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Abstract

:

This study investigates the thermal conductivity of unsaturated kaolin soil amended with biochar to promote sustainable geotechnical engineering. Biochar from agricultural waste offers the dual benefits of carbon sequestration and sustainable waste management. Experimental measurements were conducted for kaolin soil with 0% (control) and 10% biochar under varying moisture contents. Peach pit biochar increased thermal conductivity by 2–3% at 30–40% saturation and 40–50% at higher saturation as compared to the bare soil. Reed biochar decreased thermal conductivity by 1–2% at lower saturation but increased it by 55–60% at higher saturation. Applewood biochar increased thermal conductivity by 35–50% at moderate saturation, decreased beyond 50% water content, and had minimal variation at lower saturation. Further, the existing empirical models (such as Kersten and the Johansen model, Wiener’s model, and Mickley’s model) for predicting the thermal conductivity of materials were validated using the measured results of biochar-amended soils. Adding 10% biochar reduces thermal conductivity by 34.8%, and the Haigh model (2012) fits best with high accuracy and lower RMSE values than models such as Kersten and Johansen, which appears to be less reliable in case of biochar-amended soils. With an addition of biochar, the R2 values of the models decreased from a range of 0.8 to 0.9 to a range of 0.4–0.6, indicating the need for better model adaptation. Wiener bounds accurately predicted thermal conductivity at low saturation levels but varied greatly at higher ones. The most variable sample was peach pit biochar, highlighting the need to refine predictive models for material-specific differences. These findings provide a foundation for developing improved predictive models and integrating biochar into sustainable geotechnical and geothermal systems.
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1. Introduction


Determining soil thermal conductivity is crucial for designing geothermal energy systems, particularly geothermal piles. These piles are often considered a means to promote sustainable infrastructure development in regions where the temperature difference is significant in summer and winter. These systems utilise the ground as a source of thermal energy, and their performance relies heavily on the ability to predict the heat transfer between the pile and the surrounding soil medium. Geothermal piles combine the structural function of traditional foundations with the capability to recover heat from the ground [1]. Their design requires a comprehensive understanding of the deformation state induced by both mechanical and thermal loads. The cyclical temperature fluctuations in the pile and the surrounding soil medium generate thermal loads that contribute to the overall deformation state. To accurately determine the deformation state of a geothermal pile, engineers must consider the mechanical properties of the soil and concrete and their thermal characteristics, with a particular emphasis on thermal conductivity. The thermal conductivity of the soil medium plays a pivotal role in governing the heat transfer between the pile and the surrounding ground, making its precise determination essential for the optimal design of these systems [2].



Kaolin soil, characterised by its moderate flexibility and construction difficulties, has been the subject of numerous stabilisation experiments to improve its mechanical qualities. Research indicates that the inclusion of fly ash (FA) markedly enhances the strength of kaolin; notably, a study revealed that the addition of 10% to 20% FA, in conjunction with cement as an activator, led to a proportional increase in an unconfined compressive strength (UCS) and tensile strength, especially when elevated dry unit weights were utilised during curing periods [3]. Furthermore, the incorporation of clamshell ash (CSA) and lime has demonstrated the ability to modify the physicomechanical properties of kaolinite clay with an appropriate silica fume concentration, resulting in improved elasticity and strength during prolonged curing durations [4]. Moreover, the application of crushed waste glass (CWG) as a reinforcing material has augmented kaolin’s shear strength and consolidation characteristics, suggesting that varying particle sizes of CWG might further increase the friction angle and overall stability of kaolin soil. These findings highlight the capability of diverse stabilising agents to convert kaolin into a more suitable material for engineering applications [5].



Biochar, a carbon-dense substance (i.e., biochar) generated via the pyrolysis of organic matter, is acknowledged for its capacity to enhance soil health, improve water retention, and sequester carbon. It is often considered a desirable material for inclusion in infrastructure development. Its agricultural utilisation enhances soil fertility and affects thermal properties, especially thermal conductivity, essential for comprehending heat transfer in soils [6].



Biochar amendment significantly impacts the thermal properties of unsaturated soils, mainly by reducing their thermal conductivity. The addition of biochar consistently decreases soil thermal conductivity due to biochar’s inherently low thermal conductivity (0.057–0.060 W·m−1·K−1), which is much lower than that of soil minerals like quartz (7.7 W·m−1·K−1) and water (0.594 W·m−1·K−1). This reduction is also facilitated by decreased soil bulk density and increased porosity when adding biochar [7]. For instance, a 1% biochar application results in a 2.48–12.4% reduction in thermal conductivity, whereas 3% and 5% applications result in reductions of 15.6–29.3% and 18.7–34.8%, respectively [8].



The particle size of biochar also plays a role; smaller particles (<0.15 mm) result in a less significant reduction in thermal conductivity compared to larger particles (1–2 mm). Moreover, soil moisture content significantly influences thermal properties, often having a more pronounced effect than biochar [7].



Modelling approaches, such as the Campbell model (adjusted for bulk density changes), accurately predict the thermal conductivity of biochar-amended soils with a high correlation coefficient (R2 > 0.919) [8,9]. Other models, like those proposed by, Khaledi et al. have also been employed in these analyses [7]. Besides thermal conductivity, biochar amendments affect other thermal properties, leading to decreased thermal diffusivity and heat capacity and increased thermal resistivity [7,8].



A novel eco-friendly polyester derived from natural oleic acid and liquefied biomass exists in polymer chemistry. Lignocellulosic biomass, such as bast and hemp fibres, is liquefied to produce chemical feedstocks from agricultural waste. This waste management and fossil fuel reduction process aligns with contemporary sustainability objectives. Liquefied biomass has been utilised in composites and adhesives, substantiating this research [10].



Polymer synthesis preferentially utilises natural fatty acids such as oleic acid owing to their accessibility and adaptability. Numerous vegetable oils comprise oleic acid, which is utilised in lubricants and emulsifiers. Prior research on the reactivity of oleic acid with biomass-derived materials has yielded an eco-friendly polyester exhibiting enhanced thermal and mechanical properties. The structural modifications of polyester derived from liquefied biomass and oleic acid enhanced its hardness and thermal decomposition rates compared to conventional materials [10]. FTIR and XRD validated these alterations. The expanding body of literature on polymer synthesis utilising natural and recycled resources demonstrates the potential for sustainable materials that fulfil contemporary application requirements.



Overall, both theoretical and experimental investigations confirm that biochar amendments substantially reduce the thermal conductivity of unsaturated soils, with the reduction magnitude influenced by factors such as biochar application rate, particle size, and soil moisture content. These insights are crucial for applications in soil temperature regulation, irrigation management, and optimising biochar use in agriculture, thereby enhancing sustainability. Various models have been developed to predict the thermal conductivity of soil, each with its strengths and limitations. These models can be broadly categorised into theoretical models based on fluid mechanics and thermodynamics, empirical models derived from experimental data, and, more recently, machine-learning-based models.



This research aims to determine the effect of different biochar treatments on the thermal conductivity of unsaturated soils, considering sustainable geotechnical engineering. The study assesses the impact of agricultural-waste-derived biochar amendments on kaolin soil’s thermal and moisture properties under various conditions, including various compaction levels and cycles of wetting and drying. In addition, this study assesses the validity of both theoretical and empirical models and the accuracy of their predictions related to the thermal conductivity of soils amended with biochar. This study aims to advance sustainable infrastructure methods by improving the thermal behaviour of soil for geothermal energy systems, amongst other uses.




2. Materials and Methods


2.1. Sample Composition


The kaolin soil parameters presented in Table 1 provide critical insights into the characteristics of the tested sample. Engineering applications require stable and predictable thermal properties, so kaolin soil is often used to measure thermal conductivity. Moisture content and density affect kaolin’s thermal conductivity, making it ideal for empirical studies. A generalised model based on laboratory experiments shows that these environmental factors and soil mineral composition can accurately predict kaolin’s thermal conductivity [11]. Kaolin’s unique properties allow researchers to use thermo–time domain reflectometry to measure thermal conductivity accurately for geothermal energy systems and foundation design [12]. Kaolin clay is a reliable measurement standard because its consistent results enable more accurate soil heat transfer predictions [13].



Four distinct samples were analysed to estimate their thermal conductivity properties. The biochars that we chose are all common crop residues. The sample designations and compositions are as follows: Sample K-0 consisted solely of soil kaolin, with a 0% biochar content as the control. Sample K-P-10: A composite sample comprising kaolin soil and 10% peach pit biochar by weight. Sample K-R-10: A composite sample of kaolin soil and 10% reed biochar by weight. Sample K-A-10: A composite sample containing kaolin soil and 10% applewood biochar by weight as provided in Table 2.



They incorporated various biochar types at a fixed 10% loading, allowing for evaluating their influence on the thermal conductivity characteristics relative to the pure kaolin baseline. Rigorous experimental procedures and modelling techniques were employed to obtain accurate thermal conductivity estimates for each sample formulation. We saturated the sample and then kept it in a humidity chamber until the water content of the sample reached the lowest value. Figure 1 represents the soil samples used for testing.




2.2. Experimental Details


Samples consisting of 1000 g of dried kaolin and 30 g each of peach pit, corncob, and reed biochar are packed in PVC bags. Containers with 1/3, 2/3, full capacities, and pre-calibrated weights are systematically arranged. The container’s capacity dictates the volumes of compacted dirt (M1, M2, and M3). Samples amended with biochar consist of 220 g of kaolin and 22 g of biochar, whereas the bare soil comprises 250 g of dry kaolin. Soil layers comprise one-third, two-thirds, and the remainder. Following compaction, samples undergo desiccation to ascertain dry density [14].



The specific gravity of biochar-amended soil at full saturation indicates its water content. A vacuum saturation apparatus saturates samples with varying compaction levels. The sample mass and moisture measurements are contrasted with theoretical saturation levels [14].



The probe insertion point must be 1.5 cm from the sample’s perimeter to assess thermal properties. A probe cavity is either created or inserted immediately for malleable specimens. Thermal characteristics are evaluated three times for precision. Mass and volume are quantified [14].



Wet–dry cycles transpire in a programmable temperature and humidity chamber. The water pan’s mass is measured before placing the samples in a chamber at 25 °C with 100% relative humidity. Mass, volume, thermal properties, and cracks are documented biannually. Cycles of 50% and 90% humidity are reiterated until equilibrium. Images are captured during and post cycles, and the samples are desiccated to ascertain mass and volume [14].




2.3. Method for Measuring Thermal Conductivity


The TEMPOS Thermal Properties Analyzer is manufactured by Meter Group, Inc. USA, located in Pullman, WA, USA, a sophisticated device for precise thermal measurements, to measure the sample’s thermal conductivity. The methodology began with selecting an appropriate sensor based on the sample characteristics. We opted for the KS-3 sensor, suitable for smaller samples with a conductivity range of 0.1–4.0 W/(m·K) and ensuring accurate readings with an accuracy of ±10% within its specified range [15]. Figure 2 represents the image of the TEMPOS equipment used to measure the sample’s thermal conductivity.



The apparatus employs the dual-needle method for assessing thermal conductivity. Heat is applied to the heated needle for a designated duration, while the temperature is recorded in the monitoring needle situated 6 mm away during both the heating phase and the subsequent cooling period [17]. The readings are subsequently processed by deducting the ambient temperature and the drift rate. The resultant data are fitted to Equations (1) and (2) utilising a least squares method [18].


      F o r   t   ≤     t   h         ∆ T =      q   4 π k      E i      −   r   2     4 D t           



(1)






      F o r   t >   t   h        Δ T =      q   π k        E i      −   r   2     4 D   ( t −   t   h   )      − E i      −   r   2     4 D t            



(2)




where ∆T represents the temperature increase at the measuring needle, q denotes the heat input at the heated needle (W/m), k signifies the thermal conductivity (W/m·K), r indicates the distance from the heated needle to the measuring needle, D refers to the thermal diffusivity (m2/s), t is time (s), and th is the duration of heating (s). Ei represents the exponential integral, which is approximated through polynomial expressions [19].



TEMPOS assesses temperature drift for a minimum duration of 30 s. Current is delivered to the heater needle for 30 s to assess the sensing needle temperature, provided the drift remains below a specified threshold. After 30 s, the current ceases, and the temperature is recorded for 90 s. Subtracting the initial temperature and drift from the temperatures produces the DT values required to resolve Equations (2) and (3). k and D can be derived from q, r, t, and th [20].



Traditional nonlinear techniques, such as least squares, can achieve this. Nevertheless, these approaches frequently become trapped in a local minimum, leading to imprecise outcomes. Selecting D in Equations (2) and (3) transforms the computation into a linear least squares problem. We subsequently aim to identify D, which reduces the squared temperature discrepancies between the observed and predicted temperatures. This approach identifies the global minimum when appropriately configured and demonstrates efficiency comparable to nonlinear least squares. The calculation of volumetric specific heat capacity is performed in Equation (3), following the establishment of values for k and D.


  ρ C =    k   D     



(3)








2.4. Models


2.4.1. Kersten’s Empirical Equations (1949)


Kersten (1949) provided empirical formulae to predict the thermal conductivity of soil media based on measurements of thermal conductivity performed on 19 distinct soil samples [21]. These formulae connect the soil’s dry density (    ρ   d    ) and moisture content (w) to the thermal conductivity. The expressions are as follows:



For fine-grained soils, such as silt and clay, the thermal conductivity (λ) can be estimated using the following equation:


  λ = 0.1442 ×   0.9       log   10    ⁡  w   − 0.2   ×   10   0.6243 ×   ρ   d      



(4)







For coarse-grained soils, the analogous formula proposed by Kersten (1949) is as follows:


  λ = 0.1442 ×   0.7       log   10    ⁡  w   − 0.2   ×   10   0.6243 ×   ρ   d      



(5)




where λ is the thermal conductivity of the soil medium (W·m−1·K−1), w is the moisture content (%), and     ρ   d     is the dry density (g/cm3). The variables in this equation have the same meanings as in the previous equation for fine-grained soils.




2.4.2. Johansen Method (1975)


A common approach for estimating the thermal conductivity of soils at different saturation levels is the Johansen method, which Olav Johansen devised in 1975. It may be used to determine the thermal conductivity of soil in frozen and unfrozen conditions, regardless of the grain size, from coarse-grained to fine-grained soil. The technique only applies to saturations higher than 20% [21]. It tends to underestimate thermal conductivity by up to 15% below 20% saturation [22]. Johansen’s correlation is based on thermal conductivity data for dry and saturated states at the same dry density. It has the following form:


  λ =     λ   s a t   −   λ   d r y     ·   K   e   +     λ   d r y    



(6)




where     K   e     is a dimensionless function of soil saturation,   λ   is the soil thermal conductivity, and     λ   s a t     and     λ   d r y     are the soil thermal conductivities in the saturated and dry states, respectively. For fine-grained soils, such as silt and clay, the     K   e     can be estimated using the following equation:


    K   e     ≅   0.7 ×       log   10    ⁡    S   r       + 1  



(7)







For coarse-grained soils, the analogous formula proposed by Kersten (1949) is as follows:


    K   e     ≅         log   10    ⁡    S   r       + 1  



(8)




where     S   r     is the degree of saturation.



The thermal conductivity of dry soil is provided by


    λ   d r y   =    0.135   ρ   d   + 64.7   2700 − 0.947   ρ   d       



(9)




where     ρ   d     is the dry density of the soil.



The thermal conductivity of saturated soil is provided by


    λ   s a t   =     λ   w   n   ·   λ   s   ( 1 − n )    



(10)






    λ   s   =   λ   q u a r t z     f   q u a r t z       λ   o t h e r   1 −   f   q u a r t z      



(11)




where n is the porosity of the soil     λ   w    ,     λ   s    , and     λ   q u a r t z     are the thermal conductivity of water, soil, and quartz, respectively, and     f   q u a r t z       is referred to as a fraction of quartz in the soil sample [23]. For our analysis, we take λs as 2.9 W·m−1·K−1 [24]. Some researchers have built upon the Johansen method to develop improved models by normalising the thermal conductivity versus water content curves [25].




2.4.3. Donazzi et al. Model (1979)


The Donazzi et al. model, published in 1979, is an empirical model for predicting the thermal conductivity of soils. It is based on an exponential relationship between the thermal conductivity of a soil and its degree of saturation. The model is expressed as follows:


  λ =     λ   w   n   ·   λ   s   ( 1 − n )   ·   e   − 3.08 n   ( 1 −   S   r   )   2      



(12)







This model is widely used for predicting the thermal conductivity of soils, particularly for designing underground cables and understanding the thermal behaviour of soils in various applications [21,26].




2.4.4. Cote and Konrad Method (2005a, 2005b)


After making a few adjustments to the Johansen technique (1975), the Cote and Konrad approach (2005a, 2005b) yields the following results for the computation of   λ   by modifying     K   e     and     λ   d r y     as follows:



The Kersten constant is provided by


    K   e   =    κ   S   r     1 +   κ − 1     S   r       



(13)




where   κ   this parameter reflects the soil type, where 4.60 is used for gravel and coarse sand, 3.55 for medium and fine sands, 1.90 for silt and clay, and 0.60 for organic soils [21,27]. The thermal conductivity of dry soil is provided by


    λ   d r y   =   χ     10   − η n      



(14)




where   χ , η   are the parameters indicative of soil type and grain morphology:   χ   = 0.30 and   η   = 0.87 for organic soils;   χ   = 0.75 and   η   = 1.20 for mineral soils [21].




2.4.5. Lu et al. Method (2007)


After making a few adjustments to the Johansen technique (1975), the Lu et al. method (2007) yields the following results for the computation of   λ   by modifying     K   e     and     λ   d r y     as follows:



The Kersten constant is provided by


    K   e   =   e   { α   1 −     S   r     α − 1.33     }    



(15)




where   α   is a parameter depending on the soil type: 0.96 or 0.27, respectively, for coarse- or fine-grained soils [21]. The thermal conductivity of dry soil is provided by


    λ   d r y   = 0.51 − 0.56 n  



(16)








2.4.6. Chen Model (2008)


Chen (2008) proposed an empirical equation for estimating the thermal conductivity of quartz sands as a function of porosity and degree of saturation based on laboratory tests. The equation is provided by the following:


  λ =   λ   w   n   ·   λ   s   ( 1 − n )   ·   [     1 − b     S   r   + b   ]   c n    



(17)




where b = 0.0022 and c = 0.78 are provided based on the experiments [21]. The model provided good accuracy in estimating the thermal conductivity of sandy soils with relatively high quartz content over the full range of saturation [28]. The thermal conductivity was noted to rise with diminishing porosity and increasing saturation level [21,29].




2.4.7. Lu et al. Model (2014)


Lu et al. (2014) developed a model that considers essential elements such as bulk density, temperature, moisture content, and soil composition to measure the thermal conductivity of soil reliably. The following empirical equation for thermal conductivity at different saturations was put out in the work of Lu et al. (2014):


  λ =   λ   d r y   +   e   [ β −       S   r     n     − α   ]         S   r   > 0  



(18)




where   α   and   β   are provided by


  α = 0.67     ϕ   c l   + 0.24  



(19)






  β = 1.97   ϕ   s a   + 1.87   ρ   d   − 1.36     ϕ   s a     ρ   d   − 0.95  



(20)




where     ϕ   c l     and     ϕ   s a     are the content of clay and sand, respectively, and the dry thermal conductivity of the soil is taken as 20 [21]. Note that this model makes it possible to determine the thermal conductivity of the same soils at varying compaction levels.




2.4.8. Wiener Bounds (1912)


The Wiener boundaries, published in 1912, provide theoretical limitations for the effective thermal conductivity of heterogeneous materials, such as soil. These limitations are beneficial for evaluating the thermal characteristics of composite materials such as soil, which comprises solid particles, water, and air [30].



The Wiener bounds for thermal conductivity include two separate boundaries. The parallel model’s upper bound indicates the soil mixture’s maximal heat conductivity. This model implies that heat moves parallel to the layers of the various components in the mixture. The lower bound, the series model, represents the soil mixture’s minimal thermal conductivity [31]. In this example, heat is supposed to travel perpendicular to the layers of each component (Figure 3). The following equation represents the Wiener boundaries (1912):


  λ >       ∑  i         ϕ   i       λ   i            − 1    



(21)






  λ <     ∑  i      ϕ   i     λ   i        



(22)




where     ϕ   i     and     λ   i     are the volume fraction and thermal conductivity of composting material such as soil, water, and air [32].




2.4.9. Mickley’s Model (1951)


Mickley’s 1951 model describes soil as a unit cube with discrete channels that are either filled with air or water to study heat transmission. It outlines the four main paths of heat moves: the air-filled voids, the soil skeleton, and two series configurations of these columns. The dry soil’s thermal conductivity in this model depends on the sectional area a2 and the length of the channels as one unit, as well as the thermal conductivities of the air and the soil skeleton. Mickley’s approach simplifies the complex interactions between different soil phases, providing a methodical way to assess thermal conductivity, as shown in below (Figure 4) [33]. This model provides a fundamental method of measuring soil thermal conductivity by highlighting the connections between moisture content and soil composition. It acknowledges that the composition and texture of minerals impact the thermal conductivities of various soil types.



The following formulae determine the thermal conductivity of soil:



For dry samples:


    λ   d r y   =   λ   a   +   λ   s     ( 1 − a )   2   +      λ   s       λ   a     ( 2 a − 2   a   2   )     λ   s     a +   λ   a   ( 1 − a )       



(23)







For saturated samples:


    λ   s a t   =   λ   w     a   2   +   λ   s     ( 1 − a )   2   +      λ   s     λ   w   ( 2 a − 2   a   2   )     λ   s   a +   λ   w   ( 1 − a )       



(24)







For partially saturated samples:


     λ =   λ   a     c   2   +   λ   s     ( 1 − a )   2   +     λ   w     ( a − c )   2   +    2   λ   w     λ   a   c ( a − c )     λ   w   c +   λ   a   ( 1 − c )                    +    2   λ   s     λ   w     λ   a   c ( 1 − a )     λ   w     λ   s   c +   λ   s     λ   a     a − c   +   λ   w     λ   a   ( 1 − a )                    +    2   λ   s     λ   w   ( a − c ) ( 1 − a )     λ   s   a +   λ   w   ( 1 − a )        



(25)




where c = a − b; by resolving the following equations, the geometric variables a and c are found by considering the soil porosity n and the degree of saturation     S   r    .


  3   a   2   − 2   a   3   = n  



(26)




and


  3   c   2   − 2   c   3   = n ( 1 −   S   r   )  



(27)








2.4.10. Haigh Model (2012)


The Haigh model (2012) is a thermal conductivity framework specifically developed for sands based on a three-phase soil contact element. This model is highly recommended for projecting sand thermal conductivity in geothermal applications because of its unique properties and accuracy. The model shows soil as a composite medium of solid particles, water, and air, providing a comprehensive perspective of heat transport inside the soil [34].



It assumes that heat travels in a 1D manner through the soil element, simplifying thermal conductivity calculations. The model’s emphasis on the interactions between soil particles and surrounding fluids (water and air) at their contact points is crucial for accurate predictions [35].


        λ     λ   s      = 2     ( 1 + ξ )   2       {      α   w       ( 1 −   α   w   )   2        ln  ⁡         1 + ξ   +     α   w   − 1   x   ξ +   α   w                +      α   a       ( 1 −   α   a   )   2        ln  ⁡         1 + ξ     1 + ξ +     α   a   − 1   x        }       +    2 ( 1 + ξ )   ( 1 −   α   w   ) ( 1 −   α   a   )    [     α   w   −   α   a     x −   1 −   α   a       α   w   ]     



(28)




where     α   w   =     λ   w    /    λ   s        ,     α   a   =     λ   a    /    λ   s      . For determining ξ and x values based on porosity and saturation, use the following formulae:


  ξ =    3 n − 1   3 ( 1 − n )     



(29)






  x =      1 + ξ   2      ( 1 + c o s ϑ   −    3  s i n ϑ )  



(30)






  c o s ϑ =    2   1 + 3 ξ     1 −   S   r     −   ( 1 + ξ )   3       ( 1 + ξ )   3       



(31)









2.5. Model Evaluation Metrics:


The comparison of the actual value and the estimated value from the above model is achieved by some fitting evaluation. For that, we adopted the methods of coefficient of determination R2, root mean square method error (RMSE), and proximity for only Wiener’s bounds (1912).


    R   2   = 1 −      ∑  i = 1   n      (   y   i   −     y  ^    i   )   2         ∑  i = 1   n      (   y   i   −   y  ¯  )   2         



(32)






  R M S E =     1   n        ∑  i = 1   n      (   y   i   −     y  ^    i   )   2       



(33)




where     y   i     are the observed values,       y  ^    i     are the predicted values, and     y  ¯    is the mean of the observed values; the range of R2 is to be between 0 and 1; an R2 value equal to 1 indicates an excellent fit, where RMSE should be greater than one and as low as possible.


  P r o x i m i t y =      y   i   −   λ   L       λ   U   −   λ   L       



(34)




where     λ   L     and     λ   U     are the lower and upper bound of the Wiener bound. While analysing thermal conductivity model fits using proximity values, results ranging from 0 to 1 imply predictions within the theoretical Wiener boundaries. Values closer to 0 indicate that the prediction is more closely aligned with the lower bound, implying that it may be a better match for those data points. In contrast, values closer to 1 indicate alignment with the upper bound. Proximity values above this range suggest predictions beyond the boundaries, indicating probable model inconsistencies. Analysing the distribution of these values enables researchers to evaluate model performance, determining whether the lower or upper bound better represents the data and emphasising areas for model accuracy improvement [36].



By resolving when evaluating the goodness of fit for a model, both R2 (coefficient of determination) and RMSE (root mean square error) provide crucial insights. A high R2 and low RMSE indicate a perfect model fit, suggesting the model explains a large proportion of the variance and the predictions are close to the actual values. Conversely, a high R2 and high RMSE suggests that the model explains much of the variance. However, individual predictions may still be significantly off from the actual values, indicating potential issues with prediction accuracy despite capturing overall trends. On the other hand, a low R2 and RMSE indicates a model with limited explanatory power but acceptable prediction accuracy within a narrow data range, which might be sufficient depending on the context. Finally, a low R2 and high RMSE represent a poor model fit, where the model fails to capture variance and makes inaccurate predictions, highlighting the need for a better model [37].





3. Results and Discussion


The analysis of various models indicates that the empirical models converge primarily at higher saturation levels; see Figure 5. Specifically, models such as Mickley’s (1951) Johansen’s method (1975), Donazzi et al. (1979), Cote and Konrad (2005a, 2005b), Lu et al. (2007), Chen (2008), and Lu et al. (2014) yield thermal conductivity values ranging from approximately 1.3 to 1.4 W·m⁻1·K⁻1 for the K-0, K-P-10, and K-A-10 samples. In contrast, the K-R-10 sample shows a lower value of around 1 W·m⁻1·K⁻1 at higher saturation points [38].



However, the thermal conductivity values at lower saturation levels appear more evenly distributed. This observation underscores the varying responses of different models across saturation ranges and highlights their implications for understanding soil thermal conductivity. Kersten’s empirical equations (1949) provide a means to estimate the thermal conductivity of soil media based on their moisture content and dry density, which are relatively straightforward parameters to measure or obtain. The equations are specific to fine-grained or coarse-grained soil types, accounting for the differences in their thermal behaviour [21]. Lu et al. (2014) recognises that various soil constituents—clay, silt, and sand—have distinct thermal conductivities and that, because water has a higher thermal conductivity than air, additional moisture typically improves thermal conductivity. Their model [39] is a complete tool for studying soil thermal behaviour since it also shows the impact of bulk density, where larger densities generally contribute to increased particle contact and thermal conductivity, along with the temperature dependency of these parameters.



The figures in Figure 5 show that the lower Wiener bound effectively predicts thermal conductivity at low saturation levels. However, thermal conductivity values vary significantly at higher saturation points, indicating that no single number can accurately predict thermal conductivity throughout this range. Furthermore, the Cote and Konrad model exhibits low variance across the whole range of water content; nonetheless, this consistency shows that the Cote and Konrad technique may not be the best option for estimating thermal conductivity in kaolin soil. This conclusion emphasises the significance of model selection based on specific soil properties and moisture conditions [40].



In Figure 5, we compare the predictive accuracy of various models for different samples. For the K-0 sample, it is evident that the Kersten empirical equation (1949), Mickley’s model (1951), Johansen’s method (1975), Donazzi et al. (1979), Cote and Konrad (2005a, 2005b), Lu et al. (2007), Chen (2008), and Lu et al. (2014) provide accurate predictions at higher saturation levels. However, these models fail to accurately predict thermal conductivity at lower saturation levels [41]. Notably, these equations are primarily based on the degree of saturation (Sr) and the porosity (n) of the sample. Additionally, the models must accurately predict thermal conductivity within the 35% to 45% saturation range for the K-0 sample, highlighting a gap in their applicability across the entire saturation spectrum. These ranges are well predicted by the Wiener boundaries.



Similar to the K-0 sample, the K-P-10 sample also exhibits rapid fluctuations in the water content within the 40% to 50% range, with an increase, a subsequent decrease, and another increase, forming a curve. This dynamic behaviour further complicates accurate prediction using traditional models. Several models, including “Mickley’s model (1951), Johansen’s method (1975), Donazzi et al. (1979), Cote and Konrad (2005a, 2005b), Lu et al. (2007), Chen (2008), and Lu et al. (2014)”, converge to a thermal conductivity of approximately 1.2 W·m⁻1·K⁻1. Nevertheless, introducing biochar alters the soil properties, leading to lower thermal conductivity at higher saturation points than K-0.



The thermal conductivity of the K-R-10 sample decreases significantly at higher saturation levels (40% to 50%), reaching less than 0.5 W·m⁻1·K⁻1. Furthermore, the K-R-10 sample’s thermal conductivity fluctuates rapidly as the water content increases. In contrast, the K-A-10 sample exhibits a distinct pattern, with thermal conductivity rising relative to the K-0 sample. The K-A-10 sample’s thermal conductivity remained much higher at lower saturation values than the lower Wiener bound. These findings show that the thermal conductivity behaviour of the samples differs significantly depending on the water content and saturation level [42].



In evaluating various models for predicting different samples (“K-0, K-P-10, K-R-10, K-A-10”) from Table 3, several key findings emerge regarding their performance. The Haigh model (2012) consistently demonstrates superior accuracy, achieving the lowest RMSE values across multiple samples. Haigh (2012) also achieves high R2 values, indicating a solid explanatory power. Mickley’s model (1951) also performs notably well, particularly for the K-0 sample. Its R2 and RMSE values remain competitive with other samples, which are 0.646 and 0.679 for K-P-10, 0.720 and 0.567 for K-R-10, and 0.736 and 0.570 for K-A-10. Kersten’s empirical equations (1949) provide a consistent middle-ground performance with R2 values of 0.870, 0.555, 0.666, and 0.624 and RMSE values of 0.534, 0.602, 0.492, and 0.423 for “K-0, K-P-10, K-R-10, and K-A-10”, respectively. The Wiener bounds (1912), although not offering R2 values, present the best RMSE for the K-A-10 sample at 0.411. Moreover, we can find the proximity and fit inside the bound provided by Equation (34).



Figure 6 indicates that the samples K-0 and K-A-10 display more substantial distortion at greater saturation levels than the Wiener upper bound. In contrast, lower saturation values for these samples are more closely related to the Wiener lower bound. The closeness values for K-0 and K-A-10 increase exponentially, suggesting a steady steepening of the data trend. In contrast, samples K-P-10 and K-R-10 exhibit an abrupt shift at higher saturation values, possibly attributable to increasing distortion. This research reveals varied patterns in how samples respond to saturation variations regarding theoretical limitations.



Collectively, these results underscore the Haigh model’s (2012) robustness across various conditions, with Mickley’s model (1951) and Kersten’s empirical equations (1949) also showing reliable performance in specific contexts. As we compare the R2 and RMSE values across the samples, the biochar significantly impacted the fitness of the model. Overall, peaches exhibit greater deviation from the models, and the older models, such as Kersten and Johansen, demonstrate inferior predictive capability for soil thermal conductivity compared to the more recent Haigh model.




4. Conclusions


In conclusion, the theoretical and experimental investigations confirm that biochar amendments significantly influence the thermal properties of unsaturated soils.



The thermal conductivity of soil amended with 10% biochar demonstrated distinct variations based on biochar type and saturation levels. At lower saturation (30–40%), peach pit biochar exhibited a 2–3% increase in thermal conductivity compared to bare soil, while at higher saturation, its variation increased significantly to 40–50%. Similarly, reed biochar caused a 1–2% decrease at lower saturation but exhibited a substantial variation of 55–60% at higher saturation levels. In contrast, applewood biochar showed minimal variation at lower saturation, a significant increase of 35–50% at moderate saturation, and reduced variation at saturation levels exceeding 50%. These findings highlight the influence of biochar type and water content on soil thermal conductivity. The thermal conductivity of theoretical and empirical formulae for the unsaturated soils amended with biochar had few limitations. While estimating the values as the biochar content increases, the fittingness decreases, and this model does not consider the percentage of the biochar amended in the soil. Also, the temperature and humidity were not being considered, which will affect the thermal conductivity of the soil.



The study of numerous models for predicting distinct samples demonstrates that the Haigh model (2012) consistently outperforms others, displaying greater accuracy and strong explanatory power across diverse situations. Mickley’s model (1951) also performs well, notably for the K-0 sample, while Kersten’s empirical equations (1949) provide a dependable middle-ground solution. Despite lacking R2, the Wiener limits (1912) provide the best RMSE for the K-A-10 sample. Notably, the influence of biochar considerably improves model fit. Older models, such as Kersten and Johansen, provide weaker predictions for soil thermal conductivity than the more contemporary Haigh model (2012). Furthermore, the peach sample exhibits the most significant variation, showing the need for additional refinement in model projections for this instance.



Based on our observations, we conclude that the thermal conductivity of biochar-amended soil is highly dependent on the quantity of biochar and water content. The Haigh model (2012) and Mickley model (1951) demonstrate superior performance in fitting the data, as shown in Table 2, primarily because these methods account for soil compaction and the three-phase system of soil. However, for biochar-amended unsaturated soils, a four-phase system may be necessary to model thermal conductivity accurately. This adjustment reflects the complex interactions between soil particles, biochar, water, and air.
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Figure 1. Saturated Soil Sample taken for the testing. 
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Figure 2. Equipment used for measuring the thermal conductivity of the soil [16]. 
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Figure 3. Visual realistic representation of Wiener bounds (1912). 
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Figure 4. Visual representation of Mickley’s model. (a) Isometric view; (b) lateral view [21]. 
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Figure 5. Graphs for λ vs. water content for different samples and different models. 






Figure 5. Graphs for λ vs. water content for different samples and different models.



[image: Sustainability 16 10564 g005a][image: Sustainability 16 10564 g005b]







[image: Sustainability 16 10564 g006a][image: Sustainability 16 10564 g006b] 





Figure 6. Proximity for the Wiener bounds for different samples. 
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Table 1. Geotechnical parameters of the kaolin soil.
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	Parameter
	Values





	Particle size distribution (%)
	



	Silt (0.075–0.002 mm)
	100



	Clay (<0.002 mm)
	0



	Specifc gravity
	2.548



	Liquid limit
	48.10



	Plastic limit
	24.25



	Maximum dry density
	1.48 g/cm3










 





Table 2. Composition of different biochar to the kaolin sample.
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Sample

	
Biochar

	
Composition




	
Soil (%)

	
Biochar (%)






	
K-0

	
-

	
100

	
0




	
K-P-10

	
peach pit

	
90

	
10




	
K-R-10

	
reed biochar

	
90

	
10




	
k-A-10

	
applewood

	
90

	
10











 





Table 3. Coefficient of determination (R2) and root mean square error (RMSE) for different model sample tests.
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No

	

	
Sample

	
K-0

	
K-P-10

	
K-R-10

	
K-A-10




	
Model

	

	
R2

	
RMSE

	
R2

	
RMSE

	
R2

	
RMSE

	
R2

	
RMSE






	
1

	
Kersten’s empirical equations (1949)

	
0.870

	
0.534

	
0.555

	
0.602

	
0.666

	
0.492

	
0.624

	
0.423




	
2

	
Johansen method (1975)

	
0.870

	
0.581

	
0.555

	
0.735

	
0.666

	
0.572

	
0.624

	
0.503




	
3

	
Donazzi et al. model (1979)

	
0.831

	
0.577

	
0.490

	
0.734

	
0.675

	
0.517

	
0.612

	
0.469




	
4

	
Cote and Konrad method (2005a, 2005b)

	
0.872

	
0.664

	
0.561

	
0.828

	
0.676

	
0.745

	
0.632

	
0.646




	
5

	
Lu et al. method (2007)

	
0.860

	
0.616

	
0.532

	
0.775

	
0.646

	
0.626

	
0.603

	
0.554




	
6

	
Chen model (2008)

	
0.875

	
0.580

	
0.569

	
0.737

	
0.682

	
0.573

	
0.639

	
0.503




	
7

	
Lu et al. model (2014)

	
0.871

	
0.694

	
0.556

	
0.804

	
0.668

	
0.649

	
0.626

	
0.614




	
8

	
Wiener bounds (1912)—average of upper and lower bound

	
-

	
0.540

	
-

	
0.600

	
-

	
0.493

	
-

	
0.411




	
9

	
Mickley’s model (1951)

	
0.884

	
0.531

	
0.646

	
0.679

	
0.720

	
0.567

	
0.736

	
0.570




	
10

	
Haigh model (2012)

	
0.851

	
0.491

	
0.742

	
0.564

	
0.670

	
0.464

	
0.749

	
0.469
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