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Abstract: This study analyzes changes in the water temperature in the Pilica River (Poland), 

encompassing both historical data (1958–2023) and projections extending to the year 2100. We use 

multi-model ensembles (MMEs) with Bayesian Model Averaging (BMA) to integrate various Global 

Climate Model (GCM) datasets for current and projected climate data. Additionally, a Random Forest 

(RF) machine learning method is applied to project future water temperatures in the Pilica River. It has 

been demonstrated that over a period of more than sixty years, the average annual water temperature 

has increased by nearly 2 °C. Further changes are expected to continue in a similar direction with a 

gradual rise in this parameter, reaching a temperature increase of 3 °C by the end of the 21st century 

(SSP585). In the distant future, with average monthly water temperature changes at the Przedbórz 

station ranging from 0.27 °C to 0.87 °C·decade−1 and at the Białobrzegi station from 0.22 °C to 1.06 

°C·decade−1. The results of these changes are concerning, especially considering the crucial role of 

water temperature in shaping seasonality and the dynamics of processes occurring within the river. In 

the context of the sustainability of the river itself, but also of the entire catchment area, strategies 

developed by relevant public administration bodies are needed to mitigate the impacts of global 

warming observed in the thermal regime of the Pilica River. 
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1. Introduction 

Rivers are a vital component of the environment, shaping the Earth’s surface, 

creating biodiversity, and directly influencing human life. The extent of their impact on 

various subsystems and the potential for human utilization of water resources depend on 

many interconnected factors related to watershed parameters, as well as the chemical and 

physical characteristics of the water itself. Among these elements, temperature plays a 

fundamental role, as its distribution and fluctuations govern cyclical changes in a range 

of processes [1–5]. Given this context, an approach focusing on understanding the thermal 

regime of rivers, including its changes—especially long-term changes in light of global 

warming—is justified. Studies conducted in various parts of the world indicate an 

increase in water temperature, with the rate of change varying according to the 

characteristics of individual watersheds. 

The results of studies conducted in the Mid-Atlantic Region (USA) showed an 

increase in first-order streams by 0.32 °C·decade−1 and higher-order streams by 0.28 

°C·decade−1 [6]. In the Yongan River basin (China), the water temperature rose by 0.029 °C 
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to 046 °C/yr between 1980 and 2012 [7]. In the karst region of Croatia, an analysis of 

temperature changes in three rivers revealed an increase in the average annual 

temperature ranging from 0.17 °C to 0.48 °C·decade−1 [8]. Since 1946, the Hudson River 

has warmed by 0.945 °C primarily due to rising air temperatures. Significant seasonal 

changes have occurred from April to August [9]. The projected average temperature of the 

Ganges River is expected to increase by 0.58 °C and 0.63 °C for urban and non-urban 

sections, respectively, by 2025 compared to 2022 [10]. Trends in the annual average water 

temperatures of the Danube and Sava Rivers from 1956 to 2020 have shown a steady 

increase, amounting to increases of 0.34 °C and 0.44 °C per decade, respectively [11]. 

River water temperature depends on numerous variables, including water flow, 

groundwater inflow, land use, thermal pollution, and air temperature [12–16]. As 

previously indicated, changes in water temperature reflect climate changes, with air 

temperature playing a crucial role. An analysis of rivers in Canada confirms that the average 

air temperature and its trends are the main driving factors behind the average water 

temperature and its trends [17]. This is further supported by studies in Europe [18], which 

also highlight the importance of air temperature in influencing changes in water temperature. 

Moreover, it is important to emphasize the availability and completeness of air temperature 

measurements, which is particularly crucial in analyses spanning several decades. 

In Poland, the analysis of trends in water temperature changes in flowing waters is 

also a subject of considerable interest, both concerning transit rivers [19] and smaller ones 

[20]. However, studies addressing future changes in this parameter have not received 

extensive attention thus far. Piotrowski et al. [21] analyzed two rivers in Poland, indicating 

that water temperatures will be 2–3.5 °C higher in spring and autumn and below 2 °C 

higher in summer and winter months. Compared to studies in other countries [22–24], the 

lack of broader knowledge regarding future changes represents a significant gap for this 

part of Europe. 

Beyond the knowledge related to major rivers significant on the scale of individual 

continents, it is important to understand the role of river ecosystems in smaller spatial 

contexts such as regions or watersheds. This creates a solid foundation for effective 

management, ultimately leading to the maximization of ecosystem benefits for local 

communities. In this context, having an outline of knowledge regarding future changes is 

crucial. This study conducts such an analysis for the Pilica River (central Poland), where 

detailed water temperature observations have been carried out for over six decades, 

making it one of the longest datasets available in this field. Additionally, it should be 

emphasized that the Pilica River itself, as well as its watershed, is of interest to various 

scientific fields [25–28], and current research expands existing knowledge by addressing 

forecasts of future thermal conditions of the water. 

The aim of this article is to determine the historical and future changes in the thermal 

regime of the Pilica River, referring in detail to the annual and monthly mean 

temperatures of two hydrological stations—Przedbórz and Białobrzegi. 

2. Materials and Methods 

2.1. Study Area 

The subject of this research is the Pilica River, located in south-central Poland. It is 

the longest left tributary of the Vistula River, the largest river in Poland (Figure 1). 

According to Jagiełło [29], the length of the Pilica is 340.5 km, with an average drop of 75 

cm/km and a catchment area of 9252 square kilometers, ranking it ninth in Poland in this 

regard. The land use structure is dominated by fields and meadows (66%), followed by 

forests (24%) and built-up areas (10%). In terms of flow, the river has a moderately 

developed nival regime, meaning that spring discharge ranges from 130% to 180% of the 

annual discharge. Rivers in this group have monthly discharge coefficients (Pardé 

coefficients) between 1.3 and 1.8 [30,31]. The average flow during the analysis period was 

43.9 m3·s−1. The river serves as a source of drinking water for towns and villages and is 
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also used for irrigation. Additionally, due to its scenic values, it is a popular destination 

for tourism and recreation, including activities such as fishing and kayaking. 

 

Figure 1. The location of the study area: 1—catchment; 2—water; 3—hydrological stations; 4—

meteorological stations. 

2.2. Matarials 

Water temperature data for the Pilica River were collected at two hydrological 

stations: Przedbórz (201 km of the river course, 187.2 m above sea level) and Białobrzegi 

(45.3 km of the river course, 111.9 m above sea level). The dataset covers a total period of 

66 years (1958–2023). Water temperature measurements were conducted by the Institute 

of Meteorology and Water Management-National Research Institute a depth of 0.4 m 

below the surface, always at the same point near the gauge. Additionally, we utilized air 

temperature data from two stations (Łódź and Skierniewice), which were also collected 

by the Institute of Meteorology and Water Management-National Research Institute as 

part of standard monitoring efforts. 

2.3. Methods 

We used multi-model ensembles (MMEs) with Bayesian Model Averaging (BMA) to 

integrate various Global Climate Model (GCM) datasets for current and projected climate 

data. Additionally, a Random Forest (RF) machine learning method was applied to project 

future water temperatures in the Pilica River, with MMEs reducing individual model 

uncertainties. Bias correction was applied to all climate datasets to improve data validity 

before water temperature prediction. Predictions were made for each location along the 

river and averaged to represent overall river conditions. To capture gradual temperature 

trends across historical and future periods, time was incorporated as a continuous variable 

in both RF and BMA models. This approach reflects the temporal evolution of climate 



Sustainability 2024, 16, 10244 4 of 19 
 

impacts on water temperature, enabling the models to detect shifts over extended periods 

as climate effects intensify. 

The ensemble comprises nine Global Climate Models (GCMs) obtained from 

Coupled Model Intercomparison Project Phase 6 (CMIP6), including Norwegian Earth 

System Model version 2; medium resolution (NorESM2-MM) [32]; Max Planck Institute 

Earth System Model version 1.2, high resolution (MPI-ESM1-2-HR) [33]; European 

Consortium Earth System Model version 3 (EC-Earth3) [34]; Alfred Wegener Institute 

Climate Model version 1.1, medium resolution (AWI-CM-1-1-MR) [35]; Beijing Climate 

Center Climate System Model version 2, medium resolution (BCC-CSM2-MR) [36]; 

Meteorological Research Institute Earth System Model version 2.0 (MRI-ESM2-0) [37]; 

Geophysical Fluid Dynamics Laboratory Earth System Model version 4 (GFDL-ESM4) 

[38]; Community Earth System Model version 2 with Whole Atmosphere Community 

Climate Model (CESM2-WACCM) [39]; and Euro-Mediterranean Center on Climate 

Change Climate Model version 2, strategic research configuration (CMCC-CM2-SR5) [40]. 

Each model presents its surface temperature projections for the period from 2015 to 2100. 

The predictions are subsequently modified to achieve a consistent spatial resolution 

across the group. The regridding process employs linear interpolation to align model 

outputs with a specified grid of latitude and longitude, facilitating a direct comparison. 

We utilize a regridding method to interpolate the model data onto a uniform grid. 

The regridding process involves calculating an interpolated value for each point on 

the target grid, defined by coordinates (xt, yt), using a source grid with coordinates (xs, ys). 

The interpolated value “V” on the target grid is computed for a variable V defined on the 

source grid by employing a chosen interpolation method. Bilinear interpolation is a 

widely utilized method [41] mathematically expressed as follows: 

𝑉′(𝑥𝑡 , 𝑦𝑡) =  ∑ 𝑤𝑖 ∙ 𝑉(𝑥𝑠
𝑖

4

𝑖=1

∙ 𝑦𝑠
𝑖)  

The interpolated value 𝑉′(𝑥𝑡 , 𝑦𝑡) at the target grid point is calculated using bilinear 

interpolation, where 𝑤𝑖  are weights based on the distances from each of the four nearest 

grid points (𝑥𝑠
𝑖 ∙ 𝑦𝑠

𝑖)  on the source grid to the target point (𝑥𝑡 , 𝑦𝑡) . The value 𝑉(𝑥𝑠
𝑖 ∙ 𝑦𝑠

𝑖) 

represents the data at each of the four grid points, and the weights are determined by 

linear distances. 

The weights in bilinear interpolation are estimaed as follows: 

𝑤𝑖 =  
1

∆𝑥 ∙ ∆𝑦
∙ (𝑥𝑑𝑖𝑠𝑡

𝑖 ∙ 𝑦𝑑𝑖𝑠𝑡
𝑖 )  

Δx and Δy denote the distances between adjacent points on the source grid. The 

variables 𝑥𝑑𝑖𝑠𝑡
𝑖  and 𝑦𝑑𝑖𝑠𝑡

𝑖   denote the horizontal and vertical distances, respectively, 

between the ith neighboring point and the target grid point. 

This study employs Bayesian Model Averaging (BMA) [42] to integrate projections 

from five global climate models (GCMs). BMA is a statistical framework that facilitates 

the integration of predictions from multiple models through the application of probability 

theory. This approach is based on Bayes’ theorem, which can be mathematically expressed 

in the context of model averaging as follows: 

𝑝(𝑀𝑖|𝑦) =  
𝑝(𝑦|𝑀𝑖) ∙ 𝑝(𝑀𝑖)

𝑝(𝑦)
  

𝑝(𝑀𝑖|𝑦)  denotes the posterior probability of model Mi conditioned on the data y. 

Likewise, 𝑝(𝑦|𝑀𝑖) represents the probability of the data y given model Mi. 𝑝(𝑀𝑖) denotes 

the prior probability of model Mi, whereas p(y) signifies the marginal likelihood of the 

data y and functions as a normalizing constant. 

Taking a weighted average of the predictive distributions from each model allows 

one to calculate the BMA predictive distribution for a new observation (�̃�) 
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𝑝(�̃�|𝑦) = ∑ 𝑝(�̃�|𝑀𝑖)

𝑀

𝑖=1

∙ 𝑝(𝑀𝑖|𝑦))  

𝑝(�̃�|𝑦)  is the predictive distribution of �̃�|  given model 𝑀𝑖 , and 𝑝(𝑀𝑖|𝑦)  is the 

posterior probability of model 𝑀𝑖 given the observed data y. This weighted sum allows 

the BMA framework to combine model predictions, accounting for the relative likelihood 

of each model. 

For a given grid point (x, y) and time (t), the ensemble of climate models offers a 

combined Bayesian Model Averaging (BMA) forecast of the surface temperature (T). 

𝑇𝐵𝑀𝐴(𝑥, 𝑦, 𝑡) = ∑ 𝑤𝑖(𝑥, 𝑦, 𝑡) ∙ 𝑇𝑖

𝑀

𝑖=1

(𝑥, 𝑦, 𝑡)  

Ti (x,y,t) is the forecast that model i produces, while wi (x,y,t) is the weight that model 

i is assigned by Bayesian Model Averaging (BMA) at grid point (x,y) and time t. The 

weight is chosen using the location- and time-specific posterior probability p(Mi∣y). 

The BMA forecast 𝑇𝐵𝑀𝐴(𝑥, 𝑦, 𝑡)  at grid point (x,y) and time t is computed as a 

weighted sum of the individual forecasts 𝑇𝑖(𝑥, 𝑦, 𝑡) from each model i. The weights 

𝑤𝑖(𝑥, 𝑦, 𝑡)  are determined based on the posterior probabilities of each model at the 

specified grid point and time. 

This study employs a variant of the quantile mapping technique for bias correction, 

specifically utilizing a linear scaling approach [43]. This method uses a conventional 

statistical technique to align both the mean and variability of the model outputs with 

observed data. By adjusting the distribution of projected values to better match historical 

observations, this approach effectively reduces the inherent variability and systematic 

biases in GCM outputs. This adjustment enhances the reliability of the model predictions, 

particularly for extreme climate scenarios, by ensuring that both the central tendency and 

spread of model projections are consistent with actual climate conditions. The adjustment 

is predicated on the following formula: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 =  𝜇𝑜𝑏𝑠 + (
𝜇𝑜𝑏𝑠

𝜇𝑔𝑐𝑚

) × (𝑀𝑜𝑑𝑒𝑙 − 𝜇𝑔𝑠𝑚)  

where μobs and σobs are the mean and standard deviation of the observed air temperature 

for each month, respectively. μgcm and σgcm are the mean and standard deviation of the 

model’s (GCM) air temperature data for the corresponding month. Model represents the 

raw model output for air temperature. 

We used a Random Forest (RF) machine learning approach to project future water 

temperatures in the Pilica River. RF is an ensemble learning method that generates 

multiple decision trees, each trained on a randomly selected subset of the dataset. By 

averaging the predictions from these trees, RF reduces overfitting and improves accuracy. 

The model’s ability to handle large, high-dimensional datasets makes it effective for 

downscaling by capturing spatial patterns and relationships in the data. This robustness 

allows RF to serve as a viable alternative to more complex climate models. An ensemble 

of many relatively autonomous models, called trees, operating as a committee, 

outperforms any one component model; this is the fundamental idea behind this method. 

The equation represents the Random Forest regression prediction, X = {x1, x2, x3,…, xn }, 

with matching labels, Y = {y1, y2, y3, …, yn }, using training examples. 

𝑓(𝑥) =  
1

𝐵
∑ 𝑓𝑏(𝑥)

𝐵

𝑏=1

  

B denotes the total number of trees in the forest, and 𝑓𝑏(𝑥)  signify the forecast 

generated by the bth tree. 
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Hyperparameter optimization is essential for enhancing climate model downscaling 

through machine learning. In this study, hyperparameters were tuned using a grid search 

and k-fold cross-validation to improve model robustness and reduce overfitting. The 

dataset was split 70–30 for training and testing, with 5-fold cross-validation further 

validating the results and maximizing data use. The mean squared error (MSE) and 

Pearson correlation were used as performance metrics as they provide insights into error 

magnitude and projection alignment. The machine learning models outperformed the 

original GCM data in downscaling accuracy, with detailed documentation supporting 

repeatability. Python, version 3.11.9 along with Scikit-learn version 1.3.1 and xarray 

version 2023.9.0, was used for analysis, ensuring replicability. 

For the Random Forest model, optimal settings included 100 trees, a maximum depth 

of 50, a minimum of 5 data points for splits, and 2 data points per leaf. 

To ensure the reliability of our models, we used 5-fold cross-validation, testing each 

configuration across different data segments. Model performance was assessed using 

multiple metrics: prediction accuracy (R²), mean error magnitude (MAE and RMSE), and 

error dispersion (SD). 

𝑅2 = 1 − (
∑(𝑦𝑖 − �̂�𝑖𝑖)

2

∑(𝑦𝑖 − �̅�)2
)  

𝑀𝐴𝐸 =
1

𝑛
(∑|𝑦𝑖 − 𝑦�̂�|  

𝑅𝑀𝑆𝐸 =  √[
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2]  

where yᵢ are the observed values, ŷᵢ are the predicted values, ȳ  is the mean of the observed 

values, and n is the number of observations. 

The efficacy and generalization ability of the Random Forest model as the training 

size escalates for both Białobrzegi and Przedbórz are illustrated in Figure 2. 
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Figure 2. Learning curve for the (a) Białobrzegi station; and (b) Przedbórz station. 

As shown in Figure 2, the training score (blue line) consistently rises in error as the 

training size increases, stabilizing at a higher level due to added data variability and noise. 

The cross-validation score (green line) shows an initial high error that decreases and 

stabilizes with larger training sizes, indicating reduced overfitting and improved 

generalization. The convergence of training and cross-validation errors suggests that 

adding data enhances the model’s balance between fitting and generalizing. 

The shaded regions in Figure 2 represent the standard deviation of errors, which is 

higher with smaller training sizes and diminishes as the training size grows, indicating 

improved model stability. Table 1 further supports these results: high mean R² values (0.90 

for Przedbórz and 0.92 for Białobrzegi) show a strong correlation between the predicted and 

observed values, while low mean MAE (1.59 °C and 1.60 °C) and mean RMSE (2.06 °C and 

2.11 °C) values indicate high prediction accuracy. Additionally, low standard deviations 

(SD) for R², MAE, and RMSE in Table 1 reflect the model’s consistent performance across 

datasets. 
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Table 1. Performance metrics of machine learning models at Przedbórz and Białobrzegi. 

Station Mean R2 (-) SD R² (-) 
Mean MAE 

(°C) 

SD MAE 

(°C) 

Mean RMSE 

(°C) 

SD RMSE 

(°C) 

Przedbórz 0.90 0.01 1.59 0.05 2.06 0.06 

Białobrzegi 0.92 0.01 1.60 0.08 2.11 0.10 

Based on the measurement data from the hydrological years 1958–2023 and the 

results obtained using the Random Forest method for the years 2024–2100 under scenarios 

SSP245 and SSP585, the average monthly and annual water temperatures at the 

hydrological stations of Przedbórz and Białobrzegi were calculated. In the first stage of 

the analysis, the non-parametric Pettitt test was applied to identify change points in the 

air temperature time series from the meteorological stations in Łódź and Skierniewice for 

the years 1958–2023. The Pettitt test allows for the detection of single change points in 

mean yearly air temperature time series [44]. This analysis revealed that the change point 

in both air temperature series occurred in the year 1988, considering the average annual 

values. The data from scenarios SSP245 and SSP585 were analyzed for near-future (2024–

2050), mid-range (2051–2075), and far-future periods (2076–2100). Additionally, the long-

term changes in water temperature in the Pilica River at the hydrological stations of 

Przedbórz and Białobrzegi were examined for the 1958–2100 and 2024–2100 periods under 

scenarios SSP245 and SSP585. To determine the trends and magnitudes of changes in 

average annual and monthly water temperatures at the Przedbórz and Białobrzegi 

stations, non-parametric Mann–Kendall [45] and Sen’s [46] slope estimation methods 

were utilized. The test assumes two hypotheses: the null hypothesis (H0) states that the 

data do not exhibit a trend, while the alternative hypothesis (HA) suggests that a trend 

exists. The magnitude of changes in air and water temperatures was determined using the 

non-parametric Sen’s test, which is not sensitive to the presence of outliers. During the 

data analysis, a pre-whitening procedure was applied to remove autocorrelation from the 

data series [47]. The Mann–Kendall and Sen tests were performed using the modified 

“mk” package developed by Patakamuri and O’Brien [48]. The change points were 

detected using the “trend” package developed by Pohlert [49]. 

3. Results 

3.1. Model Performance 

Figure 3 illustrates the relationship between the observed and bias-corrected model 

air temperature at two locations: Przedbórz and Białobrzegi. The scatter plots reveal 

strong positive correlations between the observed and corrected temperatures at both 

sites, demonstrating the effectiveness of the bias correction method in aligning the model 

outputs with the observational data. 
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Figure 3. Scatter plot between observed and correct air temperatures at (a) Przedbórz station and 

(b) Białobrzegi station. 

At the Przedbórz station (Figure 3a), the result shows that the corrected temperatures 

closely approximate the observed values. Nonetheless, a discernible deviation exists 

around the line, especially at high air temperatures, where the model tends to marginally 

overestimate or underestimate air temperatures. This distribution indicates that, 

notwithstanding the general enhancement in accuracy, some residual errors persist due 

to model constraints or data inconsistencies. Conversely, the plot for the Białobrzegi 

station (Figure 3b) exhibits a comparably robust positive correlation, indicating an 

improved overall alignment between the corrected air model temperature and the 

observations. Although some discrepancies persist at extreme temperatures, the bias 

correction seems more efficacious at Białobrzegi, exhibiting diminished variances across 

a wider spectrum of values. The bias correction method effectively reduces discrepancies 

between the observed and model temperatures at both stations. The closer aggregation of 

data points around the optimal line for Białobrzegi indicates a slightly better model 

performance or reduced variability in observations at this station relative to Przedbórz. 
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Although the correction enhanced the concordance between the observed and modeled 

temperatures, some variability persists, particularly at the extremes of the temperature 

spectrum. Additional enhancements to the model and rectification techniques may aid in 

reducing these residual errors. 

Accurate air temperature predictions are essential for reliable water temperature 

modeling because air temperature directly influences the thermal dynamics of river 

systems. Figure 3 demonstrates that the bias correction effectively aligns the modeled air 

temperatures with the observed values at the Przedbórz and Białobrzegi stations. This 

correction step is crucial as it reduces errors in the air temperature data, which, in turn, 

improves the accuracy of the water temperature predictions shown in Figure 4. By ensuring 

that the input air temperature data are accurate, the model can more precisely predict water 

temperatures, thereby enhancing the reliability of the results. The strong correlation 

observed in Figure 3 provides a foundation for the high accuracy in water temperature 

predictions presented in Figure 4, underscoring the interconnected nature of accurate input 

data and reliable model outcomes. 

The scatter plots (Figure 4) depict the correlation between the observed and predicted 

water temperatures. Both plots exhibit a robust positive correlation between the observed 

and predicted temperatures, suggesting that the model effectively captures the 

fluctuations in water temperature at both sites. 
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Figure 4. Scatter plot between observed and model water temperature at (a) Przedbórz station and 

(b) Białobrzegi station. 

Nonetheless, significant deviations along the line, particularly at higher temperature 

ranges, suggest minor inconsistencies where the model tends to marginally overestimate 

or underestimate the temperatures (Figure 4a). This spread indicates that although the 

model adequately reflects the general trend in water temperature, there are regions where 

its predictions lack precision. Likewise, for the Białobrzegi station, Figure 4b illustrates a 

robust correlation between the observed and predicted water temperatures. The 

clustering at Białobrzegi is more compact than that at Przedbórz, indicating marginally 

superior model performance with reduced deviations from the optimal relationship. 

Nonetheless, variability persists at the upper limit of the temperature spectrum, 

suggesting slight overestimation or underestimation by the model under extreme 

conditions. 
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Table 2 presents the performance metrics, comparing the simulated water and air 

temperatures at the Przedbórz and Białobrzegi stations. These metrics include the coefficient 

of determination (R²), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE), 

providing insights into the model’s accuracy and reliability. In Figure 3, the strong positive 

correlation between the observed and bias-corrected air temperatures demonstrates the 

effectiveness of the bias correction, with R² values of 0.78 and 0.77 for Przedbórz and 

Białobrzegi, respectively. Although minor residual errors remain, particularly at extreme 

values, the corrected model outputs closely align with the observational data. Figure 4 

shows the correlation between the observed and predicted water temperatures, with higher 

R² values of 0.90 and 0.92 at Przedbórz and Białobrzegi, respectively, indicating that the 

model captures water temperature variations effectively. The MAE and RMSE values for 

water temperature are notably lower than those for air temperature, underscoring the 

model’s greater accuracy in predicting water temperatures. Overall, these performance 

metrics in Table 2 underscore the model’s efficacy in estimating water temperatures while 

identifying opportunities for refinement in air temperature predictions, particularly at the 

extremes. 

Table 2. Performance metrics of modeled water temperature and air temperature at Przedbórz and 

Białobrzegi. 

Station 
R2 Temperature 

MAE 

Temperature (°C) 

RMSE 

Temperature (°C) 

Water Air Water Air Water Air 

Przedbórz 0.90 0.78 1.59 4.39 4.19 5.70 

Białobrzegi 0.92 0.77 1.58 5.68 4.40 5.68 

3.2. Temperature Trend Analysis 

The analysis of trends in average annual water temperature for the historical period 

revealed that at the Przedbórz hydrological station, there was a temperature decrease of -

0.25 °C·decade−1 from 1958 to 1987 (Table 3). In contrast, during the same period, no 

statistically significant changes in water temperature were observed at the second station. 

Table 3. Changes in mean annual water temperature in Pilica River (Przedbórz and Białobrzegi 

stations). 

Period 

Przedbórz Białobrzegi 

S z-Value p-Value 
Sen Slope Value 

(°C Decade−1) 
S z-Value p-Value 

Sen Slope Value 

(°C Decade−1) 

1958–1987 −118 −2.19 0.028 −0.25 −42 −0.77 0.442 −0.11 

1988–2023 275 3.89 0.000 0.43 341 4.83 0.000 0.51 

2024–2050 a 200 4.39 0.000 0.22 194 4.26 0.000 0.25 

2051–2075 a 38 0.92 0.359 0.05 66 1.61 0.107 0.11 

2076–2100 a 53 1.29 0.197 0.06 55 1.34 0.180 0.07 

2024–2100 a 2024 9.07 0.000 0.14 1984 8.89 0.000 0.15 

2024–2050 b 193 4.23 0.000 0.33 181 3.97 0.000 0.34 

2051–2075 b 160 3.95 0.000 0.33 180 4.44 0.000 0.37 

2076–2100 b 206 5.08 0.000 0.44 205 5.06 0.000 0.49 

2024–2100 b 2500 11.21 0.000 0.41 2510 11.25 0.000 0.45 

1958–2100 a 7851 13.85 0.000 0.21 6991 12.33 0.000 0.16 

1958–2100 b 8471 14.94 0.000 0.35 8546 15.07 0.000 0.38 
a SSP245; b SSP585. 

In the period from 1988 to 2023, both hydrological stations showed a significant 

increase in water temperature. The rate of warming was 0.43 °C at the Przedbórz station 

and 0.51 °C ·decade−1 at the Białobrzegi station. According to the SSP245 scenario, from 

2024 to 2100, the water temperature in the Pilica River is expected to continue rising at 
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rates of 0.14 °C and 0.15 °C ·decade-, respectively. In contrast, under the SSP585 scenario, 

the rates will be 0.41 °C and 0.45 °C ·decade−1. These differing rates underscore the impact 

of scenario assumptions on projected warming. When analyzing changes in water 

temperatures for the near, medium, and distant future under scenario SSP245, a 

significant increase is anticipated only in the near future, with rates of 0.22 °C and 0.25 

°C·decade−1 at the Przedbórz and Białobrzegi stations, respectively. In the medium and 

distant future under scenario SSP245, no significant changes in water temperature in the 

Pilica River are expected. However, considering scenario SSP85 for the near, medium, and 

distant future, significant increases in water temperature will occur. The lowest 

increments are expected in the near future at 0.33 °C and 0.34 °C·decade−1, while the 

highest increases will be in the distant future at rates of 0.44 °C and 0.49 °C/decade, 

respectively, at the Przedbórz and Białobrzegi stations. Throughout the entire period from 

1958 to 2100, the changes in water temperature at the Przedbórz station are slightly lower 

than those at the Białobrzegi station. According to scenario SSP245, the average increase 

in water temperature from 1958 to 2100 at the Przedbórz and Białobrzegi stations will be 

0.21 °C and 0.16 °C·decade−1, respectively, while under scenario SSP585, the increases will 

be 0.35 °C and 0.38 °C·decade−1. These results highlight the contrasting temperature 

trajectories under different climate scenarios as well as the greater sensitivity of the 

Białobrzegi station to climate impacts. The results of the trend analysis are graphically 

presented in Figure 5. 

 

Figure 5. Changes in mean annual water temperature in Pilica River: (a) Przedbórz and (b) 

Białobrzegi. 

The results of the changes in average monthly water temperature in the Pilica River 

are presented in Tables S1 and S2. In the period from 1958 to 1987, only in November at 

the Przedbórz hydrological station were temperatures significantly lower (−0.83 

°C/decade), while at the Białobrzegi station, significant decreases were observed in April 

and June (−0.56–−0.62 °C/decade). In the subsequent period from 1988 to 2023, significant 
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increases in water temperature were recorded in seven months (from June to December) 

at both the Przedbórz and Białobrzegi stations, with increases ranging from 0.52 °C to 0.98 

°C at Przedbórz and from 0.47 °C to 0.97 °C/decade at Białobrzegi. According to scenario 

SSP245, only in the near future (2024–2050) is it expected that further increases in water 

temperature in the Pilica River will occur from June to December at the Przedbórz station 

and from June to October and December at the Białobrzegi station. In both the near and 

distant future, changes in the average monthly water temperature will only be observed 

in isolated months. Under scenario SSP585, changes in the average monthly water 

temperature will occur more frequently, spanning from 6 to 10 months at both 

hydrological stations. The most significant changes will be observed in the distant future, 

with average monthly water temperature changes at the Przedbórz station ranging from 

0.27 °C to 0.87 °C/decade and at the Białobrzegi station from 0.22 °C to 1.06 °C/decade. 

4. Discussion 

4.1. Historical and Future Temperature Changes 

Knowledge regarding thermal changes in rivers is an increasingly common topic in 

hydrology, justified by the fundamental significance of this parameter for the functioning 

of these ecosystems [50]. Moreover, the close relationship between water temperature and 

air temperature has led to a widespread transformation observed as river warming, 

indicating a need for a new perspective on previously known processes. Such observations 

have also been noted for the river analyzed in this study, where historical records of water 

temperature indicate an upward trend. Over a period of more than sixty years, the average 

water temperature in the Pilica River has increased by approximately 0.32 °C/decade, with 

the respective values for the two stations being 0.29 °C/decade (Przedbórz) and 0.35 

°C/decade (Białobrzegi). This finding, showing a rise in water temperature, aligns with other 

studies on similar topics. As indicated in the introduction, the scale of this process varies, 

with the climate zone generally being a crucial factor, followed by local conditions in a given 

watershed and the period of analysis. The water temperature of the Drava River increased 

by 1.4 °C from 1969 to 2010 [51]. Average stream temperatures in Southern England rose by 

2.1–2.9 °C in winter and by 1.1–1.5 °C in summer between 1980 and 2006 [52]. Over the past 

six decades, the average annual water temperature of the Biebrza River has warmed at a rate 

of 0.28 °C per decade [53]. Eighteen glacial and non-glacial streams in the European Alps 

experienced summer warming at an average rate of 2.5 °C per decade [54]. In southeastern 

Australia, stream temperature trends indicate an increase in the average annual temperature 

of 1 °C between 1992 and 2021 [55]. Particularly interesting are the results obtained later in 

this study, which indicate that the temperature increase will continue, reaching an average 

annual increase of 1.0 °C (SSP245) by the end of the 21st century and 3.0 °C according to 

different scenarios (SSP285). As mentioned earlier, the response of the Pilica River to 

ongoing global warming does not differ from that of other rivers, where further increases in 

water temperature are also predicted [56–58]. While this study utilizes CMIP6-based GCMs 

integrated through Bayesian Model Averaging (BMA) to improve projection reliability, it is 

important to acknowledge the limitations of using global climate models alone to capture 

localized climate dynamics accurately. GCMs are designed to provide insights on large-

scale climate patterns and trends, yet their relatively coarse resolution may not fully capture 

specific regional characteristics, such as localized temperature variations or microclimatic 

effects that can impact river systems like the Pilica River basin. 

4.2. Management Implications and Mitigation Strategies 

Currently observed and simulated future changes in the thermal regime of the Pilica 

River should be regarded as unfavorable. The permanently rising water temperature will 

determine a range of transformations that, due to the complexity of these interactions, are 

difficult to predict. One of the key factors, both ecologically and economically, is water 

quality. According to the classification of uniform parts of surface water [59], the analyzed 
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monitoring stations are located in the following sections: Pilica from Zwlecz to the Sulejów 

reservoir and Pilica from the Sulejów reservoir to the river mouth. For both of these 

segments, the water status has been classified as poor, with the main sources of chemical 

pressure being urban development, transportation, agriculture, tourism, and forestry. 

Moreover, both sections of the river are at risk of eutrophication [60,61]. The increase in 

water temperature, driven by climate change, local human activities, and hydrology, has 

significant potential to exacerbate river water quality degradation and coastal water 

eutrophication in summer [7]. If the current rate of stream temperature rise continues, it 

could have a substantial impact on eutrophication and ecosystem processes [62]. As can 

be seen, the issue of maintaining appropriate parameters is complex, and one of the 

fundamental elements affecting water quality and its self-purification capabilities is 

oxygen [63]. The amount of dissolved oxygen in the water is closely related to its 

temperature, with increases in temperature leading to a decrease in oxygen levels or even 

total depletion. Based on data from over five hundred rivers in the USA, it has been 

established that temperature primarily drives the daily dynamics of dissolved oxygen, 

and its decline in warmer rivers has significant implications for these ecosystems in the 

future [64]. 

From a hydrobiological perspective, the Pilica River has seen a noticeable increase in 

the stability of many rheophilic fish species, which are associated with high 

environmental requirements, particularly concerning oxygen levels [65]. Over multiple 

decades, this change has been linked to a reduction in pollutants entering the Pilica [65]. 

However, the current and future rise in water temperature poses new threats in the form 

of decreased levels of dissolved oxygen in the water. Previous studies in the middle 

Vistula basin have shown that the intense development of planktonic algae occurs in 

lowland river sections, including the Pilica [66]. This phenomenon is attributed to the 

characteristics of the river, which is shallow, flows slowly, and has a low volume of flow. 

Therefore, it can be inferred that plankton will respond to the continuous increase in water 

temperature, leading to changes in the structure of the trophic network. For example, the 

seasonal succession of plankton communities in the Nakdong River was associated with 

changes in water temperature, showing significant correlations with the abundance of 

eight major dominant species [67]. High temperatures will increase phytoplankton 

abundance and chlorophyll-a content within it [68]. In the case of the Ba Lai River, a 

significant negative correlation was found between water temperature and the biomass of 

phytoplankton and diatoms [69]. 

In the context of the sustainability of the river itself, but also of the entire catchment 

area, the current and projected future situations present significant challenges for water 

resource management authorities. Proper river management should be a key component 

of climate change adaptation and mitigation efforts [70]. An important factor in limiting 

the rise in water temperature is the presence of shaded areas along riverbanks [71,72]. For 

instance, studies conducted in western Poland [73] have shown that a comparison of two 

rivers revealed noticeably lower water temperatures in the watershed with a higher 

percentage of forest cover (the temperature during the growing season was, on average, 

2.6 °C lower). The above findings suggest that the development and maintenance of 

riparian buffer zones, along with the strategic planting of native tree species along the 

banks, could be an effective management strategy for the river in question. Implementing 

such measures would require extensive interdisciplinary analyses, encompassing issues 

related to hydrology, hydrobiology, ecology, as well as administrative and legal matters. 

5. Conclusions 

Rivers are particularly sensitive to the impacts of climate change, with noticeable 

effects on their thermal regimes. The increase in water temperature has been well 

documented for major river systems across continents, illustrating the overall trends and 

scales of these transformations. However, it is equally important to gain insights into 

smaller rivers that play a crucial role in the functioning of specific regions. This study 
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analyzed changes in the water temperature of the Pilica River based on two monitoring 

stations that have some of the longest observation records in the country. The findings 

indicate that, over more than sixty years, the average annual water temperature has 

increased by nearly 2 °C. A shift in the thermal regime of the Pilica River was identified, 

with only an upward trend observed in this characteristic after 1988. Projections through 

the end of the 21st century indicate further increases, with the extreme scenario predicting 

a rise of up to 3 °C. In the distant future, simulated increases in average monthly water 

temperatures are expected to range from 0.27 to 0.87 °C per decade at the Przedbórz 

station and from 0.22 to 1.06 °C per decade at the Białobrzegi station. Given the 

fundamental importance of temperature for various processes occurring in river 

ecosystems, these changes should be regarded as particularly detrimental. Future 

simulations for the Pilica River cover the next seven decades, highlighting the urgent need 

to develop strategies that could mitigate the effects of global warming, which would be 

linked to the concept of sustainability. 
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