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Abstract: Population growth has presented several challenges in terms of energy, food supply, and
environmental protection. The agricultural industry plays a crucial role in addressing these challenges
by implementing innovative technologies that optimize resource utilization, minimize environmental
impacts, and increase food production. Among these technologies, greenhouse cultivation systems
have garnered substantial attention due to their ability to create a controlled environment for crop
growth, resulting in higher yields, improved quality, and reduced water usage. However, it is
important to note that greenhouse cultivation technology is also one of the most energy-intensive
sectors within agriculture, contributing significantly to global energy consumption. Despite this, the
technology remains popular due to its efficiency in optimizing inputs, increasing production per unit
area, enabling year-round crop production, and managing unfavorable environmental conditions
such as pests, diseases, and extreme weather events. There are two primary greenhouse cultivation
systems: conventional and hydroponic methods. Each system has distinct similarities and differences
regarding energy consumption, crop production per unit area, and environmental impacts. In this
study, we compare conventional and hydroponic greenhouse cultivation, analyzing various inputs
such as temperature, light, and energy consumption. Our findings indicate that hydroponic systems,
equipped with advanced control equipment and growth mediums, create optimal conditions for
plant growth. Also, hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more
energy compared to those conventionally produced in some plant productions. Moreover, specific
energy consumption increased by 17% compared to conventional cultivation for some vegetables.
This information can be used to optimize energy usage, reduce costs, and promote sustainable crop
production, thereby contributing to global food security and environmental sustainability.

Keywords: life cycle assessment; energy consumption; greenhouse structure; modeling

1. Introduction

Today, the surging global population and the escalating demand for food have drawn
significant attention from scientists and researchers towards the agricultural industry and
energy consumption [1–3]. One of the key challenges in this field revolves around address-
ing the needs of a rapidly expanding global population and their growing demand for
food [1,4,5]. Therefore, the goal to enhance food production through the development
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of new technologies should be a primary focus for researchers [1,6,7]. Improving energy
consumption and associated costs in sustainable agriculture is crucial for preserving the
environment, conserving natural resources, and maximizing economic benefits. This re-
quires finding a balance between ensuring food security and minimizing environmental
impact [2,8]. The greenhouse sector has become a growing interest within the agricultural
industry, steadily progressing with each passing day [5,9]. One of the key benefits of this
type of cultivation is its ability to produce crops outside the traditional growing season.
This extended period of cultivation requires additional energy compared to traditional
agricultural practices on farmlands. Traditional agriculture requires a large area under
cultivation, natural minerals, and water, which reduces productivity. Also, weed removal
requires a lot of effort and energy consumption that can reduce productivity (Table 1).
Table 1 shows a brief comparison of two methods of farming in the open field and cultiva-
tion in the greenhouse.

Table 1. Comparison between traditional and hydroponic cultivation.

Open field cultivation Greenhouse Cultivation
Large cultivation area is needed Optimal use of water
The need for natural minerals Off-season cultivation
Hard weed removal Higher yield and nutrient content
Water wastage Control of environmental conditions

Greenhouse cultivation includes two types: conventional and hydroponic (cultivation
substrate in soil, and cultivation substrate in water-based nutrient solution, respectively).
Conventional greenhouses can grow the plant in a soil bed with a controllable environ-
ment [10]; in fact, the vital environmental factors for plant growth can be kept at an optimal
level to create a favorable climate inside the greenhouse [1,11,12]. Greenhouse cultivation
is becoming more and more popular and today there are about 405,000 ha of greenhouses
around the world [1,13]. Conventional greenhouse cultivation (cultivation substrate soil)
has some disadvantages, including the need for a large area under cultivation that requires
high concentrations of nutrients and pesticides [1,14,15]. In addition, chemical wastes and
pollutants released during cultivation can have dangerous effects such as soil degradation,
erosion, and pollution [1,16].

Hydroponic cultivation is a kind of cultivation where the plant is placed in a bed
using air, water, or solids containing moisture instead of soil [17]. This cultivation provides
better quality, has a higher yield, and nutrient content, and better consumption of fertilizer
and water compared to conventional greenhouse [1]. Also, hydroponic cultivation is
one of the most popular techniques. This method is clean and easy compared to the
conventional manner [17,18]. Traditional agriculture requires a large area under cultivation,
natural minerals, and water, which reduces productivity. Also, weed removal requires
a lot of effort and energy consumption that can reduce productivity. Hydroponics can
control the temperature, humidity, and irrigation level by a control system consisting of a
microcontroller kit connected to a wireless sensor network (WSN) [17,19]. Hydroponics is a
special and useful method for growing plants that can be used even in dry areas such as arid
deserts [17,20]. Based on some comparisons between hydroponic and open-field cultivation,
crop yield per unit area has been about 10 times higher than conventional cultivation on
open land [21,22]. In arid or semi-arid areas, it is common to use low-quality water (high
salt concentration) for agriculture because this is the only source available [23,24]. These
waters contain a large amount of salt and sodium ions, which cause physical and chemical
changes in soil structure and helps to destroy it [21,22]. As a result, it has a negative effect
on the number of plant leaves, leaf surface, relative water content, and biomass, and it
also reduces productivity [23,24]. Thus, hydroponic cultivation can become a significant
strategy because the matric potential in this type of cultivation will not exist under the free
energy of water and only includes the osmotic potential [23]. However, in conventional
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greenhouse cultivation, where the soil is the substrate for plant growth, both matric and
osmotic potentials cause less water to be available for the plant [21,25].

In general, water salinity in the hydroponic method is less harmful than in conven-
tional cultivation because of the constant amount of oxygenation (O2) [26]. Therefore,
agricultural production in greenhouse systems has both advantages and disadvantages.
Its advantages include producing more than one type of product in a year, producing re-
gardless of weather conditions, identifying the essential needs of plants and environmental
effects, increasing production per unit area, implementing a marketing plan, and identify-
ing target market demands; its disadvantages are the excessive use of local non-commercial
energy sources [27] such as the energy of seed, livestock manure, and commercial energy
sources such as machinery, irrigation water, diesel power, pesticides, fertilizers, and so on.
Furthermore, inputs used in greenhouse structures, such as steel, polyethylene, and poly-
carbonate sheets, as well as the shape of the greenhouse buildings, can increase greenhouse
gas (GHG) emissions and energy utilization compared to cultivation on agricultural land.

According to some studies [9,28], about 10% to 12% of the world’s GHGs are released
by the agricultural industry. It was found that agricultural production produces about 15%
of the world’s total CO2 emissions. As a result, evaluating the amount of GHG emissions
is another challenging topic in today’s world. Life cycle assessment (LCA) is a method
to analyze various goods and services in terms of environmental consequences [29]. This
technique, which examines the extraction of raw materials until the end of their life, is very
useful in the agricultural industry, especially in greenhouse cultivation [30]. The main aim
of this approach (LCA) is to present a decision-backing system for beneficiaries in a plant’s
supply chain that plays a critical role in two types of hydroponic planting and conventional
greenhouse cultivation [31]. Considering the ever-increasing growth of the population and
the global need for food, as well as the need to preserve the environment and reduce energy
consumption, investigating new cultivation methods and comparing them with each other
is an essential need that researchers and farmers should pay special attention to.

Based on the above literature and the lack of similar research about energy consump-
tion in two types of traditional greenhouse and hydroponic cultivation, there is a need
for a total review with details to show the advantages and disadvantages of these two
cultivation methods and provide examples to farmers. In this regard, comparing and
evaluating the energy pattern, benefits, and drawbacks of conventional and hydroponic
cultivation methods are among the main aims of this research.

2. Literature Review
2.1. Life Cycle Assessment (LCA)

LCA is a detailed approach to examining all the inputs, outputs, and total environ-
mental effects in the production life cycle of a product and is very useful for different
systems [29]. This method is very effective in solving problems such as the limitation
of natural resources and the disadvantages of excessive use of energy resources [31–33].
There are two main methods for LCA, namely attributional life cycle assessment (ALCA)
and consequential life cycle analysis (CLCA). The first approach (ALCA) emphasizes the
dissimilarities between physical engineering characteristics and intrinsic emissions among
products. In other words, ALCA is a retrospective procedure that offers a snapshot of aver-
age “status quo” circumstances. The second method (CLCA) goes beyond and analyzes the
impacts of economic outcomes [34,35]; in fact, CLCA is a promising approach that evaluates
the potential consequences of modifications within a product system, including any result-
ing market-mediated effects on the supply or demand of other product systems. As such,
CLCAs can effectively analyze the impact of large-scale changes in the field crop industry,
considering other relevant sectors and processes, such as biofuel production or the human
and animal consumption of food [36]. Life cycle assessment (LCA) is a popular method for
analyzing all aspects of a product’s life cycle, including raw material extraction, processing,
transportation, use, and end-of-life phases. The goal is to quantify cumulative resource
demands and emissions over the whole life cycle [37]. Based on ISO 14040 and ISO 14044
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standards, LCA includes four phases, including life cycle inventory, range and target, life
cycle efficacy evaluation, and commentary [38–40]. Defining the objective and scope as the
initial stage includes the functional unit, system boundary, influencing goals and categories.
The system border determines what is included in the evaluation. The system frontier for
ALCA is clearly defined while for CLCA there are insufficient principles. Practical units
consider the quantitative feature of a commodity, effective categories examine the effect
of diverse options, while the user usually determines goals [35,41]. Life cycle inventory
(LCI) assesses the total environmental burden made at each step of a commodity’s life
cycle [31]. Data can be collected through questionnaires, reliable databases such as articles,
and Ecoinvent 3. The life cycle impact assessment (LCIA) is obtained from environmental
impacts by multiplying LCI outcomes by efficacy factors. The ultimate step is exegesis,
which includes feedback to redefine the scope and target [35]. LCA is critical in the agri-
culture sector, especially in the greenhouse cultivation industry. To reduce environmental
issues, it is necessary for managers of agricultural and food industries to carefully examine
the behavior of agricultural systems, inputs, and outputs that affect nature. Therefore, LCA
is a reference and a necessary method to examine environmental impacts and the entire
supply chain which makes it possible to compare different production systems in terms
of resource use performance and environmental impacts [37]. LCA is also very useful for
agri-food systems to ensure food security in the world [42–44]. Research related to LCA
plays a fundamental role in making decisions and identifying efficient energy production
methods [31]. A limitation of LCA analysis is that its consequences are not comparable
in different studies due to geographical location, border conditions, and manufacturing
strategy. Geographical and manufacturing factors significantly impact the life cycle assess-
ment (LCA) of agri-food systems. They influence the analysis through: Transportation and
Distribution: Geographical location affects transportation distance and mode, impacting
emissions and energy use. Resource Availability: Available water and land resources
impact the environmental footprint of agri-food systems. Climate and Weather Conditions:
Climate affects crop yields and pest infestations, altering resource consumption and envi-
ronmental impacts. Energy Sources: Geographical location determines the energy mix and
associated greenhouse gas emissions during manufacturing processes. Infrastructure and
Technology: Availability of infrastructure and technological advancements can improve
efficiency and reduce resource consumption. Waste Management: Geographical location
and manufacturing processes influence waste management practices, affecting environ-
mental impact and sustainability [45,46]. The LCA method has many applications in the
agricultural industry. For example, Dias et al. [47] reported that the heat from fossil fuels
accounts for half to four-fifths of the total effects of ozone layer destruction. LCA was used
in the environmental impact assessment to evaluate the reduction potential for a pepper
greenhouse cultivation [35,48]. Fertilizers and consumables in greenhouse construction are
among the important factors in evaluating this method. Also, the environmental effects
of the greenhouse roof and multi-tunnel greenhouses have been studied [49]. In another
study, Bosona and Gebresenbet [50] used LCA to investigate the ambient effects of dried
tomatoes and fresh tomatoes. The results showed that dried tomatoes have less environ-
mental effects by reducing damage but consume more energy than fresh tomatoes. LCA is
efficient in both types of conventional greenhouse and hydroponic cultivation. Hesampour
et al. [9] used the LCA method in their research to investigate the energy–economy cycle
and environmental effects in a cucumber greenhouse cultivation. Based on the results
of the LCA, the direct emissions caused by the consumption of inputs include nitrogen
oxides (NOx) and carbon dioxide (CO2) in the air, as well as lead (Pb), mercury (Hg), and
copper (Cu) in the soil. In addition, indirect emissions include the production of chemical
pesticides, chemical fertilizers, and greenhouse constructions. Martin-Gorriz et al. used
the LCA approach to study the recycling of drainage effluents using Reverse Osmosis
(RO) and Photovoltaic (PV) energy in hydroponic tomato cultivation, and to analyze six
indicators of environmental effects related to water production and purification systems.
The inputs used in this method were fertilizers, agricultural chemicals, electricity, water,
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machinery, materials, and irrigation infrastructures. As expected, LCA showed explicit
results with leachate collection and treatment and the results of the sensitivity analysis
showed how the effects are significantly reduced by using renewable energy and reducing
the fertilizers. In this research, the LCA showed remarkable environmental benefits from
wastewater recycling, and the hydroponic system helped to reduce the eutrophication of
leachate effluents [2]. In another study, Ghasemi-Mobtaker et al. [33] used the LCA method
and studied energy indicators in hydroponic fodder production and found the most effi-
cient production method with a lower environmental impact. The results showed that the
GHGs generated by the hydroponic fodder cultivation fertilizer were released only into
the air. The NH3 pollutant in the air was calculated to be 0.7 kg ton−1, which was caused
by chemical fertilizers. In this cultivation method, 10 kg ton−1 CO2 pollutants entered the
air that were generated by human labor. Heavy metals, including lead with 31,264.02 mg
and mercury with 0.58 mg, had the highest and lowest emissions. The outcomes of LCA
after normalization and weighting determined that most environmental emissions belong
to the series of ecosystem detriments. Also, the results of investigating the types of energy
in hydroponic fodder production showed that non-renewable fossil fuels consume the
most energy [33]. Currently, many software programs have been designed and released
for performing LCAs; most of them are commercial ones including SimaPro, Gabi, Um-
berto, Quantis Suite, EarthSmart, Sustainable Minds, and Enviance System. Among these,
SimaPro has been widely used in agricultural studies including greenhouse cultivation [51].

2.2. Types of Cultivation in Greenhouses
2.2.1. Conventional Cultivation

Greenhouse cultivation is a method that controls the indoor cultivation environment
and optimizes it for crop growth and development [52,53]. The controlled environment
of the greenhouse provides the possibility of producing crops in diverse climates and
seasons [10,54] (Figure 1).
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Controlling the cultivation environment increases the yield of the product and reduces
the consumption of water and chemical pesticides [35]. In addition, this type of cultivation
faces very difficult challenges, including a reduction in the soil fertility and crop produc-
tivity due to continuous cultivation [56–59]. The environmental situation required for the
growth of plants includes regulating the temperature, moisture, and accessibility of light
and water [10]. As a result, greenhouses are more energy-intensive than other sectors of
agriculture [27,35]. Some agricultural products such as fruits, vegetables, and flowers are
cultivated in greenhouses. Energy supply in the greenhouse is generally the second major
expenditure of production after the labor cost, which accounts for 25% of the operational
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cost of large vertical fields in the United States [60]. Reducing energy demand to increase
crop yield in greenhouse cultivation is recognized as a sustainable industry production
goal [61]. Fuel and electricity are used to control the internal environment of the green-
house, with the aim of performance and stabilizing quality improvement, but increasing
the price of these resources has reduced the profits of farmers [52,62,63]. Excessive use of
non-renewable energy sources such as diesel fuel causes negative environmental effects,
including GHG emissions and energy consumption. The substitution of fossil fuels with
renewable energy sources (RESs) plays an essential role in incrementing the quality of
the living environment and reducing the emission of GHGs [64,65]. Therefore, increasing
high-quality production to optimize energy and enhance the farmers’ profits is a challenge
for researchers. Hesampour et al. [9] investigated the cucumber fruit cultivation stages in a
greenhouse from energy, economic, and environmental aspects of greenhouse cucumber
production. Table 2 presents the energy equivalent of all the inputs in that study.

The essential information in this table is obtained through the questionnaire, databases
Simapro version 7.2 (a sustainability software for analyzing sustainability performance
through life cycle assessment (LCA), used globally by industry and academia) and Ecoin-
vent (a top LCI database with 17,000+ unique datasets covering various products, services,
and processes), and previous studies. The data relating to the machinery can include the
practical lifetime of the machine, the number of activity hours over the efficient lifetime and
the growing season, as well as the weight of the machinery. The use of nitrogen fertilizer
has harmful consequences, including global warming and the potential for acidification in
the environment [66,67].

Table 2. Energy equivalent of all the inputs for greenhouse cucumber production.

Items Energy Equivalent (MJ unit−1) References

Human labor (h) 1.96 [68–70]
Diesel fuel (L) 56.31 [71]

Electricity (kwh) 11.93 [67,72]
Transportation (tone.km) 3.05 [73]
Chemical pesticides (kg) 101.2 [74]
Chemical fertilizer (kg) -

Nitrogen 78.1 [75]
Phosphate 17.4 [75]
Potassium 13.7 [76]

Micronutrients (kg) 120 [77]
Manure (kg) 0.3 [78]
Water (m3) 1.02 [75]

Natural gas (m3) 49.5 [79]
Machinery (kg) 62.7

Nylon (kg) 17.91 [80]
Steel (kg) 27.73 [81]

Plastic general (kg) 90
Cucumber (kg) 0.8 [82]

The usage of structural materials and phosphorus fertilizer in the potential of eutroph-
ication is effective in reducing energy consumption in the greenhouse [9,83,84]. Extensive
studies have been conducted in the field of energy consumption and the factors affecting it
in conventional greenhouse cultivation. Table 3 shows some of these studies.
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Table 3. Various studies conducted on energy consumption in conventional greenhouses.

Refs. Titles Purpose and Review Results

[35]
Energy-efficient operation and
modeling for greenhouses: A
literature review

Existing strategies in energy
efficiency control operations;
Advanced simulations of
greenhouse energy

The result showed that the cost and
precision of sensors restrict the
adoption of optimal controls by
growers.

[85]

Manufacturing energy and
greenhouse gas emissions
associated with plastics
consumption

Comparison of energy supply chain
requirements; Greenhouse gas
emissions caused by plastic
production technologies;
Development of bioplastic
production technologies

The results indicated that
commodity polymers, with a global
consumption of 1 MMT per year,
cause 3.2 quadrillion Btutus of
energy and 104 MMT CO2e of GHG
emissions annually in the US alone.

[86]
Demand side management of
energy consumption in a
photovoltaic integrated greenhouse

Analysis of activities in greenhouse
production and electrical
equipment performance; Particle
swarm optimization scheme;
Analysis of the energy consumption
program in the greenhouse

The results showed that the
optimization plan is useful for
directing production activities in
greenhouses and building
photovoltaic integrated greenhouse
systems.

[87]

Modeling and experimental
validation of heat transfer and
energy consumption in an
innovative greenhouse structure

Modeling and experimental
evaluation of heat and mass
transfer functions in a solar
greenhouse with a thermal screen

The results revealed that
implementing a thermal screen
could decrease both the final cost
and air pollution.

[88]

The potential contribution of food
wastage reductions driven by
information technology on
reductions of energy consumption
and greenhouse gas emissions in
Japan

Analysis of the effects of food waste;
Reducing energy consumption;
Reducing greenhouse gas emissions

The results showed that the
reduction of GHG emissions would
be between 5.6 to 7.8 million tons of
CO2-eq per year.

[89]
Methodologies of control strategies
for improving energy efficiency in
agricultural greenhouses

Systematic review of control
strategies to improve energy
efficiency in greenhouses (especially
low-energy greenhouses)

The results showed that 60% of the
selected articles on greenhouse
climate management consider
temperature and humidity as
controlled parameters.

[9]

Energy-economic-environmental
cycle evaluation comparing two
polyethylene and polycarbonate
plastic greenhouses in cucumber
production (from production to
packaging and distribution)

Investigation of energy flow,
economic benefit, and
environmental effects in cucumber
greenhouse cultivation;
Measurement with two methods of
LCA and Cumulative Exergy
Demand (CExD) considering
different greenhouse structures

The LCA results showed that the
main environmental impacts come
from direct emissions due to input
consumption (air: carbon dioxide
(CO2), and nitrogen oxides (NOx);
soil: mercury (Hg), copper (Cu),
and lead (Pb)) and indirect
emissions induced by the
production of chemical fertilizers,
greenhouse structures, and
chemical pesticides.

[90]
Impact of environmental factors on
the energy balance of greenhouse
for strawberry cultivation

Effects of solar greenhouses on
strawberry cultivation in temperate
regions; Energy required to heat the
greenhouse; Experimental
investigation of ambient
temperature, solar radiation, and
relative humidity

The result showed that passive
solar heating may not suffice in cold
regions with extended cloudy
weather, requiring additional gas or
electricity-based heating systems.
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Table 3. Cont.

Refs. Titles Purpose and Review Results

[91]

Thermo-environomic assessment of
an integrated greenhouse with an
adjustable solar photovoltaic blind
system

Energy plus modeling as a
greenhouse reference in rose
cultivation; Validation of the
developed greenhouse model with
experimental site measurements;
Investigating ambient temperature
in the greenhouse with a
photovoltaic system

The results showed that covering
19.2% of the roof can reduce natural
gas consumption, electricity
demand, and CO2 emission by
3.57%, 45.5%, and 30.56 kgm−2

annually, without affecting plant
canopy illumination levels.

[92]

Nanomaterials application in
greenhouse structures, crop
processing machinery, packaging
materials, and agro-biomass
conversion

Application of nanomaterials in
agricultural products; Investigating
nanotechnology in climate control
and photosynthesis of plants in the
greenhouse

The reviewed work indicated that
nanotechnology has the potential to
enhance agricultural production.

[52]
Energy-sustainable greenhouse
crop cultivation using photovoltaic
technologies

Examining the important aspects of
greenhouse cultivation and the
electricity required; Studying
state-of-the-art photovoltaic
systems in the greenhouse and their
shading effects on plants; A vision
for sustainable greenhouses with
photovoltaic technologies

The results showed that solar cells
can be used in greenhouses to
generate electricity, but the shading
from photovoltaic panels can
impact plants below.

2.2.2. Hydroponic Cultivation

Hydroponic or liquid culture is one of the specialized methods for growing plants,
which provides conditions for plant growth without soil (Figure 2) [56,93].
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Hydroponics is a type of culturing method in which a nutrient solution is used instead
of soil and can save the consumption of essential resources for crop growth [94]. This
method will create the highest efficiency in a large space by delivering water to the thirsty
roots of plants based on their needs, with the least amount of human energy and water
resources [95]. The diet in hydroponic production is very optimal and based on the needs
of the plant, which allows these products to have a better and healthier quality than their
counterparts in soil cultivation. Because of the precise regulation of watering and feeding
the plant, this method is superior to the traditional method [96–98]. Hydroponic cultivation
is expanding dramatically to increase crop productivity, especially in developed countries
such as China and the United States. Some agricultural products such as cucumber, lettuce,
and tomato have been studied in this cultivation [99–101]. Researchers have concluded that
hydroponic cultivation has various results on different crops and many types of research
have been performed on energy consumption in this type of cultivation (Table 4) [56,102].

Table 4. Research conducted on energy consumption in hydroponic greenhouse cultivation.

Refs. Titles Purpose and Review Results

[2]

Recycling drainage effluents
using reverse osmosis
powered by photovoltaic solar
energy in hydroponic tomato
production: Environmental
footprint analysis

Measuring the environmental benefits
and trade-offs of reverse osmosis
integration; Recycling of greenhouse
drainage effluents using photovoltaic
solar system; Comparison of the
environmental footprint of tomato
production in two types of conventional
and hydroponic cultivation; Comparison
of three independent sources of irrigation

The results showed that using
brackish groundwater as a
substitute for desalinated seawater
can reduce the global warming
footprint by 27%.

[17]

Hydroponic and Aquaponic
Farming: Comparative Study
Based on Internet of things
IoT technologies

Comparison of hydroponic and
aquaponic cultivation systems; Using the
automatic technology of the Internet of
Things (IoT)

The results showed that
implementing a depth-camera
module in the system offered an
advantage, and a mobile
application to maintain the
ecological balance of the
environment.

[103]

Validation of a building
energy model of a hydroponic
container farm and its
application in urban design

Validation of Energy Plus model in
container hydroponic culture;
Continuation of experiments for nine
months and data collection; Studying
energy consumption and its optimization

The results showed that
stakeholders can reliably predict
annual container farm energy use
by representing plant–air
interactions within EnergyPlus.

[1]

Autonomous greenhouse
microclimate through
hydroponic design and
refurbished thermal energy by
phase change material

Evaluation of the microclimate of
hydroponic greenhouse cultivation
without heating; Hydroponic design
evaluation; Comparison of
environmental conditions inside the
greenhouse during the day and night

The results showed that hydroponic
greenhouses offer better conditions
than conventional ones, with
temperatures above 18 ◦C and a
humidity range of 20–35% during
the day.

[104]
Hydroponic system and
desalinated seawater as an
alternative farm-productive

Comparison of energy consumption of
lettuce production in two types of
conventional and hydroponic greenhouse
cultivation; Investigating the amount and
emission of greenhouse gases;
Comparison of different percentages of
desalinated seawater for irrigation

The results showed that desalinated
seawater with hydroponic systems
can sustain agriculture but relies
heavily on energy.
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Table 4. Cont.

Refs. Titles Purpose and Review Results

[21]

Comparison of soil and
hydroponic cultivation
systems for spinach irrigated
with brackish water

Measurement of differences in the water
status of spinach plants; Using brackish
water to grow plants in covered soil,
non-covered soil, and hydroponic
cultivation system; Investigating the leaf
water and osmosis potential of the
product and also its regulation

The results showed that the spinach
plant adjusts to salinity with
adaptive strategies by increasing
osmotic adjustment and leaf
succulence, reducing leaf water
potential. Sodium concentration in
leaves and fresh weight are highest
in hydroponic cultivation,
especially with brackish water.

[56]

Evaluation of hydroponic
systems for the cultivation of
Lettuce (Lactuca sativa L., var.
Longifolia) and comparison
with protected soil-based
cultivation

Investigating the suitability of
hydroponic cultivation of lettuce in
replacing greenhouse soil-based
cultivation; Study of two hydroponic
techniques including deep-water culture
and nutrient film technique and compare
them with conventional greenhouse
cultivation; Using Tukey’s test to
investigate crop performance, water
consumption and economy

The results indicated that
hydroponic techniques
outperformed soil-based systems
with a higher yield, simplicity, ease
of operation, economic feasibility,
and nutritionally superior produce.

[33]

A new method for green
forage production: Energy use
efficiency and Environmental
sustainability

Evaluating energy and water
consumption in hydroponic fodder
production; Study of environmental
indicators

The results showed that despite the
many benefits of hydroponic fodder
on livestock nutrition, its
greenhouse cultivation imposes
many adverse environmental
effects.

In this method, the plant’s growing season is an effective parameter for the level of
economic productivity of this type of cultivation. So, food production techniques are ad-
vancing, and hydroponic cultivation has proven that it does not have many of the problems
associated with conventional greenhouse cultivation [1]. In a study about green fodder
production by hydroponic method, energy consumption performance and environmental
sustainability were investigated [33]. Physical input data used in greenhouses and the
energy of each were obtained using a questionnaire from 18 greenhouses with green fodder
production using the hydroponic method, as shown in Table 5.

Table 5. Input and output data of energy consumption in hydroponic cultivation method.

Items (unit) Energy Equivalent (MJ unit−1) References

Human labor (hr) 1.96 [70]
Stationary equipment (kg yr) 9 [80]

Natural gas (m3) 49.5 [80]
Nitrogen fertilizer (kg) 66.14 [105]

Pesticides (kg) 199 [106]
Electricity (kWh) 11.93 [107]

Seed (kg) 14.7 [108]
Hydroponic Fodder Yield (kg) 1.66 [109]

The whole electricity consumption for greenhouse facilities, lighting, etc., was regis-
tered by phase meter. Natural gas is used to heat the indoor environment of the greenhouse
and its amount can be calculated with a gas meter. To calculate fodder energy by the
hydroponic culture method, in the first step, the amount of dry matter during the growth
period was determined. Then, with the energy metabolism of fodder dry matter, the energy
equal to hydroponic fodder was calculated [33]. The energy indices of Energy Ratio (ER),
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Energy Productivity (EP), and Net Energy (NE) were calculated by calculating the amount
of input and output energy as follows [70,110]:

ER =
OE
IE

(1)

EP =
HFY

IE
(2)

NE = OE − IE (3)

where ER is the energy ratio; OE and IE are output and input energies; EP is energy
productivity; HFY is Hydroponic Fodder Yield and NE is Net Energy.

Various environmental factors are effective in greenhouse cultivation, both conven-
tional and hydroponic, which are explained below. In this regard, Figure 3 shows some
environmental factors that can be investigated in greenhouse cultivation.
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2.3. All the Inputs in the Greenhouse
2.3.1. Structure

The structures of greenhouses are different and they can be divided in terms of shape
and structure, application, and type of materials used in the building. Greenhouses with a
glass roof or plastic cover are among the most widely used materials [27,111,112]. Glass
greenhouses are very expensive, but they have high resistance compared to other types
of greenhouses. In addition, the high ability to pass light and heat in cold seasons or
cold regions increases production efficiency. Greenhouses with plastic covers are usually
cheaper and more economic, but they are not durable [63,113]. There are various struc-
tures for greenhouses along with their advantages and disadvantages which are listed in
Table 6 [114].

Hesampour et al. [9] studied the energy–economy–environmental cycle of two green-
houses with polyethylene and polycarbonate covers for cucumber production. A compari-
son of two greenhouse structures (the first type, polyethylene roof covering, and the second
type, polyethylene roof covering and polycarbonate walls) showed that in the greenhouse
with polycarbonate walls, energy consumption is higher.
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This causes higher costs to be allocated in input data in the second species of the
greenhouse. The highest input energy consumption was due to the covering of the walls
and roof of the greenhouse, which was about 72.23%. The contribution of polyethylene used
in the roof of the greenhouse was 39.90% and the contribution of polycarbonate applied
in the walls was 32.33%. The total energy amounts consumed in the first and second
greenhouses were 14,811.13 and 17,451.73 MJ (1000 m2)−1, respectively. In this research,
the share of variable costs was 47.14% for the first type of greenhouse and 28.44% for the
second type of greenhouse, while the fixed costs were 52.85% and 55.71%, respectively.
The total fixed costs of the first and second kinds of greenhouses were also 104.72 and
111.49 $ ton−1, respectively. The assessment of economic and energy indices showed that
the compound index of energy intensity for the first type of greenhouse is 80.26 and for
the second type is 77.07 MJ $−1. They concluded that the first kind of greenhouse utilizes
less energy and has lower expenses than the second kind. For the sustainable development
of greenhouse production, it is necessary to adhere to two principles. Firstly, greenhouse
equipment must be appropriate and compatible with the environment. Secondly, the
condition must be controllable, and it is vital to use environmentally friendly inputs in
greenhouse cultivation and reduce the consumption of chemical fertilizers. The researchers
estimated the life cycles of various agricultural crops, including tomatoes, peppers, and
watermelons [33]. The results indicate that the utmost of the pollutants depend on the
greenhouse structures. Also, greenhouses that do not need a heating system have less
environmental impacts [115]. Liebman et al. [103] conducted research on the validation of
the building energy model in a hydroponic container system. Using the Energy Plus model,
they were able to validate it in the hydroponic container farm in Massachusetts, USA, within
nine months by collecting data. This validation was performed in a portable container
for vertical hydroponic cultivation with artificial light. One of the significant advantages
of this kind of cultivation container is its portability and its use in unused environments
regardless of harsh weather conditions. The results of the calibrated energy model reached
an average normalized bias error of 3%. Also, the root-mean-square error (RMSE) was 11%.
The results showed that according to the plant–air exchange with the Energy Plus model
and the performance modeling of the cooling coefficient and considering the outside air
temperature, the annual energy consumption in these systems can be predicted.

Table 6. Characteristics of different types of greenhouse structures along with their advantages and
disadvantages.

References Structural Shapes Picture Properties Advantages Disadvantages
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greenhouse
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Table 6. Cont.

References Structural Shapes Picture Properties Advantages Disadvantages
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2.3.2. Temperature and Fuel

The transparency of the greenhouse roof and the covering materials inside its walls
make the sunlight penetrate completely into the greenhouse and block the heat leakage to
the outside [120]. For this reason, the temperature inside the greenhouse will be higher than
the temperature outside (Figure 4) [63,112]. During the day, thermal energy is stored in the
walls and soil, then over the night, it is released in the greenhouse [121–123]. Temperature
is a key and effective factor in the growth of plants, and it is required to create a uniform
environment inside the greenhouse [90,124,125]. In the winter, the sudden decrease in
temperature and sunlight time can cause damage to the products, which expands the use
of new technologies in heating systems [90].

New technologies independent of fossil energy for heating greenhouses are progress-
ing. For example, storing thermal energy in the summer season and then releasing it in the
winter is one of these methods [123]. The heating systems inside the greenhouses increase
the initial production investment [126], so with their setup and installation, depending on
the size and location of the greenhouse, the initial costs rise and constitute about 30 to 60%
of the total capital costs [127].
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In addition, almost 70–80% of the total energy utilization in the greenhouse is due
to the heating system [90,101]. In this regard, reducing thermal losses can decrease the
operating cost of thermal systems. During cold seasons, heating systems consuming fossil
fuels or grid electricity supplies the required temperature inside the greenhouse [126] and
allows the setting up of greenhouses in cold-climate locations and the production of quality
crops [52,122,128]. It is clear that in cold areas with low radiation potential, the amount
of energy used to regulate the temperature in the greenhouse will increase. Therefore,
areas with moderate climates can be better options for building greenhouses. This en-
ergy is provided by electric heat pumps or steam boilers and by burning fuel [129–131].
Additionally, the amount of energy consumption increases with rising latitude due to
the plant’s need for heating and light [132–134]. By investing more and providing new
equipment for heating, the amount of energy consumption can be reduced, requiring a
dynamic and low-risk economy. On the other hand, during summer, along with high
radiation, the temperature inside the greenhouse significantly increases, causing a wide
range of morphoanatomical, physiological, and biochemical changes in the plant. These
changes decrease the growth of plants and greatly reduce the economic yield [52,135].
Among the cooling methods, reducing the penetration of sunlight into the greenhouse by
whitening the roof, plastic nets, and thermal plates is less expensive, and easier compared
to other methods [136–138]. The passive cooling, that includes natural ventilation, shading
and reflection, and forced ventilation, fans, and foggers are other methods of cooling in
greenhouses (Figure 5) [132,139,140]. The fuel consumption in greenhouses is spent on the
heating system to provide an appropriate temperature inside the greenhouse. However,
according to the preservation of the environment and reduction of fossil fuel consumption,
it is recommended to use renewable fuels for heating inside the greenhouses [120]. Usually,
the ideal temperature for plant growth is 25 ◦C, which decreases in the cold seasons of the
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year; the heating system starts working automatically, then turns off after optimizing the
temperature [9,141]. The amount of fuel consumption is calculated as follows [9,141]:

Fc = Fhr × T (4)

where Fc is the fuel consumption of agricultural activities (Lton−1); Fhr is the required fuel
(L h1) and T is the working time of machinery (h ton−1).
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Based on the study by Gorriz et al. [2] on the environmental effects of the use of
drainage effluent recycling that occurs by RO and PV energy in the hydroponic cultivation
system, it was found that leachate treatment technology in the hydroponic cultivation
system compared to the sanded soil cultivation system shows a significant reduction in
eutrophication (72%), but a significant increase in fossil fuel consumption by 43% due to
the use of additional infrastructure and equipment. In addition, 37% in global temperature
and 32% acidification were obtained. Among the inputs used in the cultivation systems,
including the structure of the greenhouse, the production of fertilizers, and the use of
electricity for fertilization, it has the highest environmental burden. In this study, three
irrigation water types, including desalinated seawater with low electrical conductivity
(EC), two mixtures of underground water, and desalinated water with medium and high
EC, were used. Comparing irrigation with three types of water, results showed that
global warming is significantly reduced (27%) by partially replacing desalinated seawater
with saline groundwater. Moreover, the sensitivity analysis demonstrated a considerable
reduction in environmental impacts. In the study by Baddadi et al. [1], significant results
were achieved in the design and construction of a microclimate in a greenhouse with a
hydroponic system and regenerated thermal energy. The performance of this hydroponic
greenhouse was evaluated without conventional heating methods and results indicated that
the hydroponic greenhouse provides better environmental conditions than conventional
greenhouses. During the day, temperatures inside the greenhouse reached above 18 ◦C, and
the temperature difference between outside and inside the greenhouse was 6 ◦C. Also, the
relative humidity was in the range of 20–35% during the day and 70–85% during the night.
According to the new heating system in it, other parameters were also measured. The night
temperature after heating reached over 15 ◦C and the daytime temperature reached mostly
over 32 ◦C in comparison with the conventional heating method; a better performance was
achieved in raising the internal temperature of the greenhouse, especially under harsh and
nighttime weather conditions. In general, this research revealed that in the comparison
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between conventional and hydroponic greenhouse cultivation methods, the second method
guarantees better quality, more nutrient content, higher yield, and efficient use of water and
fertilizer. Khammayom et al. [90] conducted a study on the effect of environmental factors
on energy balance in strawberry planting in the greenhouse, and in this research, different
factors including relative humidity, sunlight, and ambient temperature were experimentally
investigated. The results of this study showed that the highest difference in temperature
between the inside and outside air of the greenhouse during the evaluation period is 16.4 ◦C
and the maximum decline of sunlight via a lucid vinyl sheet is about 30% compared to the
surroundings solar radiation. The monthly heat demand of the greenhouse was calculated
in the range of 60.0 and 327.6 MJ/(m2.month), and during the coldest month of the year,
January, the highest amount of energy was consumed to heat the greenhouse.

2.3.3. Light

One of the important sources of energy for plant growth is sunlight. Plants convert
sunlight into biochemical energy through photosynthesis [65,143] (Figure 6), which is
biologically transmitted in the food chain. Chlorophyll molecules in photosystems absorb
the photon energy of sunlight. The photosystem converts the photonic energy into chemical
types for storage in the plant [144]. Solar radiation usually extends to longer wavelengths,
which provides the energy needed for plant growth [65], but excessive heat will increase
the internal temperature of the greenhouse, which hurts the conditions for optimizing plant
growth; furthermore, plants’ photosynthesis usually occurs in wavelengths between 400
and 700 nanometers [52,145–147].
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Covering materials on the roof of the greenhouse cause reflection or emission of a
part of the sunlight waves to the outside environment. Therefore, the radiation in the
greenhouse environment is usually less than outside. But for crops such as tomatoes
that need a large amount of sunlight, the roof of the greenhouse is designed in such a
way that it transmits the lightest to the plant [113]. In general, factors such as plants’
needs and geographic region are very effective in the shape of the greenhouse and the
amount of lighting in the greenhouse’s interior environment. Weather conditions and
seasonal changes can affect the amount of sunlight entering the greenhouse, and there-
fore, the use of artificial light is very crucial to control the amount of light required by
plants for photosynthesis. Controlling the internal parameters of the greenhouse is sig-
nificantly effective in energy consumption. Lighting control has become a critical issue
for high energy efficiency and plant productivity in greenhouse cultivation, particularly
with the enhanced use of supplementary lighting [148,149]. Plant growth in controlled
greenhouse conditions is influenced by three parameters of light, including light spectrum,
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light intensity, and duration of light exposure [150,151]. Experiments were conducted on
these three characteristics affecting plant growth, as in the study of Leontavich and Bo-
bro [146,152]. In this study, the intensity of different 49 µmol m−2s−1 and 98 µmol m−2s−1

lights in 12 h of illumination was investigated in the hydroponic production of barley
fodder. The results showed that the maximum efficiency is achieved in the light intensity of
49 µmol m−2 s−1 in the amount of 14 kg m−2. Lower light intensity can reduce the level of
chlorophyll and prevent the growth of leaves. On the other hand, too much light intensity
causes heat stress in the plant and overall yield loss [153,154]. In another study, El-Deeba
et al. [146,155] investigated the effect of different time durations of light including 8, 12, 16
and 24 h day−1 in constant light intensity of 38 µmol m−2 s−1 on barley fodder production.
The consequences showed that in the period of 12–16 h day−1, the highest yield (15 kg)
was obtained, and in the period of 24 h day−1, the yield decreased by 1.04 kg. Therefore,
optimal light focusing on the quality, quantity, and frequency of plant exposure to light is
mandatory for efficient growth and development [156]. Various light sources are used as
supplementary light in the controlled greenhouse system. One of the light control methods
in the greenhouse is measuring the photosynthetic photon flux density (PPFD) from solar
light, which is called the dynamic control of light-complementary growth. In recent studies,
the parallel particle swarm optimization algorithm has been used to solve the problem
of light intensity optimization in greenhouses [35,157]. The purpose of this is to discover
the most suitable locale and number of LED lamps based on the plant’s need for light and
to reduce energy consumption. The use of LED systems consumes 82.6% and 54.2% less
energy compared to fluorescent and incandescent lamps, respectively [157]. In another
study, a complementary dynamic control of LED lamps was proposed based on the PPFD
setting point and PPFD measurement from received solar radiation [150]. Two continuous
low-light and off tactics were considered for energy expending, and optimized crop growth
with the first strategy led to 20% energy saving. A demand response strategy and real-time
pricing used for lighting control of greenhouses in Denmark resulted in 18–25% thrifts in
electricity expenses [35,158].

2.3.4. Carbon Dioxide

Carbon dioxide (CO2) concentration plays an important and critical role in plant
photosynthesis. Usually, this concentration fluctuates in the greenhouse environment
during the day and night based on photosynthesis and plant respiration. In fact, during the
day, the concentration of CO2 in the greenhouse environment is at a high level due to plant
respiration and the release of CO2 at night [52,159]. The low concentration of CO2 limits the
amount of photosynthesis of the plant, even if there is enough light at the disposal of the
plant. In addition, air conditioning in the greenhouse environment plays a vital role in the
concentration of CO2, temperature, and humidity [160]. The expansion of closed and semi-
closed greenhouses (Figure 7) is increasing due to the increment in the concentration of CO2,
the reduction in the use of pesticides, and the energy and water savings [133,161,162]. Air
conditioning is one of the main components of closed greenhouses (a kind of greenhouse
with no ventilation, which means that excess sensible and latent heat must be removed) to
regulate the temperature of the indoor environment [132,163]. CO2 concentration is one of
the important factors for plant growth and photosynthesis [164]. Thus, CO2 enrichment can
be used in the indoor environment of the greenhouse to increase product yield. According
to the study by Lin et al. [164], the CO2 concentration is calculated as:

dCair
dt

=
1
h
(
Cinj − Cass − Cvent

)
(5)
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where Cair is CO2 concentration inside the greenhouse; Cinj is CO2 injection; Cass is CO2
assimilation; and Cass is the changes in CO2 concentration due to ventilation. Cass and
Cvent can be calculated from the following relations:

Cass = 2.2 × 10−3 1
1 + 0.42

Cair

(
1 − e−0.003(Qsun+PE)

)
(6)

Cvent = gv(Cair − Cout) (7)

where Qsum is incoming radiation from the sun; gv is the ventilation rate; PE is the power
of lighting; and Cout is the CO2 concentration outside the greenhouse.
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The concentration of CO2 accessible to the plant should be based on the plant’s
requirements, because amounts of CO2 concentration that are too high or too low reduce
the plant’s yield and make photosynthesis difficult [165]. The method of CO2 enrichment
is found to increase the productivity of plants gown in greenhouses [166]. By increasing
the amount of CO2 from 340 to 1000 ppm (parts per million), most plants perform pure
photosynthesis. The concentration of CO2 in the outside air is usually 400 ppm, which is
higher than the level of CO2 inside the greenhouse; then, CO2 enrichment is essential [167].
In the study of Hans Peter Kläring [35,165], it was shown that providing CO2 for plant
photosynthesis in the greenhouse increased the yield by 35% compared to greenhouses
where this was not conducted. Also, the optimal time to inject CO2 is when the intensity
of sunlight and the temperature inside the greenhouse are low, such as early morning.
Another issue that is principal about CO2 is the emission rate of this gas by the inputs and
outputs of greenhouse cultivation. In the study of Hesampour [9], the emission coefficient
of CO2 gases from human power in conventional greenhouse cultivation was found to be
0.7 to the air.

These distribution coefficients in inputs such as diesel fuel, natural gas, human labor,
and electricity are as follows (Table 7).
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Table 7. The values of the distribution coefficients of the input data.

Inputs Diesel Fuel (kg MJ−1) Natural Gas (kg (m3)−1) Human Labor (kg. man-h−1) Electricity (kg. kwh−1)

CO2 emissions to air 74.5 0.0133 0.07 0.58

In this research, two methods were proposed to adjust the temperature inside the
greenhouse. The first method uses diesel fuel and the second one uses natural gas. The
amount of CO2 emission in these two methods, causing an increase in global heat, is as
follows (Table 8).

Table 8. The amount of CO2e missions and the effect of global warming.

Environmental
Impact Unit

Method 1 Method 2

Characterization Normalization Characterization Normalization

Global warming Kg CO2 eq 888.55 3.44 × 10−9 1983.43 7.7 × 10−9

Based on the study by Nabavi-Pelesaraei [168] on rice cultivation, the universal warm-
ing indicator was calculated as 8413.24 kg CO2, in which the two factors of farm activities
and natural gas for drying played a significant role. This index, which is imputed to the vast
use of natural gas, is two to four times higher than other research studies. In another study
conducted by Khanali [169] for the production of edible oil, chemical and animal fertilizers
had the greatest effect on the global warming indicator, which was 2991.822 kg CO2. These
indicators show that greenhouse cultivation has less effect on global warming than rice
field cultivation and edible oil production. The global warming index is one of the most
important metrics (the measure of greenhouse gases produced in the atmosphere that
causes environmental problems) in the CML-IA baseline V3.01/the Netherlands, which
calculated the amount of this emission (CO2) in the first method to be 888.55 and in the
second method, 1983.43 kg CO2 ton−1. The amount of CO2 produced from natural gas
is estimated at 1.8862 kgm−3, according to the United States Environmental Protection
Agency [91]. Iran’s Ministry of Energy also calculated the amount of CO2 emissions as
660.65 grkWh−1 of electricity production [170]. In another study by Alinjad [91] conducted
on the environmental thermal evaluation of a one-fabric greenhouse system with adjustable
PV technology, the results showed that by covering 19.2% of the roof and without significant
change in the canopy over the plants, the annual consumption of natural gas, electricity
used and the amount of CO2 emission decreased by 3.57%, 45.5%, and 3.56 kg/m3, respec-
tively. Based on the study of M. A. Martinez-Mate [104] on hydroponic system irrigation
with desalinated seawater in low-water areas, it was found that the emission of GHGs
in the hydroponic system (0.11 kgCO2eqkg−1) is lower than the soil cultivation system
(0.23 kgCO2eqkg−1). In this study, the calculation of regional GHG emissions and specific
GHGs based on each product weight unit is as follows:

Arial GHG emissions (kgCO 2eq ha−1) =
Total GHG emissions (kgCO 2eq

)
Farmland (ha)

(8)

Specific GHG emissions (kgCO 2eq ha−1) =
Total GHG emissions (kgCO 2eq

)
Yield (kg ha−1

) (9)

Table 9 shows the CO2 emission coefficients in hydroponic greenhouse cultivation
inputs [104].
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Table 9. Carbon dioxide emission coefficients in hydroponic system cultivation inputs.

Inputs CO2 Gas Emissions Unit Sources

Diesel 0.07 kg CO2eq MJ−1 [171]
Electricity 0.210 kg CO2eq kWh−1

Machinery and
irrigation systems -

PVC sheet 5.7 kg CO2eq m2 [172]
Steel 1.76 kg CO2eq m2 [173]
PE 2.2 kg CO2eq m2 [172]

PVC 3.0 kg CO2eq m2 [172]
Copper 6 kg CO2eq m2 [172]

Fertilizers [174]
N 1.3 kg CO2eq kg−1 N -

P2O2 0.2 kg CO2eq kg−1P2O5 -
K2O 0.15 kg CO2eq kg−1K2O -

Pesticides [174]
Fungicides 3.9 kg CO2eq kg−1 -
Insecticides 5.1 kg CO2eq kg−1 -
Herbicides 6.3 kg CO2eq kg−1 -

2.3.5. Water and Humidity

In recent years, with the changes in climatic conditions as well as the indiscriminate
use of water resources, the irrigation of crops has faced many problems. Climate change
in the form of temperature increase, frequent periods of drought, unpredictable weather
patterns, and poor management of water resources has created a serious threat [56,175–177].
Therefore, innovations in irrigation technology especially in agriculture are rapidly expand-
ing. One of these methods is the use of closed greenhouses. The roof of the greenhouse is a
protection that prevents raindrops from reaching the leaves of plants, flowers, and fruits
and is a factor in disease prevention. In addition, the structure of the greenhouse prevents
runoff of soils and crops during heavy rains. So, irrigation inside the greenhouse is crucial.
The hydroponic cultivation method is highly regarded and can optimize water consump-
tion (Figure 8) [178]. In this method, irrigation and water circulation in the greenhouse are
conducted with an electric pump. Also, the nutrients in the water are provided to the roots
of the plants. This process helps the optimal growth of plants by controlling water and
nutrients [99,179,180].
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Humidity inside the greenhouse can affect the respiration and infectious diseases
of plants. If the surrounding air is dry, the stomata in the plant are closed and reduce
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the rate of respiration; as a result, the exchange of CO2 between the leaves and the air
is limited and the photosynthesis rate of the plant decreases. Therefore, controlling the
humidity inside the greenhouse is necessary [52,181]. Lucas Leal in [21] compared the
conventional greenhouses with hydroponic cultivation systems with spinach irrigation
with saline water; it was found that the use of saline water in agriculture requires the
use of compatible cultivation systems. In this study, cultivation in covered soil, without
cover, and with a hydroponic system using brackish water (EC is equal to 0.8, 1.5, 3.0, 4.5,
6.0, and 7.5 dsm−1) was used. A total of 38 days after planting the product, leaf water
potential, osmotic potential of the product and systems were determined, as well as other
factors such as osmotic regulation, water consumption, water consumption efficiency, leaf
freshness, and leaf sodium content and yield. Water salinity in the hydroponic system
increased the fresh weight of plant leaves. Plastic cover reduced the effects of water salinity
by 16% compared to uncovered soil. The hydroponic cultivation system was least affected
by water salinity, and the highest water consumption was related to uncovered soil, which
reached over 58%. The results indicated that the hydroponic cultivation system is the
most suitable system for cultivation, especially for irrigation with saline water. In another
research study by Maliqa Majid [56], the hydroponic system for lettuce cultivation was
evaluated and it was compared with conventional soil-based cultivation. In this study,
two hydroponic techniques, i.e., cultivation in deep water and the nutrient film technique
(NFT), were evaluated and compared with the soil-based cultivation method under con-
trolled conditions. Product yield, water consumption, and economy criteria were selected
to evaluate the efficiency of planting methods, which were significant at the 0.05 level in
Tukey’s test. The deep-water culture system was chosen as the most favorable method
in terms of plant growth because it reduced the duration of growth to 15 days. In the
deep-water culture (DWC) system, the crop yield increased due to high photosynthesis.
Also, the two hydroponic techniques enhanced the yield of the crop in a short period in
terms of nutrition compared to the soil cultivation method (p < 0.05). The NFT had the
most water savings of 64% compared to another two methods. According to the indicators
of economic analysis, the two hydroponic techniques performed better than soil-based
systems, and the profit–cost ratio was greater than 2. Among the three tested techniques,
the DWC technique had the best yield in controlled crop planting conditions due to its
simplicity, easy operation, higher yield, economic feasibility, and better nutritious crops.
Similar research by Guilherme L. Barbosa (Barbosa et al. 2015) compared conventional
soil-based cultivation with hydroponic NFT in lettuce production (kg m−2) and water
usage. Conventional production yielded 3.9 kg m−2y−1 of produce, with a water us-
age of 250 Lkg−1y−1, while NFT production was 41 kg m−2y−1 with a water usage of
20 L kg−1y−1. In another study, Mate [104] investigated energy consumption and GHG
reduction in the hydroponic cultivation system using desalinated seawater for lettuce crops
in southern Spain. In this study, two conventional greenhouse and hydroponic methods
were compared and three different percentages (0%, 50%, and 100%) of desalinated water
were considered. The use of a hydroponic system increased the yield, water consumption
efficiency, and emission of specific GHGs according to soil cultivation. However, spe-
cific energy consumption raised by 17% compared to soil cultivation (3.61 MJ kg−1 versus
4.23 MJ kg−1) production. Also, the emission of GHGs in the hydroponic system
(0.11 kg CO2eq kg−1) was significantly reduced compared to the conventional cultiva-
tion system (0.23 kg CO2eq kg−1). The advancement of replacing conventional water
sources with desalinated seawater linearly increased the amount of energy consumption
and GHG emissions in both cultivations. It was concluded that using renewable energy
(biofuels, solar energies, etc.) can reduce GHG emissions by 9% in hydroponic systems
and 2% in soil cultivation systems, although the hydroponic system was less sensitive to
this replacement. Finally, the results showed that considering the limited water resources,
desalinated seawater along with the hydroponic cultivation system can be a valuable
method for sustainable agriculture with high production, although it is highly dependent
on energy.
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2.3.6. Electricity

The electricity in the greenhouse is used to extract water from the well to irrigate crops.
The irrigation system in greenhouse cultivation is a drip that spreads water throughout
the greenhouse system by using electric pumps. Additionally, electricity is also used to
drive air conditioning systems to regulate the temperature and humidity of the greenhouse
environment [74]. By controlling the environmental conditions of the greenhouse with
the use of electricity, it is possible to boost the yield and quality of the crops (Figure 9).
Hence, reducing electricity consumption to achieve optimal environmental conditions is an
important issue in greenhouse cultivation [91,182–184].
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The quantity of air per minute needed is multiplied by the whole area structure of the
greenhouse to determine the number of required fans inside the greenhouse environment,
and its result is compared with the amount of airflow of the fans. Equation (10) can be used
to calculate the amount of electricity consumed by water extraction device from the well in
the greenhouse [9,185]:

Ee =
g × ρ × H × ϕ

ε1ε2
(10)

where Ee is the useful life of equipment (hr); g is the gravitational acceleration (m(s2)−1); ρ
is the density of water (kg m−3); H is the dynamic well head (m); ϕ is the flow rate of water
(m3ton−1); ε1 is pumping yield (ranging from 0.7 to 0.9); and ε2 is efficiencies (0.25–0.30 for
a diesel engine and 0.18–0.22 for an electromagnet pump).

In the study conducted by Hesampour et al. [9] on the cucumber greenhouse cultiva-
tion, electricity was the second most energy-consuming input data with the consumption
of 558.32 MJ ton−1, which constituted 8.43% of the whole input data. This electricity was
used to exploit and dispense water from the well in the irrigation strip and to ventilate
the environment inside the greenhouse. One of the proofs of the increase in fuel and
electricity consumption in greenhouses is the failure to replace the greenhouse cover during
their effective life. By using advanced irrigation systems, the installation of awnings, the
design and proper location of windows, and the amount of electricity consumption can
be saved. In another study conducted by Ghasemi-Mobtaker et al. [33] on the hydroponic
cultivation of fodder, the amount of consumed electricity was obtained as 33.5% of the total
input energy which was used to supply energy to the fixed equipment of the greenhouse.
Electricity was used to illuminate artificial lights in greenhouses for the photosynthesis
of plants. In hydroponic culture, lighting systems are usually inefficient and have high
electricity consumption, as a result of using light-emitting diodes in hydroponic culture.
They can significantly reduce electricity consumption. Also, using a transparent cover for
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the greenhouse such as glass can provide the light needed for plants’ photosynthesis and is
very useful in reducing electricity consumption [186].

2.3.7. Human Labor

Human labor energy includes the amount of work completed by the manpower, from
planting to harvesting, as well as packaging crops. Unsustainable and traditional produc-
tion raises the activity of human resources, causing serious musculoskeletal tribulations
for them [9,187,188]. The equipment used in greenhouses is very effective in the amount
of manpower used for planting and harvesting. The use of more control equipment in
the indoor environment of greenhouses reduces the need for human resources. In the
study by Hesampour et al. [9], energy-economic indicators and environmental impacts
in conventional greenhouse cultivation for cucumber production were investigated. In
this study, human labor was calculated as 49.39%. Human labor in product packaging
was a major part of energy input. This energy input was used for packing, sorting, and
transporting the products to the market. Making these activities mechanized, especially
product sorting, can significantly reduce input energy and increase product precision
and quality. The most expensive input is related to the labor contribution of 15.94%
(7.87 $ ton−1) to variable expenditures for diesel fuel-based systems. In the study by
Ghasemi-Mobtaker et al. [33], the efficiency of energy consumption and environmental
sustainability in the hydroponic production of fodder was investigated. It was found
that human labor causes the release of 10 kg.ton−1 pollutants into the air. And in barley
production, CO2 emissions by human labor to air was about 11 kg ton−1 which, when
using a sprinkler irrigation system, this emission is reduced by about 50%. Labor cost is
generally the first overhead expenditure in the greenhouse production of and after that, the
second overhead expenditure is energy [35,60].

2.3.8. Machinery

Various machines and equipment are used in greenhouse cultivation that require
information such as the beneficial life of the device, the number of activities accomplished
by the device, and the device weight to calculate the energy consumption [74]. The energy
and share of each machine or equipment can be calculated from Equation (11) [9]:

ME = Em × W
Ee

× Qh (11)

where ME is machinery energy (MJ ton−1); Em is the coefficient of machine’s energy
(MJ kg−1); W is the weight of the machine (kg); Ee is the useful life of equipment (h); and
Qh is hours of machine working via an agricultural season.

2.3.9. Fertilizer and Pesticides

In closed greenhouses, the use of fertilizer and water can be saved with optimal
plant growth [139,189]. There are different types of fertilizers, among which granular
fertilizers are less used because water-soluble fertilizers are more desirable in greenhouse
cultivation. Based on the research [9,48], nitrogen fertilizers played a significant role
in global warming and the acidification of potential indices. Additionally, phosphorus
fertilizers in the eutrophication potential, as well as the materials used in the structure
of the greenhouse, are effective in reducing the energy consumption. Three different
elements in the composition of fertilizers including Potassium oxide (K2O), Nitrogen (N),
and Phosphorus pentoxide (P2O5) are essential in plant growth stages. Equation (12) is
used to calculate the energy of fertilizer based on these three elements, and it is equal to the
energy of the micronutrient [9].

E f = W f × Ek (12)

where Ef is the fertilizer energy (MJ ton−1); Wf is weight of fertilizer (kg ton−1) and Ek is
existing energy in fertilizer (MJ kg−1).
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One of the features of the greenhouse cultivation system is its closed structure and
covering materials that prevent insects from invading crops. Thus, it reduces the consump-
tion of pesticides and saves energy [52,112]. To calculate the energy consumption through
chemical poisons, it is essential to define the amount of the effective substance in kg/lit
of poison [141]. Ibtissame Ezzahoui [17] evaluated hydroponic culture and compared
this cultivation with aquaponic culture. Aquaponic culture, which is a combination of
hydroponic cultivation and aquaculture, reduces the infectious diseases of insects and
pests, and by removing most of the pesticides, they reduce the level of toxicity. This study
showed that aquaponic culture, which includes hydroponic cultivation, as a global method
in the future, has more advantages, including organic plant cultivation and optimal fish
breeding, and also provides the possibility of plant cultivation in any harsh environmental
conditions, which saves money and energy consumption.

2.3.10. Energy Indicators

Energy indicators show energy yield in the production procedure [68]. Energy ratio,
energy efficiency, net energy efficiency, and specific energy are energy indicators as [9]:

Energy Ratio =
output energy

(
MJha−1

)
input energy

(
MJha−1

) (13)

Specific Energy =
input energy

(
MJha−1

)
Yield

(
kgha−1

) (14)

Energy Productivity =
Yield

(
kgha−1

)
input energy

(
MJha−1

) (15)

Net Energy Gain = output energy
(

MJha−1
)
− input energy

(
MJha−1

)
(16)

Production costs in each greenhouse are divided into two fixed and variable costs.
Fixed costs include structure and equipment, and variable costs contain manpower ex-
penditure, fuel, pesticides, fertilizers, and electricity [9]. One of the methods to diminish
energy utilization is to use PV panels, which provide electricity by the sun and play a vital
role in the production of clean and sustainable energy [7,91]. Various software is used for
their modeling and analysis of energy systems, including TRANSYS version 2018, PV*SOL
version 2023, and PVSyst version 7.4, while the two software of TRANSYS and Energy Plus
version 23.2.0 are more widely used. This system (PV panels) is applicable in both conven-
tional and hydroponic cultivation in the greenhouse. A PV system consists of solar panels
that include solar cells and can produce electrical power [190]. There are semiconductors
and organic and inorganic molecules in the solar cell matrix of PV systems [52]. Using
renewable energy sources can reduce greenhouse gas emissions [37,191]. In photovoltaic
systems, some subjects, such as creating a balance between the consumption of solar energy
for the photosynthesis of plants and solar panels [52], the shading rate of this system on
greenhouse plants, applications, and the possibility of using this system, are the main chal-
lenges for researchers [52]. In the last decades, glass and plastic have been the most usable
coverage in a conventional greenhouse. Comparing these two coverings shows that glass is
more resistant to environmental parameters, but the cost of plastic covering is cheaper and
needs to be replaced every few years [192,193]. Also, due to flexibility, curved shapes such
as arcs can be created in plastic covers [194–196]. Greenhouses with glass covers are usually
made of flat sheets. So, large glass panels with minimal shading are used in greenhouse
frame structures [113,193]. Khammayom et al. [90] studied the effect of environmental
factors on energy equivalence in a strawberry greenhouse culture. From the results, it
was found that the heating system allocates approximately 70% to 80% of the total energy
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consumption in the greenhouse. In this study, four factors including greenhouse cover,
indoor temperature, floor, and greenhouse plants were essential to consider in the energy
balance under the stable conditions of strawberry cultivation in the greenhouse [197]. The
origin of the incoming energy flow to the greenhouse is solar radiation and the heat losses
caused by covering materials, ventilation and the ground indicate the outgoing energy
flow. The energy balance in this research based on the first law of thermodynamics can be
calculated through Equation (17).

Qrad = Qc + Qgr + Qv (17)

where Q is the heat loss (W); rad is radiation; c is covering material; gr is ground; and v is
ventilation. It is assumed that heat loss from the greenhouse is in winter when the solar
radiation is low. Therefore, the total rate of heat loss through covering materials, ventilation
exhaust, and ground can be calculated as follows [90,198]:

Qtotal = Qc + Qgr + Qv (18)

Qc = Uc AC(θi,j − θamb,j) (19)

Qgr = Ugr Agr(θi,j − θamb,j) (20)

Qv = 0.33AchV(θi,j − θamb,j) (21)

where UC is the heat transfer coefficient of the coverage material (W m−2K−1); Ac is the
whole area of the envelopment material (m); θi,j is inside air temperature at time distance
(◦C); θamb is the air temperature of the surrounding at the time interval of j (◦C); Ugr is
the ground thermal transition coefficient (W m−2K−1); Agr is the plantation area (m2); Ach
is the air variation per hour (1 h−1); and V is the volume of the greenhouse (m3). The
amount of Uc belongs to several agents, including the size of the greenhouse, the type
and thickness of the coverage material, the characteristics of the heating system, and the
wind velocity. Hence, the capacity of Uc was empirically considered between the range of
6.0 and 8.0 (W m−2K−1) [199]. The results showed that the highest heat energy demand
of 327.6 MJ m−2 is obtained in January, which is the coldest month of the year with a
temperature of −4.4 ◦C and the lowest thermal energy demand of 60.0 MJ m−2 is obtained
in November. Estimating the required energy of the greenhouse can be a worthy source of
information for the energy demand of the heating and cooling systems, as well as useful for
energy costs. In the research completed by Mollin and Martin [200], the energy performance
in a vertical hydroponic cultivation system was evaluated. In this study, the cultivation of
basil plants in two types of plastic and paper pots with a hydroponic vertical cultivation
system in the Grunska area located in the south of Stockholm, Sweden, was investigated.
The energy consumption for the basil hydroponic cultivation was investigated in heat,
ventilation and light input data. A number of electric radiators were used for heating,
which operated 12 h a day and the ventilation was checked assuming 24 h of operation
during a day. For lighting, blue and red LEDs were used with 12 h of exposure during
the day. The energy calculation was performed by multiplying the number of diodes by
their effect (W) and the number of annual hours of use. Other energy consumption details
such as the total number of units and effect figures were provided by Grunska, Sweden. In
that study, two types of plastic and paper vases were used, and the energy consumption
analysis showed that the annual energy consumption in paper vases (286,000 MJ) is less
than that of plastic vases (296,000 MJ). In addition, the energy consumption for each basil
plant or each functional unit in the paper pot was 4.81 MJ and for the plastic pot was
4.9 MJ. Comparing the energy of the growth surface showed that each square meter was
16.7 GJ for the paper pot and 17.1 GJ for the plastic pot. In this research, the first energy
consumption process accounted for horticultural soil, where paper pots accounted for 48%
of the total energy consumption and plastic pots accounted for 47%. The lighting system
had the second share of the total energy consumption, which was 33% in the paper pot
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and 32% in the plastic pot. Also, the energy demand for the lighting system in the vertical
hydroponic cultivation of basil had the highest amount of greenhouse gas production.
Energy consumption in vertical hydroponic farms is more than in conventional greenhouse
cultivation due to the use of lighting systems. In the Grunska region of Sweden, where
this research was conducted, the annual energy consumption for heating, ventilation, and
lighting was 3285 MJ m−2.

3. Conclusions

The use of greenhouse cultivation technology is rapidly expanding as a viable method
to produce high-quality agricultural products outside of traditional growing seasons.
Among the various methods employed in greenhouse cultivation, hydroponics has gar-
nered significant attention from researchers and farmers due to its unique and state-of-
the-art approach. This study aims to comprehensively investigate and compare factors
influencing conventional and hydroponic greenhouse cultivation scenarios. The results
demonstrate that hydroponic cultivation, utilizing advanced control equipment and su-
perior culture substrates, provides optimal conditions for plant growth. In comparison
to conventional greenhouse cultivation, hydroponics requires less fertilizer, pesticides,
and water due to the precise control over their distribution. The use of renewable energy
in these two methods of greenhouse cultivation can reduce the emissions by up to 9%
in hydroponics and 2% in conventional cultivation. The results of LCA in hydroponic
cultivation after normalization and weighting determined that the most environmental
emissions belong to a set of ecosystem damages. Also, the results of LCA in conventional
greenhouse cultivation showed that the main environmental effects of direct emission were
caused by input consumption (air: carbon dioxide (CO2) and nitrogen oxides (NOx); soil:
mercury (Hg), copper (Cu) and lead (Pb)) and indirect emissions from the production of
chemical fertilizers, greenhouse structures and chemical pesticide. Overall, the hydroponic
cultivation system, with its precise environmental control, results in better quality, higher
yields, and optimal use of water and fertilizer. While the initial investment cost for hydro-
ponic cultivation is higher in comparison to conventional methods, it significantly reduces
energy losses. Further examination of data, such as greenhouse temperature, structure,
and carbon dioxide concentration, revealed no significant differences between the two
cultivation methods. Moreover, the type of cultivation did not impact energy consumption
significantly. However, it should be noted that more advanced equipment used in the
greenhouse would require additional electricity and fuel for operation. To fully optimize
hydroponic cultivation, experts and farmers in this field are advised to expand their prac-
tices based on geographical location, available resources, and initial capital. While the
initial capital investment for hydroponics may be higher, it can be mitigated by selecting an
appropriate greenhouse location and utilizing renewable energy sources. Although conven-
tional greenhouse cultivation requires less investment, it is less energy efficient compared
to hydroponic methods. In conclusion, adopting hydroponic cultivation in greenhouse
settings ensures sustainable and efficient production, optimized energy consumption, and
efficient resource utilization. The findings from this study provide valuable insights for
researchers, farmers, and investors in the greenhouse cultivation industry, emphasizing the
need for ongoing research on energy optimization and life cycle assessments of hydroponic
systems to ensure long-term sustainability.

4. Future Suggestions

• Expanding hydroponic cultivation using renewable energy is suggested to reduce the
initial investment and energy consumption according to the environmental conditions.

• Farmers are advised to develop hydroponic cultivation techniques to produce high-
quality products, profit more, and reduce energy losses.

• Researchers in agriculture and environmental science should conduct further research
on energy-efficient and eco-friendly techniques for conventional greenhouse and
hydroponic farming.
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