Spatial and Temporal Evolution of the Coupling of Industrial Agglomeration and Carbon Emission Efficiency—Evidence from China’s Animal Husbandry Industry
Abstract
:1. Introduction
2. Literature Review
2.1. Carbon Emission Efficiency
2.1.1. Carbon Emission Efficiency Measurement Methods
2.1.2. Factors Affecting the Efficiency of Agricultural Carbon Emissions
2.2. Relationship Between Industrial Agglomeration and Carbon Emission Efficiency
2.3. Summary
3. Theoretical Analysis
4. Research Methods and Data
4.1. Data Sources and Processing
4.2. Construction of an Indicator System for the Efficiency of Carbon Emissions in Livestock Husbandry
4.3. Research Methodology
4.3.1. Coupling Degree Model
4.3.2. Measurement Model of Livestock Industry Agglomeration Level
4.3.3. EBM Model for Non-Desired Outputs
4.3.4. Spatial Autocorrelation Model
Global Autocorrelation Model
Local Autocorrelation Model
4.3.5. Markov Chain
Traditional Markov Chain
Spatial Markov Chain
5. Results and Analysis
5.1. Analysis of the Current Situation of Carbon Emission Efficiency in the Livestock Industry
5.2. Spatio-Temporal Characterization of the Coupling Degree of Livestock Husbandry Industry Agglomeration and Livestock Husbandry Carbon Emission Efficiency
5.3. The Characterization of the Spatial Correlation of the Coupling Degree of Animal Husbandry Industry Agglomeration and Animal Husbandry Carbon Emission Efficiency
5.3.1. Global Spatial Autocorrelation Analysis
5.3.2. Local Spatial Autocorrelation Analysis
5.4. Trend Analysis of Transfer of Coupling Degree of Livestock Industry Agglomeration and Livestock Carbon Emission Efficiency
5.4.1. Traditional Markov Chain Analysis
5.4.2. Spatial Markov Chain Analysis
6. Conclusions and Suggestions
6.1. Conclusions
6.2. Suggestions
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, B.T. Global Warming: Scientific Progress from AR5 to AR6. Trans. Atmos. Sci. 2021, 44, 667–671. [Google Scholar]
- Nicholls, Z.R.J.; Gieseke, R.; Lewis, J.; Nauels, A.; Meinshausen, M. Implications of Non-Linearities between Cumulative CO2 Emissions and CO2-Induced Warming for Assessing the Remaining Carbon Budget. Environ. Res. Lett. 2020, 15, 074017. [Google Scholar] [CrossRef]
- Pan, W.; Gulzar, M.A.; Hassan, W. Synthetic Evaluation of China’s Regional Low-Carbon Economy Challenges by Driver-Pressure-State-Impact-Response Model. Int. J. Environ. Res. Public Health 2020, 17, 5463. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.J.; Liu, Y.X.; Li, B.; Guo, L.L. Road to Sustainable Development of China: The Pursuit of Coordinated Development between Carbon Emissions and the Green Economy. J. Clean. Prod. 2024, 434, 139833. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, M. Coupling Coordination and Spatiotemporal Evolution of Low-Carbon Logistics, Industrial Agglomeration, and Regional Economy in the Yangtze River Economic Belt. Sustainability 2023, 15, 15739. [Google Scholar] [CrossRef]
- Tian, C.S.; Chen, Y. China’s Provincial Agricultural Carbon Emissions Measurement and Low Carbonization Level Evaluation: Based on the Application of Derivative Indicators and TOPSIS. J. Nat. Resour. 2021, 36, 395–410. [Google Scholar] [CrossRef]
- Oenema, O.; Wrage, N.; Velthof, G.L.; van Groenigen, J.W.; Dolfing, J.; Kuikman, P.J. Trends in Global Nitrous Oxide Emissions from Animal Production Systems. Nutr. Cycl. Agroecosyst. 2005, 72, 51–65. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Xie, Q.; Ma, Z. Carbon Footprint of a Typical Crop–Livestock Dairy Farm in Northeast China. Agriculture 2024, 14, 1696. [Google Scholar] [CrossRef]
- Dai, X.W.; Sun, Z.L.; Müller, D. Driving Factors of Direct Greenhouse Gas Emissions from China’s Pig Industry from 1976 to 2016. J. Integr. Agric. 2021, 20, 319–329. [Google Scholar] [CrossRef]
- He, D.W.; Deng, X.Z.; Wang, X.S.; Zhang, F. Livestock Greenhouse Gas Emission and Mitigation Potential in China. J. Environ. Manag. 2023, 348, 119494. [Google Scholar] [CrossRef]
- Zhang, H.R.; Zhang, J.W.; Song, J.F. Analysis of the Threshold Effect of Agricultural Industrial Agglomeration and Industrial Structure Upgrading on Sustainable Agricultural Development in China. J. Clean. Prod. 2022, 341, 130818. [Google Scholar] [CrossRef]
- Hou, S.J.; Zhou, S.F. Research on Dynamic Effect and Influence Mechanism of Industrial Co-Agglomeration on Carbon Intensity. Resour. Environ. Yangtze Basin 2023, 32, 273–283. [Google Scholar]
- Cheng, L.L.; Zhang, J.B.; He, K. Different Spatial Impacts of Agricultural Industrial Agglomerations on Carbon Efficiency: Mechanism, Spatial Effects and Groups Differences. J. China Agric. Univ. 2018, 23, 218–230. [Google Scholar]
- Cansino, J.M.; Roman, R.; Ordonez, M. Main Drivers of Changes in CO2 Emissions in the Spanish Economy: A Structural Decomposition Analysis. Energy Policy 2016, 89, 150–159. [Google Scholar] [CrossRef]
- Zhao, G.H.; Li, W.; Zhang, R.X.; Liang, W.Q. Evaluation of Carbon Emission Efficiency for Shanxi Using Stochastic Frontier Analysis. Resour. Sci. 2012, 34, 1965–1971. [Google Scholar]
- Wang, R.; Feng, Y. Research on China’s Agricultural Carbon Emission Efficiency Evaluation and Regional Differentiation Based on DEA and Theil Models. Int. J. Environ. Sci. Technol. 2021, 18, 1453–1464. [Google Scholar] [CrossRef]
- Li, C.; Feng, W.; Shao, G.L. Spatio-Temporal Difference of Total Carbon Emission Efficiency of Fishery in China. Econ. Geogr. 2018, 38, 179–187. [Google Scholar]
- Shang, L.Y.; Cui, C.; Zhao, H.F. Spatial-temporal Evolution Characteristics and Influencing Factors of Carbon Emission Efficiency of Animal Husbandry in Beijing-Tianjin-Hebei Region. J. China Agric. Resour. Reg. Plan. 2023, 44, 190–199. [Google Scholar]
- Muchen, L.; Hamdan, R.; Ab-Rahim, R. Data-Driven Evaluation and Optimization of Agricultural Environmental Efficiency with Carbon Emission Constraints. Sustainability 2022, 14, 11849. [Google Scholar] [CrossRef]
- Peng, C.; Wang, X.; Xiong, X.; Wang, Y. Assessing Carbon Emissions from Animal Husbandry in China: Trends, Regional Variations and Mitigation Strategies. Sustainability 2024, 16, 2283. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, R.; Yin, M.H.; Zhang, H.J. Study on the Measurement and Influencing Factors of Rural Energy Carbon Emission Efficiency in China: Evidence Using the Provincial Panel Data. Agriculture 2023, 13, 441. [Google Scholar] [CrossRef]
- He, P.P.; Zhang, J.B.; He, K.; Chen, Z.K. Why There is a Low-carbon Efficiency Illusion in Agricultural Production: Evidence from Chinese Provincial Panel Data in 1997–2016. J. Nat. Resour. 2020, 35, 2205–2217. [Google Scholar] [CrossRef]
- Chen, W.; Hong, J.L.; Li, Z.L.; Wang, Y.P.; Zhang, T.Z.; Geng, Y. Spatio-temporal Evolution of Carbon Emission Efficiency and Influencing Factors of China’s Soybean Production from 2011 to 2020. China Popul. Resour. Environ. 2024, 34, 70–80. [Google Scholar]
- Guo, H.P.; Li, S.; Pan, C.L.; Xu, S.; Lei, Q.Y. Analysis of Spatial and Temporal Characteristics of Carbon Emission Efficiency of Pig Farming and the Influencing Factors in China. Front. Public Health 2023, 11, 1073902. [Google Scholar] [CrossRef]
- Li, J.J.; Li, S.W.; Liu, Q.; Ding, J.L. Agricultural Carbon Emission Efficiency Evaluation and Influencing Factors in Zhejiang Province, China. Front. Environ. Sci. 2022, 10, 1005251. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.Q.; Tian, Y.; Wang, R. The influencing factors and spatial spillover of agricultural carbon emissions in Chinas major grain producing regions. J. South. Agric. 2019, 50, 1632–1639. [Google Scholar]
- Du, R.R.; He, T.; Khan, A.; Zhao, M.J. Carbon Emissions Changes of Animal Husbandry in China: Trends, Attributions, and Solutions: A Spatial Shift-Share Analysis. Sci. Total Environ. 2024, 929, 172490. [Google Scholar] [CrossRef]
- Cohen, J.; Paul, C.J.M. Agglomeration Economies and Industry Location Decisions: The Impacts of Spatial and Industrial Spillovers. Reg. Sci. Urban Econ. 2004, 35, 215–237. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhou, W.T.; Zhou, F.M. The Effect of Agricultural Industrial Agglomeration on the Efficiency of Agricultural Green Development: Empirical Evidence from China. Pol. J. Environ. Stud. 2023, 32, 5825–5836. [Google Scholar] [CrossRef]
- Sun, Z.R.; Liu, Y. Does Industrial Agglomeration Promote Carbon Efficiency? A Spatial Econometric Analysis and Fractional-Order Grey Forecasting. J. Math. 2021, 2021, 5242414. [Google Scholar] [CrossRef]
- Wang, J.Z.; Long, F. Grain Industrial Agglomeration and Grain Green Total Factor Productivity in China: A Dynamic Spatial Durbin Econometric Analysis. Heliyon 2024, 10, 26761. [Google Scholar] [CrossRef] [PubMed]
- Moomaw, W.R.; Unruh, G.C. Are Environmental Kuznets Curves Misleading Us? The Case of CO2 Emissions. Environ. Dev. Econ. 1997, 2, 451–463. [Google Scholar] [CrossRef]
- Liu, H.M.; Wen, S.B.; Zhang, Z. Agricultural Production Agglomeration and Total Factor Carbon Productivity: Based on NDDF–MML Index Analysis. China Agric. Econ. Rev. 2022, 14, 709–740. [Google Scholar] [CrossRef]
- Zhong, C.; Hamzah, H.Z.; Yin, J.; Wu, D.S.; Cao, J.; Mao, X.; Zhuang, Q. Impacts of Industrial Agglomeration and Energy Intensity on Industrial Eco-Efficiency-Analysis Based on Spatial Correlation and Mediating Effect. Front. Environ. Sci. 2022, 10, 954252. [Google Scholar]
- Liu, X.P.; Zhang, X.L. Does the Agglomeration of Urban Producer Services Promote Carbon Efficiency of Manufacturing Industry? Land Use Policy 2022, 120, 106264. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Lin, B.Q. Does tourism industry agglomeration improve China’s energy and carbon emissions performance? Sci. Prog. 2022, 105, 3. [Google Scholar] [CrossRef]
- Yuan, H.L.; Liu, J.; Li, X.N.; Zhong, S. The Impact of Industrial Collaborative Agglomeration on Total Factor Carbon Emission Efficiency in China. Sci. Rep. 2023, 13, 12347. [Google Scholar] [CrossRef]
- Chen, W.H.; Qian, H.H.; Gu, G.Y. The Impact of Livestock Industry Agglomeration on Livestock Carbon Emissions: Based on the Analysis of the Kuznets Curve and Spatial Indirect Effects. Heilongjiang Prov. Anim. Husb. Vet. 2023, 20, 10–28. [Google Scholar]
- Liu, W.X.; Li, C. Collaborative Planning and Guarantee of Greenhouse Gas and Air Pollutant Control in China. China Popul. Resour. Environ. 2022, 32, 1–10. [Google Scholar]
- Yang, B.; Yang, J.; Wang, Z.Q.; Tan, L. Spatial-Temporal Pattern and Attribution of Cultivated Land Green and Low-carbon Utilization in the Yangtze River Economic Belt. China Land Sci. 2022, 36, 63–71. [Google Scholar]
- Chu, J.Q.; Jiang, Z.H. Spatiotemporal Evolution and Influencing Factors of Green Efficiency of Agricultural Water Resources in Xinjiang. Arid Land Geogr. 2024, 47, 1231–1241. [Google Scholar]
- Yang, W.; Feng, L.; Wang, Z.; Fan, X. Carbon Emissions and National Sustainable Development Goals Coupling Coordination Degree Study from a Global Perspective: Characteristics, Heterogeneity, and Spatial Effects. Sustainability 2023, 15, 9070. [Google Scholar] [CrossRef]
- Xie, Z.J.; Wu, L.J. Industrial Agglomeration Level and Innovation Efficiency of Industrial Enterprises An Empirical Study Based on the Panel Data of 20 Industries from the Year 2000 to 2012. Sci. Res. Manag. 2017, 38, 91–99. [Google Scholar]
- Wu, K.; You, K.R.; Ren, H.; Gan, L. The Impact of Industrial Agglomeration on Ecological Efficiency: An Empirical Analysis Based on 244 Chinese Cities. Environ. Impact Assess. Rev. 2022, 96, 106841. [Google Scholar] [CrossRef]
- Wang, H.L.; Guo, J.G. Research on the Impact Mechanism of Multiple Environmental Regulations on Carbon Emissions Under the Perspective of Carbon Peaking Pressure: A Case Study of China’s Coastal Regions. Ocean Coast. Manag. 2024, 249, 106985. [Google Scholar] [CrossRef]
- Wu, H.Y.; Huang, H.J.; He, Y.; Chen, W.K. Measurement, Spatial Spillover and Influencing Factors of Agricultural Carbon Emissions Efficiency in China. Chin. J. Eco-Agric. 2021, 29, 1762–1773. [Google Scholar]
- Lin, Z.T.; Zhang, Y.R. Temporal and Spatial Differences and Influencing Factors of Green Total Factor Productivity of Animal Husbandry in China. J. Ecol. Rural Environ. 2023, 39, 1144–1157. [Google Scholar]
- Donckt, M.V.; Chan, P.; Silvestrini, A. A New Global Database on Agriculture Investment and Capital Stock. Food Policy 2021, 100, 101961. [Google Scholar] [CrossRef]
- Xu, B.W.; Shen, Z.Y.; Lin, G. Evolution of Green Total Factor Productivity and Regional Disparity in China’s Husbandry. Chin. J. Eco-Agric. 2019, 27, 613–622. [Google Scholar]
- Zhang, Z.; Li, Y.; Elahi, E.; Wang, Y. Comprehensive Evaluation of Agricultural Modernization Levels. Sustainability 2022, 14, 5069. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, M.C. Research on Spatial and Temporal Difference of Agricultural Carbon Emission Efficiency and Its Influencing Factors in Hubei Province. Sci. Agric. Sin. 2020, 53, 5063–5072. [Google Scholar]
- Hao, D.; Wang, R.; Gao, C.; Song, X.; Liu, W.; Hu, G. Spatial-Temporal Characteristics and Influence Factors of Carbon Emission from Livestock Industry in China. Int. J. Environ. Res. Public Health 2022, 19, 14837. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.B.; Irfan, M.; Liu, G.L.; Yang, X.D.; Su, X.F. Analysis of the Impact of Livestock Structure on Carbon Emissions of Animal Husbandry: A Sustainable Way to Improving Public Health and Green Environment. Front. Public Health 2022, 10, 835210. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, C.; Wang, M.; Xiong, X.; Long, X. Carbon Emission Measurement and Influencing Factors of China’s Beef Cattle Industry from a Whole Industry Chain Perspective. Sustainability 2022, 14, 15554. [Google Scholar] [CrossRef]
- Sun, Y.N.; Liu, J.J.; Ma, Z.H. Evaluation of Greenhouse Gas Emissions from Scale Dairy Farm. Trans. Chin. Soc. Agric. Eng. 2010, 26, 296–301. [Google Scholar]
- Hu, X.D.; Wang, J.M. Estimation of Livestock Greenhouse Gases Discharge in China. Trans. Chin. Soc. Agric. Eng. 2010, 26, 247–252. [Google Scholar]
- Ma, Y.Q.; Cao, D.G.; Luo, W.H.; Li, G.X.; Zhang, W.F.; Li, Y.Y. The Evaluation of the Livestock and Poultry Production of Carbon Emissions in China Based on Life Cycle Assessment. China Environ. Sci. 2024, 44, 2799–2810. [Google Scholar]
- Tian, Y.; Zhang, J.B. Regional Differentiation Research on Net Carbon Effect of Agricultural Production in China. J. Nat. Resour. 2013, 28, 1298–1309. [Google Scholar]
- Yu, T.T.; Zhu, H.S.; Zhang, S.; Hao, F.L. Coupling Characteristics and Driving Mechanism of Human Capital and Economic Development in Northeast China Under Local Middle-income Trap Crisis. Econ. Geogr. 2023, 43, 20–31. [Google Scholar]
- Chen, J.; Gao, X.; Zhang, Y.; Penttinen, P.; Wang, Q.; Ling, J.; Lan, T.; Ou, D.; Li, Y. Analysis on Coupling Coordination Degree for Cropland and Livestock from 2000 to 2020 in China. Agriculture 2023, 13, 1304. [Google Scholar] [CrossRef]
- Weng, Q.Q.; Lian, H.H.; Qin, Q.D. Spatial Disparities of the Coupling Coordinated Development among the Economy, Environment and Society across China’s Regions. Ecol. Indic. 2022, 143, 109364. [Google Scholar] [CrossRef]
- Wang, C.; Han, A.; Gong, W.; Zhao, M.; Li, W. Threshold Effect of Manufacturing Agglomeration on Eco-Efficiency in the Yellow River Basin of China. Sustainability 2023, 15, 14151. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. An Epsilon-based Measure of Efficiency in DEA—A Third Pole of Technical Efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Wang, W.; Zhou, H.; Liang, T.; Hou, F.; Xu, J.; Xue, P. Quantitative Spatial Analysis of Vegetation Dynamics and Potential Driving Factors in a Typical Alpine Region on the Northeastern Tibetan Plateau Using the Google Earth Engine. Catena 2021, 206, 105500. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, W.; Wang, Q.; Wang, D.; Xu, C.; Chen, W.; Xu, Y. Spatial Distribution Characteristics of Soil Nutrients in Walnut Orchards Based on Geostatistical Model. J. Fruit Sci. 2024, 41, 968–979. [Google Scholar]
- Zhang, S.; Huo, Z. Analysis of Spatial Correlation and Influencing Factors of Building a Carbon Emission Reduction Potential Network Based on the Coordination of Equity and Efficiency. Sustainability 2023, 15, 11616. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, C.H.; Che, L.; Wang, B. Spatio-temporal Evolution and Influencing Factors of Urban Green Development Efficiency in China. J. Geogr. Sci. 2020, 30, 724–742. [Google Scholar] [CrossRef]
- Yao, C.S.; Qian, S.S.; Mao, Y.H.; Li, Z.T. Decomposition of Impacting Factors of Animal Husbandry Carbon Emissions Change and Its Spatial Differences in China. Trans. Chin. Soc. Agric. Eng. 2017, 33, 10–19. [Google Scholar]
- Gu, S.Y.; Qiu, Z.J.; Zhan, Y.B.; Qian, K.; Xiong, R.N.; Dai, H.Y.; Yin, J.; Shen, W.S. Spatial-temporal Characteristics and Trend Prediction of Carbon Emissions from Animal Husbandry in China. J. Agro-Environ. Sci. 2023, 42, 705–714. [Google Scholar]
Indicator | Variable Name | Unit | Average | Standard Deviation | Maximum | Minimum |
---|---|---|---|---|---|---|
Input indicator | Labor input | Million people | 287.220 | 250.220 | 1265.875 | 5.317 |
Capital investment | Billions of yuan | 572.050 | 856.602 | 5964.420 | 2.340 | |
Intermediate consumption | Billions of yuan | 341.342 | 323.055 | 1479.600 | 0.900 | |
Total mechanical power | Million kilowatts | 849.880 | 866.112 | 3851.328 | 15.677 | |
Expected outputs | Gross output value of livestock | Billions of yuan | 690.219 | 639.893 | 3613.800 | 23.500 |
Non-expected outputs | Carbon Emissions from livestock | Million tons | 664.554 | 481.395 | 2181.051 | 24.274 |
Coupling | 0 < D ≤ 0.5 | 0.5 < D ≤ 0.6 | 0.6 < D ≤ 0.8 | 0.8 < D ≤ 1 |
---|---|---|---|---|
Coupling degree | On the verge of becoming dysfunctional | Elementary coordination | Intermediate coordination | Advanced coordination |
Grade code | I | II | III | IV |
Region | Province | 2000 | 2005 | 2010 | 2015 | 2020 | Average | Ranking |
---|---|---|---|---|---|---|---|---|
Beijing | 1.000 | 0.902 | 0.475 | 0.544 | 1.000 | 0.719 | 8 | |
Tianjin | 0.893 | 0.818 | 0.450 | 0.454 | 0.854 | 0.605 | 22 | |
Hebei | 0.743 | 0.633 | 0.489 | 0.473 | 0.636 | 0.554 | 28 | |
Shanghai | 1.000 | 0.935 | 0.899 | 0.811 | 0.927 | 0.921 | 1 | |
Jiangsu | 0.705 | 0.782 | 0.825 | 0.836 | 0.897 | 0.811 | 4 | |
Zhejiang | 0.768 | 0.698 | 0.716 | 0.524 | 1.000 | 0.692 | 12 | |
Fujian | 1.000 | 0.916 | 0.765 | 0.819 | 1.000 | 0.892 | 2 | |
Shandong | 0.704 | 0.662 | 0.551 | 0.460 | 0.563 | 0.569 | 25 | |
Guangdong | 0.872 | 0.907 | 0.804 | 0.661 | 1.000 | 0.831 | 3 | |
Guangdong | 0.681 | 0.719 | 0.811 | 0.891 | 1.000 | 0.810 | 5 | |
East | 0.837 | 0.797 | 0.679 | 0.647 | 0.888 | 0.740 | ||
Shanxi | 0.755 | 0.669 | 0.488 | 0.401 | 0.689 | 0.561 | 26 | |
Anhui | 0.822 | 0.759 | 0.633 | 0.501 | 0.693 | 0.646 | 18 | |
Jiangxi | 0.948 | 0.794 | 0.569 | 0.558 | 0.894 | 0.695 | 10 | |
Henan | 0.858 | 0.784 | 0.562 | 0.536 | 1.000 | 0.664 | 17 | |
Hubei | 0.927 | 0.872 | 0.674 | 0.628 | 0.807 | 0.738 | 7 | |
Hunan | 1.000 | 0.759 | 0.638 | 0.487 | 0.857 | 0.672 | 16 | |
Central | 0.885 | 0.773 | 0.594 | 0.518 | 0.823 | 0.663 | ||
Guangxi | 0.938 | 0.825 | 0.632 | 0.513 | 0.718 | 0.691 | 13 | |
Inner Mongolia | 0.851 | 0.591 | 0.518 | 0.483 | 0.567 | 0.554 | 27 | |
Chongqing | 0.819 | 0.787 | 0.510 | 0.521 | 0.827 | 0.634 | 20 | |
Sichuan | 1.000 | 0.849 | 0.592 | 0.496 | 0.803 | 0.709 | 9 | |
Guizhou | 0.885 | 0.835 | 0.684 | 0.705 | 0.794 | 0.752 | 6 | |
Yunnan | 0.894 | 0.765 | 0.547 | 0.551 | 1.000 | 0.693 | 11 | |
Shaanxi | 0.694 | 0.626 | 0.555 | 0.522 | 0.726 | 0.600 | 24 | |
Gansu | 0.796 | 0.678 | 0.685 | 0.630 | 0.827 | 0.689 | 14 | |
Qinghai | 0.855 | 0.632 | 0.681 | 0.652 | 0.786 | 0.682 | 15 | |
Ningxia | 0.575 | 0.400 | 0.433 | 0.419 | 0.538 | 0.444 | 30 | |
Xinjiang | 0.690 | 0.563 | 0.620 | 0.654 | 0.660 | 0.619 | 21 | |
West | 0.820 | 0.683 | 0.572 | 0.527 | 0.699 | 0.626 | ||
Liaoning | 0.820 | 0.761 | 0.557 | 0.573 | 0.617 | 0.644 | 19 | |
Jilin | 0.957 | 0.709 | 0.500 | 0.498 | 0.661 | 0.601 | 23 | |
Heilongjiang | 0.566 | 0.542 | 0.414 | 0.512 | 0.720 | 0.520 | 29 | |
Northeast | 0.782 | 0.671 | 0.490 | 0.528 | 0.666 | 0.589 | ||
National | 0.835 | 0.739 | 0.602 | 0.544 | 0.745 | 0.657 |
Province | 2000 | 2005 | 2010 | 2015 | 2020 | Average | Ranking |
---|---|---|---|---|---|---|---|
Beijing | 0.273 | 0.188 | 0.205 | 0.098 | 0.012 | 0.141 | 29 |
Tianjin | 0.212 | 0.302 | 0.199 | 0.161 | 0.151 | 0.201 | 28 |
Hebei | 0.877 | 0.805 | 0.742 | 0.713 | 0.718 | 0.757 | 13 |
Shanxi | 0.543 | 0.419 | 0.538 | 0.523 | 0.502 | 0.479 | 23 |
Inner Mongolia | 0.953 | 0.793 | 0.759 | 0.721 | 0.779 | 0.771 | 11 |
Liaoning | 0.634 | 0.728 | 0.779 | 0.718 | 0.716 | 0.727 | 16 |
Jilin | 0.989 | 0.860 | 0.749 | 0.751 | 0.859 | 0.797 | 7 |
Heilongjiang | 0.560 | 0.718 | 0.670 | 0.758 | 0.897 | 0.721 | 17 |
Shanghai | 0.012 | 0.013 | 0.013 | 0.014 | 0.015 | 0.013 | 30 |
Jiangsu | 0.503 | 0.367 | 0.409 | 0.306 | 0.184 | 0.353 | 25 |
Zhejiang | 0.191 | 0.238 | 0.310 | 0.199 | 0.093 | 0.219 | 27 |
Anhui | 0.886 | 0.817 | 0.815 | 0.709 | 0.632 | 0.773 | 10 |
Fujian | 0.489 | 0.443 | 0.479 | 0.376 | 0.352 | 0.437 | 24 |
Jiangxi | 0.894 | 0.776 | 0.769 | 0.651 | 0.565 | 0.730 | 14 |
Shandong | 0.679 | 0.629 | 0.696 | 0.621 | 0.528 | 0.640 | 21 |
Henan | 0.919 | 0.861 | 0.793 | 0.747 | 0.622 | 0.790 | 9 |
Hubei | 0.732 | 0.748 | 0.785 | 0.707 | 0.569 | 0.728 | 15 |
Hunan | 0.943 | 0.875 | 0.816 | 0.698 | 0.730 | 0.800 | 6 |
Guangdong | 0.347 | 0.297 | 0.381 | 0.287 | 0.219 | 0.302 | 26 |
Guangxi | 0.960 | 0.886 | 0.843 | 0.740 | 0.726 | 0.829 | 2 |
Hainan | 0.803 | 0.819 | 0.890 | 0.803 | 0.718 | 0.815 | 3 |
Chongqing | 0.792 | 0.737 | 0.664 | 0.582 | 0.485 | 0.648 | 20 |
Sichuan | 0.975 | 0.953 | 0.820 | 0.748 | 0.779 | 0.857 | 1 |
Guizhou | 0.888 | 0.809 | 0.821 | 0.782 | 0.682 | 0.796 | 8 |
Yunnan | 0.858 | 0.802 | 0.786 | 0.772 | 0.877 | 0.808 | 5 |
Shaanxi | 0.636 | 0.588 | 0.682 | 0.603 | 0.494 | 0.602 | 22 |
Gansu | 0.695 | 0.664 | 0.701 | 0.638 | 0.664 | 0.661 | 19 |
Qinghai | 0.895 | 0.771 | 0.845 | 0.781 | 0.862 | 0.815 | 4 |
Ningxia | 0.770 | 0.648 | 0.674 | 0.624 | 0.699 | 0.665 | 18 |
Xinjiang | 0.755 | 0.677 | 0.807 | 0.797 | 0.767 | 0.761 | 12 |
National | 0.689 | 0.641 | 0.648 | 0.588 | 0.563 |
Year | Moran’s I | Z-Value | p-Value | Year | Moran’s I | Z-Value | p-Value |
---|---|---|---|---|---|---|---|
2000 | 0.074 | 3.009 | 0.003 | 2011 | 0.100 | 3.796 | 0.000 |
2001 | 0.078 | 3.149 | 0.002 | 2012 | 0.102 | 3.850 | 0.000 |
2002 | 0.081 | 3.234 | 0.001 | 2013 | 0.103 | 3.859 | 0.000 |
2003 | 0.075 | 3.062 | 0.002 | 2014 | 0.104 | 3.878 | 0.000 |
2004 | 0.074 | 3.021 | 0.003 | 2015 | 0.106 | 3.924 | 0.000 |
2005 | 0.080 | 3.200 | 0.001 | 2016 | 0.107 | 3.948 | 0.000 |
2006 | 0.087 | 3.409 | 0.001 | 2017 | 0.111 | 4.043 | 0.000 |
2007 | 0.078 | 3.118 | 0.002 | 2018 | 0.115 | 4.176 | 0.000 |
2008 | 0.087 | 3.380 | 0.001 | 2019 | 0.114 | 4.111 | 0.000 |
2009 | 0.099 | 3.766 | 0.000 | 2020 | 0.121 | 4.283 | 0.000 |
2010 | 0.098 | 3.748 | 0.000 |
Observations | Degree | I | II | III | IV |
---|---|---|---|---|---|
148 | I | 0.973 | 0.027 | 0.000 | 0.000 |
39 | II | 0.179 | 0.641 | 0.179 | 0.000 |
285 | III | 0.000 | 0.039 | 0.884 | 0.077 |
128 | IV | 0.000 | 0.000 | 0.242 | 0.758 |
Type of Spatial Lag | Observed Value | Degree | I | II | III | IV |
---|---|---|---|---|---|---|
I | 21 | I | 1.000 | 0.000 | 0.000 | 0.000 |
1 | II | 0.000 | 1.000 | 0.000 | 0.000 | |
9 | III | 0.000 | 0.000 | 1.000 | 0.000 | |
0 | IV | NaN | NaN | NaN | NaN | |
II | 81 | I | 0.975 | 0.025 | 0.000 | 0.000 |
13 | II | 0.231 | 0.615 | 0.154 | 0.000 | |
115 | III | 0.000 | 0.052 | 0.896 | 0.052 | |
22 | IV | 0.000 | 0.000 | 0.273 | 0.727 | |
III | 46 | I | 0.957 | 0.043 | 0.000 | 0.000 |
25 | II | 0.160 | 0.640 | 0.200 | 0.000 | |
161 | III | 0.000 | 0.031 | 0.870 | 0.099 | |
106 | IV | 0.000 | 0.000 | 0.236 | 0.764 | |
IV | 0 | I | NaN | NaN | NaN | NaN |
0 | II | NaN | NaN | NaN | NaN | |
0 | III | NaN | NaN | NaN | NaN | |
0 | IV | NaN | NaN | NaN | NaN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Fan, B.; Wang, F. Spatial and Temporal Evolution of the Coupling of Industrial Agglomeration and Carbon Emission Efficiency—Evidence from China’s Animal Husbandry Industry. Sustainability 2024, 16, 10291. https://doi.org/10.3390/su162310291
Zeng Q, Fan B, Wang F. Spatial and Temporal Evolution of the Coupling of Industrial Agglomeration and Carbon Emission Efficiency—Evidence from China’s Animal Husbandry Industry. Sustainability. 2024; 16(23):10291. https://doi.org/10.3390/su162310291
Chicago/Turabian StyleZeng, Qingmei, Bin Fan, and Fuzeng Wang. 2024. "Spatial and Temporal Evolution of the Coupling of Industrial Agglomeration and Carbon Emission Efficiency—Evidence from China’s Animal Husbandry Industry" Sustainability 16, no. 23: 10291. https://doi.org/10.3390/su162310291
APA StyleZeng, Q., Fan, B., & Wang, F. (2024). Spatial and Temporal Evolution of the Coupling of Industrial Agglomeration and Carbon Emission Efficiency—Evidence from China’s Animal Husbandry Industry. Sustainability, 16(23), 10291. https://doi.org/10.3390/su162310291