The Efficiency of a Biological Reactor in a Domestic Wastewater Treatment Plant Operating Based on ABS (Acrylonitrile Butadiene Styrene) Material and Recycled PUR (Polyurethane) Foam
Abstract
:1. Introduction
- (a)
- To assess various shredded materials, reducing reliance on resources and minimizing the environmental impact of production processes;
- (b)
- To develop effective waste-material-based solutions for the removal of pollutants, as measured by CODCr and BOD5;
- (c)
- To support the principles of resource efficiency and the circular economy by exploring innovative methods for recycling and reusing electronic waste materials in a closed-loop system, thereby reducing waste generation and conserving natural resources;
- (d)
- To establish reliable total suspended sediment efficiency indicators for the evaluation of waste-material-based sediment treatments, ensuring their effectiveness in water purification.
2. Materials and Methods
2.1. Construction of the Laboratory Model
- (a)
- Supporting structure;
- (b)
- Plastic reactors;
- (c)
- System for dosing pre-treated wastewater into the reactors;
- (d)
- System for discharging treated wastewater;
- (e)
- Electrical power supply system.
2.2. Determination of the Basic Parameters for the Treatment Efficiency
- a—treated wastewater concentration;
- b—wastewater concentration;
- y—reduction efficiency.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qadir, M.; Drechsel, P.; Jiménez Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and regional potential of wastewater as a water, nutrient and energy source. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2010; Volume 1, pp. 40–51. [Google Scholar]
- Mateo-Sagasta, J.; Raschid-Sally, L.; Thebo, A. Global Wastewater and Sludge Production, Treatment and Use. In Wastewater; Drechsel, P., Qadir, M., Wichelns, D., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 15–38. [Google Scholar] [CrossRef]
- Adhikari, S.; Halden, R.U. Opportunities and limits of wastewater-based epidemiology for tracking global health and attainment of UN sustainable development goals. Environ. Int. 2022, 163, 107217. [Google Scholar] [CrossRef] [PubMed]
- Ighalo, J.O.; Omoarukhe, F.O.; Ojukwu, V.E.; Iwuozor, K.O.; Igwegbe, C.A. Cost of adsorbent preparation and usage in wastewater treatment: A review. Clean. Chem. Eng. 2022, 3, 100042. [Google Scholar] [CrossRef]
- Ghosh, S.; Malloum, A.; Igwegbe, C.A.; Ighalo, J.O.; Ahmadi, S.; Dehghani, M.H.; Othmani, A.; Gökkus, Ö.; Mubarak, N.M. New generation adsorbents for the removal of fluoride from water and wastewater: A review. J. Mol. Liq. 2022, 46, 118257. [Google Scholar] [CrossRef]
- Guven, H.; Ersahin, M.E.; Ozgun, H.; Ozturk, I.; Koyuncu, I. Energy and material refineries of future: Wastewater treatment plants. J. Environ. Manag. 2023, 329, 117130. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Sun, Y.; Shi, Y.; Wang, Z.; Okeke, S.; Yang, L.; Zhang, W.; Xiao, L. Structure evolution of air cathodes and their application in electrochemical sensor development and wastewater treatment. Sci. Total Environ. 2023, 869, 161689. [Google Scholar] [CrossRef] [PubMed]
- Rosemarin, A.S.; Macura, B.; Carolus, J.F.; Barquet, K.; Ek, F.; Järnberg, L.; Lorick, D.; Johannesdottir, S.; Pedersen, S.M.; Koskiaho, J.; et al. Circular nutrient solutions for agriculture and wastewater–a review of technologies and practices. Curr. Opin. Environ. Sustain. 2020, 45, 78–91. [Google Scholar] [CrossRef]
- Karić, N.; Maia, A.S.; Teodorović, A.; Atanasova, N.; Langergraber, G.; Crini, G.; Ribeiro, A.R.L.; Đolić, M. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in) organic pollutants in wastewater treatment. Chem. Eng. J. Adv. 2022, 9, 100239. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Hernández-Sancho, F.; Sala-Garrido, R. Economic feasibility study for wastewater treatment: A cost–benefit analysis. Sci. Total Environ. 2010, 408, 4396–4402. [Google Scholar] [CrossRef]
- Soffian, M.S.; Halim, F.Z.A.; Aziz, F.; Rahman, M.A.; Amin, M.A.M.; Chee, D.N.A. Carbon-based material derived from biomass waste for wastewater treatment. Environ. Adv. 2022, 9, 100259. [Google Scholar] [CrossRef]
- García-Pérez, A.; Harrison, M.; Chivers, C.; Grant, B. Recycled shredded-tire chips used as support material in a constructed wetland treating high-strength wastewater from a bakery: Case study. Recycling 2015, 1, 3–13. [Google Scholar] [CrossRef]
- Santucci, V.; Fiore, S. Recovery of waste polyurethane from E-waste. Part II. Investigation of the adsorption potential for wastewater treatment. Materials 2021, 14, 7587. [Google Scholar] [CrossRef] [PubMed]
- Dorji, U.; Dorji, P.; Shon, H.; Badeti, U.; Dorji, C.; Wangmo, C.; Tijing, L.; Kandasamy, J.; Vigneswaran, S.; Chanan, A.; et al. On-site domestic wastewater treatment system using shredded waste plastic bottles as biofilter media: Pilot-scale study on effluent standards in Bhutan. Chemosphere 2022, 286, 131729. [Google Scholar] [CrossRef]
- Weltens, R.; Vanermen, G.; Tirez, K.; Robbens, J.; Deprez, K.; Michiels, L. Screening tests for hazard classification of complex waste materials–Selection of methods. Waste Manag. 2012, 32, 2208–2217. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.W.; Grant, S.; Banks, A.P.; Bruno, R.; Carter, S.; Choi, P.M.; Covaci, A.; Crosbie, N.D.; Gartner, C.; Hall, W.; et al. A National Wastewater Monitoring Program for a better understanding of public health: A case study using the Australian Census. Environ. Int. 2019, 122, 400–411. [Google Scholar] [CrossRef]
- Dvořák, L.; Gómez, M.; Dolina, J.; Černín, A. Anaerobic membrane bioreactors—A mini review with emphasis on industrial wastewater treatment: Applications, limitations and perspectives. Desalination Water Treat. 2016, 57, 19062–19076. [Google Scholar] [CrossRef]
- Gedda, G.; Balakrishnan, K.; Devi, R.U.; Shah, K.J. Introduction to conventional wastewater treatment technologies: Limitations and recent advances. Mater. Res. Found 2021, 91, 1–36. [Google Scholar]
- Nasr, F.A.; Doma, H.S.; Abdel-Halim, H.S.; El-Shafai, S.A. Chemical industry wastewater treatment. Environmentalist 2007, 27, 275–286. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Adeleye, O.J.; Oladipo, A.S.; Aleshinloye, A.O. Bio-derived MgO nanopowders for BOD and COD reduction from tannery wastewater. J. Water Process Eng. 2017, 16, 142–148. [Google Scholar] [CrossRef]
- Shao, Q.; Lu, M.; Zhou, J.; Zhu, Z.; Song, Y. Preparation of non-sintered fly ash filter (NSFF) for ammonia nitrogen adsorption. Environ. Technol. 2019, 40, 1988–1999. [Google Scholar] [CrossRef]
- Lu, N.; Chen, H.; Chen, J.; Cao, Y.-F. Ceramic Aggregate Material Formulated with MSWI Fly Ash and Fuel Ash for Use as Filter Media. Minerals 2023, 13, 845. [Google Scholar] [CrossRef]
- Lai, B.; Zhou, Y.; Yang, P. Treatment of wastewater from acrylonitrile–butadiene–styrene (ABS) resin manufacturing by Fe0/GAC–ABFB. Chem. Eng. J. 2012, 200, 10–17. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, B.; Sandhwar, V.K.; Garg, K.K. Mechanistic insight into heterogeneous Fenton-like catalysis with M-Al2O3/SiO2 (M = Fe, Co and Ni) for acrylonitrile mineralization from real ABS resin wastewater: Optimization and toxicity assessment. J. Environ. Chem. Eng. 2021, 9, 105177. [Google Scholar] [CrossRef]
- Chmielowski, K.; Halecki, W.; Bedla, D.; Dacewicz, E. Use of waste poly(acrylonitrile-co-butadiene-co-styrene) for wastewater treatment in a biological filter reactor. Przemysł Chem. 2022, 101, 109–111. (In Polish) [Google Scholar]
- Benhadji, A.; Ahmed, M.T.; Maachi, R. Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba. Desalination 2011, 277, 128–134. [Google Scholar] [CrossRef]
- Młyński, D.; Młyńska, A.; Chmielowski, K.; Pawełek, J. Investigation of the Wastewater Treatment, Plant Processes Efficiency Using Statistical Tools. Sustainability 2020, 12, 10522. [Google Scholar] [CrossRef]
- Wei, G.; Wei, T.; Li, Z.; Wei, C.; Kong, Q.; Guan, X.; Qiu, G.; Hu, Y.; Wei, C.; Zhu, S.; et al. BOD/COD ratio as a probing index in the O/H/O process for coking wastewater treatment. Chem. Eng. J. 2023, 466, 143257. [Google Scholar] [CrossRef]
- Dacewicz, E.; Chmielowski, K. Application of multidimensional clustering for an assessment of pollutants removal from domestic wastewater using a filter with a plastic waste filling. J. Water Process Eng. 2019, 29, 100794. [Google Scholar] [CrossRef]
- Khelifi, E.; Gannoun, H.; Touhami, Y.; Bouallagui, H.; Hamdi, M. Aerobic decolourization of the indigo dye-containing textile wastewater using continuous combined bioreactors. J. Hazard. Mater. 2008, 152, 683–689. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Guo, Y.; Li, W.; Li, Y. Full-scale application and performance of a new multi-self-reflow decentralized Wastewater treatment device: Impact of hydraulic and pollutant loads. J. Environ. Sci. 2023, 131, 37–47. [Google Scholar] [CrossRef]
- Yu, W.-J.; Sun, J.; Zhang, W.-J.; Chen, Y.; Yang, J.-L.; Li, S.-P.; Zhu, G.-C.; Lu, Y.-Z. The Influence of Atmospheric Pressure and Organic Loading on the Sustainability of Simultaneous Nitrification and Denitrification. Sustainability 2023, 15, 15689. [Google Scholar] [CrossRef]
- Dereszewska, A.; Cytawa, S. Circular Economy in Wastewater Treatment Plants—Potential Opportunities for Biogenic Elements Recovery. Water 2023, 15, 3857. [Google Scholar] [CrossRef]
- Vilela, P.; Nam, K.; Yoo, C. Wastewater Treatment System Optimization for Sustainable Operation of the SHARON–Anammox Process under Varying Carbon/Nitrogen Loadings. Water 2023, 15, 4015. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Oulego, P.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J. Towards the Implementation of Circular Economy in the Wastewater Sector: Challenges and Opportunities. Water 2020, 12, 1431. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Islam, N.; Tasannum, N.; Mehjabin, A.; Momtahin, A.; Chowdhury, A.A.; Almomani, F.; Mofijur, M. Microplastic removal and management strategies for wastewater treatment plants. Chemosphere 2024, 347, 140648. [Google Scholar] [CrossRef] [PubMed]
- Hirbod, F.; Karimi, T.; Mohammadnazari, Z.; Rabbani, M.; Aghsami, A. Municipal solid waste management using multiple disposal location-arc routing and waste segregation approach: A real-life case study in England. J. Ind. Prod. Eng. 2024, 41, 81–100. [Google Scholar] [CrossRef]
- Liu, Z.; Nowack, B. Probabilistic material flow analysis and emissions modeling for five commodity plastics (PUR, ABS, PA, PC, and PMMA) as macroplastics and microplastics. Resour. Conserv. Recycl. 2022, 179, 106071. [Google Scholar] [CrossRef]
Evaluated Indicators of Wastewater Quality | Days Since Model Startup | ||||||
---|---|---|---|---|---|---|---|
pH | Dissolved Oxygen mg O2/dm3 | Temp. °C | TSS mg/dm3 | CODCr/BOD5 | CODCr mg O2/dm3 | BOD5 mg O2/dm3 | |
7.65 | 0.000 | 18.2 | 303.2 | 1.57 | 439 | 280 | 8 |
8.38 | 0.600 | 20.2 | 395.0 | 1.57 | 377 | 240 | 16 |
7.97 | 0.000 | 19.9 | 410.2 | 1.30 | 363 | 280 | 21 |
8.01 | 0.000 | 18.5 | 425.4 | 1.38 | 359 | 260 | 23 |
5.74 | 0.070 | 18 | 682.0 | 2.14 | 471 | 220 | 28 |
8.05 | 0.250 | 17 | 689.0 | 1.88 | 450 | 240 | 31 |
6.38 | 0.260 | 17.6 | 589.0 | 1.54 | 431 | 280 | 34 |
6.46 | 0.210 | 17.6 | 490.0 | 1.51 | 362 | 240 | 36 |
6.75 | 0.000 | 17.4 | 329.0 | 1.29 | 335 | 260 | 38 |
6.73 | 0.050 | 17.3 | 315.0 | 1.32 | 343 | 260 | 41 |
6.80 | 0.000 | 17.9 | 412.0 | 1.99 | 437 | 220 | 43 |
6.85 | 0.000 | 18.1 | 385.0 | 1.98 | 475 | 240 | 48 |
6.95 | 0.000 | 18.4 | 362.2 | 1.67 | 433 | 260 | 52 |
6.785 | 0.000 | 18.2 | 422.0 | 1.49 | 418 | 280 | 60 |
7.051 | 0.070 | 17.5 | 395.4 | 2.06 | 453 | 220 | 65 |
7.211 | 0.050 | 18.2 | 389.1 | 1.83 | 475 | 260 | 70 |
6.987 | 0.000 | 19.1 | 421.8 | 1.80 | 433 | 240 | 75 |
6.857 | 0.000 | 19.5 | 367.8 | 1.64 | 328 | 200 | 80 |
7.254 | 0.200 | 18.9 | 401.2 | 1.40 | 337 | 240 | 85 |
6.987 | 0.100 | 18.8 | 398.7 | 1.42 | 368 | 260 | 88 |
6.471 | 0.000 | 19.4 | 368.9 | 1.66 | 332 | 200 | 90 |
Descriptive Statistics | CODCr | BOD5 | TSS |
---|---|---|---|
Mean | 84.4% | 98.9% | 95.0% |
Median | 85.9% | 99.2% | 96.1% |
Minimal | 71.3% | 97.3% | 87.7% |
Maximal | 90.1% | 99.6% | 97.2% |
Interval | 18.7% | 2.3% | 9.5% |
Standard dev. | 5.4% | 0.8% | 2.6% |
Variation coefficient | 0.06% | 0.01% | 0.03% |
p | r | Error | Intercept | Error | Slope | Variable |
---|---|---|---|---|---|---|
<0.001 | 0.984 | 4.772 | 56.146 | 0.108 | 2.507 | COD |
<0.001 | 0.934 | 4.319 | 15.057 | 0.098 | 1.081 | TSS |
0.437 | 0.184 | 0.263 | 16.785 | 0.006 | 0.005 | Temp |
0.001 | −0.691 | 0.131 | 4.699 | 0.003 | −0.012 | DO |
<0.001 | 0.889 | 0.057 | 7.807 | 0.001 | 0.011 | pH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmielowski, K.; Halecki, W.; Masłoń, A.; Bąk, Ł.; Kalenik, M.; Spychała, M.; Bedla, D.; Pytlowany, T.; Paśmionka, I.B.; Sikora, J.; et al. The Efficiency of a Biological Reactor in a Domestic Wastewater Treatment Plant Operating Based on ABS (Acrylonitrile Butadiene Styrene) Material and Recycled PUR (Polyurethane) Foam. Sustainability 2024, 16, 1149. https://doi.org/10.3390/su16031149
Chmielowski K, Halecki W, Masłoń A, Bąk Ł, Kalenik M, Spychała M, Bedla D, Pytlowany T, Paśmionka IB, Sikora J, et al. The Efficiency of a Biological Reactor in a Domestic Wastewater Treatment Plant Operating Based on ABS (Acrylonitrile Butadiene Styrene) Material and Recycled PUR (Polyurethane) Foam. Sustainability. 2024; 16(3):1149. https://doi.org/10.3390/su16031149
Chicago/Turabian StyleChmielowski, Krzysztof, Wiktor Halecki, Adam Masłoń, Łukasz Bąk, Marek Kalenik, Marcin Spychała, Dawid Bedla, Tomasz Pytlowany, Iwona B. Paśmionka, Jakub Sikora, and et al. 2024. "The Efficiency of a Biological Reactor in a Domestic Wastewater Treatment Plant Operating Based on ABS (Acrylonitrile Butadiene Styrene) Material and Recycled PUR (Polyurethane) Foam" Sustainability 16, no. 3: 1149. https://doi.org/10.3390/su16031149
APA StyleChmielowski, K., Halecki, W., Masłoń, A., Bąk, Ł., Kalenik, M., Spychała, M., Bedla, D., Pytlowany, T., Paśmionka, I. B., Sikora, J., & Sionkowski, T. (2024). The Efficiency of a Biological Reactor in a Domestic Wastewater Treatment Plant Operating Based on ABS (Acrylonitrile Butadiene Styrene) Material and Recycled PUR (Polyurethane) Foam. Sustainability, 16(3), 1149. https://doi.org/10.3390/su16031149