnitude of the correlation coefficients is inversely proportional to
the distance—the closer the distance, the stronger the correlation. This result aligns with
the actual conditions in traffic flow theory, where the influence of upstream traffic flow on
downstream diminishes with increasing distance.
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In terms of data preparation, since the video data are not completely overlapped, the
non-overlapped front and rear video data are not used. A total of 134 min of data were
obtained from the video of observation point D, corresponding to 134 sample points. To
build and evaluate the prediction model, the data were randomly divided into training and
test sets in a 0.5:0.5 ratio. The input features of the model are the traffic flow densities at
observation points A, B, and C at time t, and the target variable is the traffic flow density at
observation point D at time t + 10 min.

The prediction results of the test set are shown in Figure 11. It can be observed
that the density values predicted by the model closely match the actual observed values,
reflecting the model’s strong ability to capture changes in traffic flow density. Further
performance evaluation metrics indicate that the model’s coefficient of determination R2
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reaches 0.968, the mean absolute error (MAE) is 11.2 vehicles/km, and the root mean square
error (RMSE) is 19.9 vehicles/km. These metrics demonstrate that the AdaBoost regression
model possesses high accuracy and reliability in predicting traffic flow density.
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To gain deeper insight into the model’s prediction mechanism, an importance analysis
of the input features was conducted. As shown in Figure 12, the relative importance of the
density characteristics of observation points A, B, and C in the model prediction process is
presented. The results reveal that observation point C has the highest importance, followed
by observation point B, with observation point A having the lowest importance—that is,
the feature importance satisfies C > B > A. This is inversely proportional to the distances
between the observation points and the target observation point D—the closer the distance,
the greater the contribution to the prediction. This result is consistent with the previous
correlation analysis and conforms to the physical laws of traffic flow propagation, further
validating the rationality of the model’s decision-making process.
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Therefore, by fully utilizing the density characteristics of the upstream observation
points, the AdaBoost regression model can effectively predict the traffic flow density at the
downstream observation point. The model’s high-precision predictions and reasonable
distribution of feature importance provide solid data support and a theoretical basis for
traffic congestion early warning and emergency lane activation strategies.



Sustainability 2024, 16, 10232 15 of 25

4.3. Analysis of Congestion Causes and Emergency Lane Activation Process

This section utilizes the interval occupancy rate model to analyze the causes of traffic
congestion on the Changshen Expressway and, based on this, proposes an emergency lane
activation process for the CD section grounded on the interval occupancy rate.

First, focusing on the CD interval, the changes in vehicle accumulation and occupancy
rate are analyzed. According to the aforementioned theoretical model, the change in the
number of vehicles within the interval can be expressed as

Q(t) = Q0 +
∫ t

0
[qC(τ)− qD(τ)]dτ (17)

where qC(t) and qD(t) represent the traffic flow rates passing through points C and D at
time t, respectively; Q0 is the initial number of vehicles within the interval; Q(t) is the total
number of vehicles within the interval at time t. The interval occupancy rate KCD(t) is
defined as

KCD(t) =
Q(t)
Qm

(18)

where Qm is the maximum vehicle capacity of the CD interval. Based on the collected
traffic flow data, as shown in Table 3, a phased analysis of the congestion process in the CD
interval was conducted.

Table 3. Traffic flow rates at intersections C and D.

Stage Time qC(t) qD(t) qC(t)−qD(t)

Early Stage

2024-05-01 13:04:00 37.7 23.01 14.69
2024-05-01 13:05:00 37.2 23.27 13.93
2024-05-01 13:06:00 36.3 22.49 13.81

. . . . . . . . .

Middle Stage

2024-05-01 14:09:00 21.6 37.96 −16.36
2024-05-01 14:10:00 21.7 39.26 −17.56
2024-05-01 14:11:00 21.8 40.69 −18.89
2024-05-01 14:12:00 22.3 40.04 −17.74
2024-05-01 14:13:00 22.2 38.35 −16.15

Later Stage

. . . . . . . . .
2024-05-01 15:10:00 29.4 6.63 22.77
2024-05-01 15:11:00 27.9 5.59 22.31
2024-05-01 15:12:00 27.9 5.33 22.57

The above process can be visually depicted in Figure 13. In the figure, the difference
between the curves qC(t) and qD(t) reflects the net inflow of the CD interval. The blue
areas represent the periods where qC(t) > qD(t), indicating stages of increasing vehicle
accumulation within the interval; the orange areas represent periods where qC(t) < qD(t),
indicating stages where vehicles in the interval are decreasing.
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Video monitoring at intersection D revealed that traffic congestion had formed by
13:04. As time progressed, the blue area continued to expand, indicating intensified vehicle
accumulation within the interval and worsening congestion. Subsequently, due to the
increase in qD(t) and decrease in qC(t), orange areas appeared—vehicles began to disperse,
congestion gradually eased, and traffic conditions returned to normal.

Similarly, analyses were conducted for the AB and BC sections, and the corresponding
traffic flow difference curves were plotted (Figures 14 and 15). The results show that the
blue and orange areas in these sections alternate and are smaller in area, without forming
severe traffic congestion like that in the CD section. This aligns with the actual video data,
indicating that although brief traffic congestion occasionally occurs at intersections A, B,
and C, the degree is mild and the duration short.
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The above analysis demonstrates that the interval occupancy rate model can effectively
describe congestion situations between road sections, providing an important decision basis
for whether to open the emergency lane. By integrating the existing monitoring camera
layout of the Changshen Expressway, the emergency lane activation decision-making
process shown in Figure 16 was designed.
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First, real-time video data are obtained from upstream observation points A, B, C, and
downstream observation point D. The YOLOv11 and ByteTrack algorithms are utilized
to extract traffic flow parameters at each intersection, including traffic flow rate q(t) and
density ρ(t). Then, based on the collected data, the occupancy rate KBC(t) of the upstream
BC interval is calculated according to Equation (19):

KBC(t) =
Q0 +

∫ t
0 [qB(τ)− qC(τ)]dτ

Qm
(19)

where qB(t) and qC(t) are the traffic flow rates at points B and C, respectively; Qm is the max-
imum vehicle capacity of the BC interval. When the occupancy rate KBC(t) > 0.8 in the up-
stream BC interval (indicating that vehicle accumulation upstream may lead to downstream
congestion) and the density at downstream intersection D satisfies ρD(t) < 240 vehicles/km
(ensuring sufficient traffic capacity downstream), the emergency lane in the CD section is
activated.

4.4. Quantitative Analysis of the Benefits of Emergency Lane Activation

This section employs the interval occupancy rate model to compare and analyze the
traffic conditions of the CD section of the Changshen Expressway before and after the
opening of the emergency lane, quantitatively evaluating the benefits resulting from the
activation of the emergency lane.

First, determining the maximum capacity Qm of the modeling interval is a crucial
step in calculating the interval occupancy rate function K(t). For the CD section (length
LCD = 3 km), two methods are used to estimate Qm:

Method 1: Based on Maximum Traffic Density
Given that at 13:29, the traffic density of the CD section reaches the maximum value

ρmax = 325.9 vehicles/km, according to Qm = ρmax × LCD, we obtain:
Qm = 977.7 vehicles.

Method 2: Based on Occupancy Rate Change
Assuming that at 13:29, the interval occupancy rate reaches the maximum value

K(13 : 29) = 1 (i.e., the interval is saturated), through video monitoring, it was found that
by 14:10, the traffic congestion had eased. Assuming that the occupancy rate at this time
drops to K(14 : 10) = 0.8, according to the relationship between occupancy rate change
and net outflow:∫ 14:10

13:29
[qD(τ)− qC(τ)]dτ = [K(14 : 10)− K(13 : 29)]Qm = (−0.2)Qm (20)



Sustainability 2024, 16, 10232 18 of 25

Given that qC(t) and qD(t) are observed data, the integral result calculated from the
statistical data is ∫ 14:10

13:29
[qD(τ)− qC(τ)]dτ = −238.6 (21)

Therefore:
−238.6 = (−0.2)Qm ⇒ Qm =

238.6
0.2

= 1193 (22)

Since Qm represents the maximum capacity of the interval, the smaller of the estimated
values should be taken to ensure a safety margin. Therefore, we take Qm = 977.7 vehicles
(rounded to 978 vehicles). Then, based on the estimated Qm = 978 vehicles, the occupancy rate
function K(t) of the CD section when the emergency lane is not activated is calculated, obtaining

K(t) = K(t0) +

∫ t
t0
[qC(τ)− qD(τ)]dτ

Qm
(23)

where the initial moment t0 = 13 : 04. Using Equation (24), we calculate K(13 : 04) = 0.672.

K(13 : 04) = 1 −
∫ 13:29

13:04 [qD(τ)− qC(τ)]dτ

Qm
(24)

Substituting the actual observed qC(t) and qD(t) data into the above equations, the
K(t) curve is plotted (as shown in Figure 17). It can be observed that in the early stage, the
value of K(t) gradually increases, indicating vehicle accumulation within the interval and
worsening congestion; when K(t) reaches 1, the interval reaches saturation. Subsequently,
K(t) begins to decline, indicating that congestion is gradually easing.
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After activating the emergency lane, the CD section increases from two lanes to three
lanes, enhancing traffic capacity. Assume that after activating the emergency lane, the
traffic capacity of the CD section increases by 30%, i.e., the maximum passing capacity of
vehicles increases by 30%. Since road capacity is directly related to the number of lanes, Qm
increases by 30%, so Qm′ = Qm × 1.3 = 1271. After enhancing traffic capacity, the number
of vehicles passing through point D per unit time increases:

qD′(t) = qD(t)× 1.3 (25)

Considering the above changes, the occupancy rate function after activating the
emergency lane is

K′(t) = K(t0) +

∫ t
t0
[qC(τ)− qD′(τ)]dτ

Qm′
(26)
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That is:

K′(t) = 0.672 +

∫ t
13:04 [qC(τ)− 1.3qD(τ)]dτ

1271
(27)

Comparing K′(t) with K(t) when the emergency lane is not activated (as shown in
Figure 18), it can be found that after activating the emergency lane, the K′(t) curve is
overall lower than the K(t) curve, indicating that vehicle accumulation within the interval
decreases and the congestion situation improves.
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Through the above analysis, the benefits brought by activating the emergency lane are
quantitatively evaluated as follows:

1. Shortened Congestion Duration: Without activating the emergency lane, the con-
gestion duration is 58 min (from 13:12 to 14:10), and after activating the emergency lane,
the congestion duration is 30 min (from 13:15 to 13:45), reducing the congestion time by
28 min, a reduction of 48.3%.

2. Changes in Congestion Start and End Times: The congestion start time was delayed
by 3 min (from 13:12 to 13:15), and the congestion end time was advanced by 25 min (from
14:10 to 13:45).

3. Reduced Peak Occupancy Rate: Without activating the emergency lane, Kmax = 1,
and after activating the emergency lane, K′max = 0.917, reducing the peak occupancy rate
by 8.3%.

These results indicate that after opening the emergency lane, the traffic capacity
of the CD section is significantly improved, vehicle accumulation within the interval is
effectively controlled, the degree of congestion is reduced, and the duration is shortened.
This demonstrates that reasonable activation of the emergency lane plays an important role
in alleviating traffic congestion and improving road traffic efficiency.

5. Discussion

The aforementioned emergency lane activation strategy is designed based on the
existing camera arrangement. To enhance the scientific nature of the temporary activa-
tion decision for the emergency lane between the CD section while controlling costs, we
can improve the rationality of emergency lane deployment by adjusting the positions of
monitoring points or adding a small number of monitoring points.

5.1. Adding Point E at the Downstream Location

In the current scheme, only the single-point density at point D is considered, which
cannot reflect the interval density of the downstream road section. If a camera at point E
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is added downstream of point D, a vehicle occupancy rate model for the DE interval can
be established. By calculating KDE, we can determine whether congestion has occurred
downstream, providing a basis for deciding whether to open the emergency lane in the
CD section. The function of KDE is similar to ρD, both aiming to ensure that there is no
congestion ahead of the emergency lane. However, density ρ is an instantaneous variable
with significant fluctuations, whereas KDE can describe the overall congestion situation of
the downstream DE interval, making it relatively more stable and reasonable. Therefore,
after adding point E, the decision flowchart (Figure 16) can be improved, with the updated
result shown in Figure 19.
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To avoid increasing costs, the camera at point B can be moved downstream of point
D to serve as the new monitoring point E. The reason for removing the camera at point
B instead of that at point A is that monitoring points A, B, and C are close to each other;
segments AB and BC are both 1 km long, while the length of segment CD is 3 km. If the
camera at point B is removed, the length of segment AC becomes 2 km; if the camera at point
A is removed, segment BC remains 1 km. The longer AC interval results in its maximum
capacity Qm−AC being greater than Qm−BC. According to the definition of occupancy rate,
the longer the interval, the lower the sensitivity of K(t) to traffic flow changes, and the
more stable its response, which is beneficial for decision stability. In contrast, the occupancy
rate KBC(t) of the shorter BC interval is more sensitive to short-term traffic flow changes,
which may lead to overly frequent activation or deactivation of the emergency lane during
the decision-making process. Therefore, by removing the camera at point B and using the
longer AC interval to calculate the occupancy rate KAC(t), the reliability of the decision
can be improved.

5.2. Adding Point F Within the CD Interval

The CD interval spans 3 km, which is relatively long. In the previous analysis, the
vehicle occupancy rate within the interval was modeled based on statistical quantities from
a few cameras, but it is challenging to obtain the utilization rate of each lane within the
interval (especially the emergency lane). Therefore, to establish a lane utilization model, if
costs permit, this paper proposes deploying a camera at point F within the CD section that
can be used to detect the utilization rate of the emergency lane within the CD interval after
activation, providing a basis for closing the emergency lane.

As shown in Figure 20, by using the YOLOv11 and ByteTrack algorithms combined
with a vehicle decay factor, a heatmap can be generated for the areas where vehicles pass in
the video data. The brighter areas in the heatmap indicate higher lane utilization. Based on
this concept, the utilization rate of the emergency lane in the road section can be calculated,
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providing a basis for closing the emergency lane after activation. If the utilization rate
decreases to a certain level after a period, closing the emergency lane can be considered.
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In the heatmap, the value of each pixel reflects the frequency at which that position
is occupied by vehicles over a period, essentially representing the spatial and tempo-
ral distribution density of vehicles. By using heatmap data, the utilization rate of each
lane can be calculated, providing an important reference for deciding when to close the
emergency lane.

1. Lane Area Division
As shown in Figure 20, the lanes are divided into three areas Ri (i = 1, 2, 3), where R3

represents the emergency lane.
2. Calculating the Total Heat of Each Lane Area
The numerical results of the heatmap are calculated based on the vehicles detected in

each frame combined with a decay factor, as shown in Equation (28):

heatmap(t) = α · heatmap(t − 1) + ∆H(t) (28)

where ∆H(t) is the heat increment contributed by vehicles in frame t.
3. Calculating Lane Utilization Rate
For the emergency lane R3, the total heat is given by Equation (29).

H3 = ∑
(x,y)∈R3

heatmap(x, y) (29)

The lane utilization rate is defined as the ratio of the current total heat to the maximum
total heat, as shown in Equation (30).

U3 =
H3

Hmax,3
(30)

By calculating U3, we can reflect the utilization level of the emergency lane, further
improving the basis for activating the emergency lane. If the utilization level of the
emergency lane is low after being open for a period, closing the emergency lane can be
considered. Therefore, by using Ui as an important basis for closing the emergency lane,
the final emergency lane activation flowchart is shown in Figure 21.
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6. Limitations

However, it should be noted that the quantitative analysis of the benefits of emergency
lane activation above is based on the following three important assumptions:

1. Assumption of Traffic Capacity Improvement: It is assumed that after activating the
emergency lane, the traffic capacity increases by 30%; the actual improvement range needs
to be determined according to specific road conditions and traffic management measures.

2. Linear Relationship of Flow Rate Changes: It is assumed that the downstream flow
rate qD(t) increases by 30%, without considering the impact of traffic behavior and driver
response factors.

3. Applicability of the Occupancy Rate Model: The model does not consider the impact
of other external factors (such as weather, accidents, etc.) on the traffic flow.

Additionally, it should be noted that this method has a specific application domain: it
is most suitable for highways with limited intersections. When considering urban areas
with numerous intersections and complex road networks, two primary limitations emerge:
(1) The interval definition becomes significantly more complex due to multiple entry
and exit points within a given section; (2) The high density of intersections substantially
increases the complexity of real-time decision-making, as traffic flow patterns become
more intricate with vehicles entering and exiting at multiple points. Addressing these
urban-specific challenges would require more rigorous design protocols and sophisticated
modeling approaches that can account for the complex dynamics of urban traffic networks.

7. Conclusions

The traffic congestion prediction and emergency lane development strategy based on
the object detection algorithms proposed in this paper achieves the scientific activation and
closure of emergency lanes through effective model construction and optimized layouts,
thereby enhancing traffic management efficiency and road capacity. The main conclusions
are as follows:

1. Real-Time Traffic Flow Parameter Extraction and Prediction: By utilizing YOLOv11
and ByteTrack algorithms, real-time traffic flow data (flow rate, speed, density) extraction at



Sustainability 2024, 16, 10232 23 of 25

four monitoring points was successfully achieved. Combined with the AdaBoost regression
model, downstream traffic density can be predicted in advance, providing data support for
the activation of emergency lanes.

2. Effective Application of the Interval Occupancy Rate Model: Based on the interval
occupancy rate model, this paper analyzed the causes of congestion in the CD interval and
determined the formation mechanism of traffic congestion when the vehicle occupancy
rate KCD(t) exceeded 80%. The model’s real-time calculations then guided the activation
and closure of emergency lanes.

3. Quantitative Analysis of the Benefits of Emergency Lane Activation: After activating
the emergency lane, the congestion duration was reduced by 48.3%, and the peak occupancy
rate of congestion decreased to 0.917, significantly improving the traffic capacity of the CD
section, alleviating traffic congestion, and shortening the congestion duration.

4. Optimization Suggestions for Monitoring Point Layout: By adding monitoring point
F within the CD interval and establishing a lane utilization rate model, the precision and
rationality of emergency lane management were further enhanced. Additionally, adjusting
the monitoring point layout can be considered to minimize costs while ensuring effective
coverage of the monitoring range.
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