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Abstract: The growing use of Internet of Things (IoT) technologies in a variety of sectors, including
healthcare, has opened up new possibilities for gathering and analyzing patient data. In some cases,
the elderly are exposed to significant risk and even mortality as a result of the global aging problem,
which has become a burden in recent years. Numerous IoT devices are being created to monitor,
track, and record the actions of the elderly to reduce these hazards. This study proposed a novel,
dependable, cloud-based remote system patient monitoring framework for IoT health detection.
The main distinguished part of this research is that we rarely can find a framework in the literature
that is based on real-time systems by considering heartbeat (BPM), blood oxygen (SpO2), and body
temperature at the same time. The implementation and testing of this real-time system is classified
into six distinctly separated phases for developing both the hardware and software. To verify the
performance of the suggested system, data were gathered from BOT-IoT datasets. The outcome
enhances patient satisfaction, secure data transmission, and healthcare outcomes by showing that the
proposed framework is more efficient than other compared protocols in terms of the decision time,
which is 16.3 seconds for 46 features, with 100% accuracy.

Keywords: anomaly detection; cloud computing; health monitoring system; healthcare IoT architecture
real-time monitoring; secure data transmission

1. Introduction

The use of technology related to the Internet of Things (IoT) has significantly increased
over the past several years in a variety of industries, and the healthcare industry is no
exception. By enabling the collection and analysis of real-time patient data, the Internet of
Things has the potential to completely transform the healthcare sector. This could lead to
more precise diagnosis, individually tailored treatments, and remote health monitoring.
One of the most significant applications of the Internet of Things in healthcare is the
secure monitoring of patient health data, which requires cloud-based Internet of Things
platforms [1].

Cloud-based Internet of Things for secure health monitoring combines the functional-
ity of Internet of Things devices with the scalability and flexibility of cloud computing. For
individuals involved in healthcare as well as those performing research on patients and
their ailments, this convergence ushers in a new era. With the use of cloud infrastructure,
data from a wide range of Internet of Things gadgets, such as wearable, sensors, and
medical equipment, may be gathered, processed, and analyzed in real time. Utilizing cloud
computing allows for this. This aids medical professionals in making decisions in a timely
manner while also being well-informed, which ultimately results in improved patient care,
earlier diagnosis of health problems, and preventative actions [2].

Adopting the IoT for reliable monitoring of health is no exception to the rule that
data security is essential for healthcare applications. In 2022, there was a greater emphasis
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placed on the creation of stringent security measures to safeguard private health informa-
tion that was transmitted and kept in the cloud. Advances in encryption methods, protocols
related to secure data transmission, as well as access control mechanisms have been im-
plemented to ensure that patient information is always accessible while maintaining its
integrity and confidentiality. Furthermore, developments in machine learning and anomaly
detection algorithms have made it possible to predict impending security breaches and
take preventative measures [3].

The cloud-based IoT for safe health monitoring transforms healthcare through real-
time data collection, assessment, and decision-making capabilities. As a result, costs
decrease, and output improves. The significant progress achieved in 2022 and 2023 enabled
the broad adoption of these technologies by easing concerns over interoperability, data
security, and privacy. Enhancing patient care, identifying health problems early, and
fostering more teamwork are all advantageous to patients, medical professionals, and
researchers. Cloud-based IoT offers huge possibilities for the development of healthcare
since it offers the key to transforming how we track and manage our own health.

The main motivation of our study, which could be beneficial for the readers and other
researchers who would like to work in a similar field, is that our work establishes a new
standard for healthcare monitoring by creating a microcontroller device and a strong frame-
work for connecting Internet of Things devices to cloud infrastructure. Our secure protocol
emphasizes the crucial need for enhanced privacy and security in health monitoring by
ensuring real-time data collecting and analysis. We advocate for more research in this
area by stressing the importance and benefits of this approach and addressing the security
problems that currently exist in traditional health monitoring systems via a careful analysis
of potential attacks and thorough assessments by employing machine learning algorithms.
This driving force highlights how revolutionary our work may be in changing the face of
safe health monitoring. Also, the contributions of this research are the following:

• Developing a microcontroller device for healthcare detection and monitoring;
• Proposing a secure framework and protocol in healthcare monitoring by emphasiz-

ing the integration of these IoT devices with cloud infrastructure for real-time data
collecting and analysis in terms of hardware and software;

• Creating a compelling case for more research in this area by highlighting the signifi-
cance and advantages of secure health monitoring utilizing cloud-based IoT;

• Exploring the security issues with conventional health monitoring systems by the use
of four (4) machine learning algorithms and the impact of seven (7) attacks.

Moreover, this research contributes toward sustainable development and the applica-
tion of sustainability. These sustainable integrated approaches aim to increase healthcare
efficiency by utilizing a remote cloud-based system for a patient monitoring system that
ensures successful interventions with little resource use. IoT devices are vital for risk reduc-
tion, especially when it comes to threats that older people have to face. This helps to meet
sustainable goals for global health and well-being. By reducing unnecessary operations and
associated costs, the application of an IoT-based data-driven solution promotes treatment
accuracy and sustainability. Setting secure data transfer as a top priority demonstrates a
dedication to long-term technological solutions that guarantee patient confidentiality and
data protection. Deployment of cloud-based solutions also minimizes the need for physi-
cal infrastructure, which is in line with sustainability standards since it decreases energy
and environmental impact. The consequent improvement in patient satisfaction supports
preventative care and regimen adherence, which supports sustainable healthcare practices.
In addition, adopting IoT technologies improves accessibility to healthcare, especially in
underprivileged areas, aligning with sustainability objectives for fair and equal access to
high-quality medical care.

Therefore, based on these research contributions, we can emphasize the main distin-
guished part of this study, which is based on real-time systems by considering heartbeat
(BPM), blood oxygen (SpO2), and body temperature at the same time. This important
matter rarely can be found in the literature. The implementation and testing of this real-time
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system are classified into six distinctly separated phases for developing both the hardware
and software of our HCPMP framework.

The following is how the research is structured going forward: Section 2 delves
into details about the relevant research. Section 3 provides an explanation of the several
algorithms related to the Internet of Medical Things (IoMT). In Section 4, the technique is
elaborated upon, with stages defined and a comprehensive proposed framework presented.
The performance evaluation and research findings are covered in Section 5. Finally, a
thorough discussion based on the findings and results is presented in Section 6.

2. The Literature Review
2.1. Secure Health Monitoring Using Cloud-Based IoT

Cloud-based IoT is becoming more and more valuable to the healthcare industry for
secure health monitoring. By connecting devices with cloud infrastructure, it may improve
real-time data collecting and analysis, ultimately leading to better patient care. Renowned
for its scalability and versatility, this groundbreaking technology prioritizes patient data
privacy and reliability, providing improved healthcare outcomes [1]. This study of the
literature examines the advancements and difficulties in reliable health monitoring in cloud-
based IoT, acknowledging the potential of IoT. With Singh and Chatterjee present an edge-
centric model for safe health monitoring that emphasizes continuous surveillance, privacy,
and reliable data transmission, edge computing is essential. Their study emphasizes
how important it is to have strong security measures in place in order to reduce possible
hazards [1].

Saif et al. (2022) examine reliable healthcare in the context of IoT and offer a thorough
examination of standards along with a case study illustrating IoT’s use in security health
monitoring. In order to protect the integrity and confidentiality of healthcare data, their
study emphasizes the need for strong security of information, confidentiality, and access
control measures [2].

When considering issues in cloud-based IoT for health monitoring systems, it is im-
perative to address the significant factors of data security and privacy concerns. This study
investigates the privacy and security concerns associated with healthcare systems based on
the IoT [3]. The aforementioned issues highlighted are data breaches, unauthorized access,
and platform-to-platform information exchange, which are deemed significant concerns.
This study emphasizes the necessity of enhancing encryption techniques, implementing
secure data transfer protocols, and employing access control systems to safeguard sensitive
patient data.

The study conducted by Tiwari, Nahak, and Mishra (2023) examines the transformative
capacity of the IoT in the realm of healthcare monitoring [4]. Their research highlights the
significance of real-time data gathering and analysis facilitated by IoT and its potential to
bring about a paradigm shift in the provision of healthcare services. Their study emphasizes
the need for reliable and scalable IoT solutions in order to ensure secure health monitoring.

Moreover, interoperability is an additional concern in the realm of cloud-based IoT for
health monitoring. Standardized communication protocols and data formats play a crucial
role in facilitating smooth integration and efficient data transmission among IoT devices,
healthcare systems, and cloud platforms [5]. This study suggests a real-time wearable
health monitoring device that runs on the IoT and is cloud-based. It highlights how crucial
interoperability is to enable thorough patient monitoring and effective care coordination.

2.2. Healthcare Systems

According to the increased operational effectiveness brought about by the adoption
of IoT technology, healthcare organizations can now offer high-quality care at a lower
cost. Consequently, healthcare professionals can provide patients with improved services
and improved diagnostic capacities [6]. Biometric sensors gather indicators of a person’s
health for use in intelligent health systems. For the Internet of Things to function well,
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cloud computing infrastructure is necessary for efficient interactions between patients and
caregivers or medical professionals [7].

Automated communication systems facilitate efficient information sharing on patients’
current health status. This allows medical professionals to utilize established smart health-
care systems effectively [7]. Wearable technology’s seamless communication with other
devices enables comprehensive monitoring of physiological data, from blood pressure to
oxygen saturation [8]. Online patient health portals facilitate easy communication of patient
information among stakeholders. The IoT cloud platform, utilizing wearables, sensors, and
mobile health initiatives, collects patient data. This information is then utilized by health-
care professionals, specialists, and insurers for effective care and preventative measures.
Integrating cloud technology with IoT devices streamlines real-time data collection and
accessibility for both patients and healthcare providers, offering numerous advantages [9].

2.3. Patient Health Monitoring System

The main goal of this section is to provide an explanation of health monitoring system
for patients. The system is intended to efficiently and thoroughly track and monitor
patients’ health status. The main goal of the presented system by [10] is to efficiently track
and document patients’ health conditions in a medical context. It has been demonstrated
that the healthcare sector greatly benefits from the use of IoT sensors, especially when it
comes to remote patient health monitoring. The technologies that are used by the system
are varied. This feature makes it easier for healthcare providers to monitor and evaluate
their patients’ health from a distance, which allows them to provide prompt advice and
treatments that improve patient outcomes [10]. A three-tier architecture is frequently used
for remote patient health monitoring. Wearable sensors are used as data sources at the
network tier to measure things like blood pressure and body temperature.

The second IoT architecture level facilitates information exchange among sensors. The
top tier involves nodes responsible for processing and analyzing collected data for research
purposes [11]. Individuals with disabilities can access ambient assisted living services,
providing companionship and health-related support. Integrated sensing, computation,
and communication systems, including surgically implanted sensors like a heartbeat simu-
lator, aid daily activities. Interconnected sensors in various items store data in a centralized
cloud, facilitating analysis by caregivers. These devices, featuring biometric measurements
like electrocardiograms, enable remote monitoring for improved healthcare [12].

2.4. Components of an Internet of Things (IoT)-Enabled Healthcare System
2.4.1. Data Acquisition

The process of obtaining data from a patient or healthcare unit involves the utilization
of a sensor. Several sensors can be utilized for various purposes. For instance, the DS18B20
sensor is commonly employed for the acquisition of heartbeat readings. Additionally, the
microcontroller Arduino Uno ATmega 328P is capable of capturing body temperature
data [13].

2.4.2. Cloud Computing System

The recorded data from sensing devices are transmitted to a processor, such as the
HLK-RM04 Serial, via a Wi-Fi module and subsequently saved on a MySQL server. The
establishment of this connection is facilitated by the HTTP protocol [14].

2.4.3. The Real-Time Health Gateway

The Real-Time Health gateway allows users to access healthcare data through a Java-
based gateway. This portal is accessible through various devices, such as mobile laptops,
tablets, and personal computers, typically via Android applications. A possible example
would be a smartphone application created to notify people on their phones every time a
patient’s condition is identified [15].
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2.5. The Utilization of Cloud-Based IoT for the Purpose of Ensuring Secure and Intelligent
Health Monitoring

Many academics are quite interested in using cloud-based IoT technology for health
monitoring, especially when it comes to security and intelligence [16–19]. Thus, this
section’s goal is to provide a thorough analysis of previously released academic papers
about cloud and Internet of Things technologies concerning health monitoring systems.

The goal of the proposed model was to enable early disease diagnosis by offering a
reliable remote health surveillance system within a cloud-based IoT environment [16]. This
paper presented a framework for health monitoring that ensures the integrity of medical
and health data in the cloud by utilizing a remote health tracking approach and light-
weight block cryptography methods. A patient’s health state may now be evaluated and
the advent of extremely critical situations can be predicted thanks to the use of methods
for data mining in biological data analysis. This is now feasible because of the use of
intelligent healthcare IoT gadgets, which use effective and safe block encryption techniques.
A strong encryption technique was used to protect private patient information. In their
study that combined IoT and cloud technologies, the researchers mainly depended on a
sizable amount of data from IoT sensors as their primary resource.

An IoT-based mobile health platform for illness diagnosis was suggested by Verma and
Sood in 2018 [20]. The primary goal of the project was to use medical IoT devices to collect
health measures and then create student diagnostic results (SDR). To create health data
from the perspective of students, the researchers methodically used medical sensors and
a dataset they obtained from the Catholic University of California, Irvine (UCI). Finding
students who had manifested severe disease was the primary goal. The researchers used
contemporary algorithms for classification and diagnostic techniques to confirm the results.
The calculation took into account the following metrics: sensitivity; specificity; f-measures;
and accuracy. This study’s conclusions state that patterns, frequencies, and scales must be
used in diagnostic methods in order to diagnose people with certain disorders.

Ahmed M. R. et al. [21] introduced a novel four-tier architecture that leverages cloud
computing to expedite the detection of cardiovascular illnesses. Their study employed five
supervised machine learning techniques: decision trees (DT); random forests (RF); artificial
neural networks (ANN); naïve Bayes (NB); and support vector machines (SVM). The
primary objective of their investigation was to assess the efficacy of the chosen classification
methods. Additionally, the researchers employed widely accepted evaluation criteria to
evaluate the effectiveness of several machine learning algorithms. To further assess the five
classifiers, the 10-fold cross-validation process was used.

Based on the conducted trials, the artificial neural network performed exceptionally
well in the areas of accuracy, F-1 scores, precision, and sensitivity specificity. As such, the
application of this particular program makes it possible to predict operational cardiovascu-
lar diseases, which, in turn, makes it easier to track health-related information for those
who suffer from heart problems.

A study by Yang et al. (2016) looked into an IoT-based cloud-based electrocardio-
gram (ECG) monitoring system [22]. Creating a system that can be applied to intelligent
healthcare environments was the aim of their study. The researchers proposed a novel
method for using the Internet of Things to monitor ECG. ECG data are collected via a
wearable surveillance node and then wirelessly transmitted to the Internet of Things cloud.
The MQTT and HTTP protocols are used by the IoT cloud to provide users with real-time
ECG data in a graphical format. The difficulty of cross-platform interoperability has been
somewhat lessened by the simplicity with which web browser-equipped smart terminals
might retrieve ECG data. Experiments are undertaken on individuals who are in good
health in order to assess the reliability of the system. The empirical evidence illustrates
that the suggested system exhibits a high level of dependability in the acquisition and
presentation of ECG data in real time. This capability holds the potential to assist in the
initial identification of specific cardiac ailments.
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Begum et al. devised a framework known as the Smart Healthcare Monitoring System
within the IoT [23]. The principal aim of this framework is to enable individuals with
cardiac conditions to accurately assess their body temperature, heart rate (measured in
beats per minute), and body position in a sanitary setting. The evaluation of the frame-
work is conducted on a participant who willingly participates in this study. During the
evaluation, various physiological parameters, such as body temperature and heart rate, are
measured. Additionally, the participant’s body movement is observed, and the ECG graph
is analyzed using serial plotting software hosted on a local server. The e-health system
created by Monteiro et al. is founded on the integration of the IoT, fog computing, and cloud
computing [24]. The authors propose an advanced e-health architecture that utilizes IoT
for data collection, fog computing for preliminary data processing and temporary storage,
and cloud computing for data analysis, processing, and long-term storage. Furthermore,
there are significant challenges related to the implementation of an e-health application that
ensures optimal availability, performance, and accessibility while minimizing the expenses
associated with deployment and maintenance.

In the context of this discourse, several noteworthy gaps in research have been iden-
tified, each pertaining to a specific aspect that warrants scrutiny and exploration. The
identification and resolution of these gaps will result in the development of healthcare solu-
tions that possess dependability, effectiveness, and ethical integrity while also harnessing
the potential of cloud-based Internet of Things technologies.

While this study of the literature aims to examine the developments and obstacles in
cloud-based IoT for intelligent, secure health monitoring, some of the existing gaps in the
literature are addressed as follows. A significant area of unmet research need is developing
strong security protocols to protect private health information. Complex data intelligence
techniques and algorithms also need to be created to process the vast amounts of IoT data
in the healthcare industry and provide predictive analytics, real-time surveillance, decision
support, and anomaly detection. Communication frameworks and defined protocols are
necessary to guarantee seamless integration and interoperability. Ensuring high levels
of resilience and dependability is crucial for cloud-based IoT in the healthcare industry.
It is imperative to tackle ethical and legal concerns, including patient permission, data
ownership, and compliance with regulations such as GDPR and HIPAA.

3. Internet of Medical Things (IoMT) Algorithms

The algorithms that are employed in the context of the IoMT are a group of computa-
tional methods that were created expressly to analyze and understand the data generated
by IoT devices in the healthcare industry. Numerous fields, including data analysis, natural
language processing, control systems, predictive modeling, and decision assistance, could
benefit from the application of these technologies. IoMT algorithms aim to improve patient
outcomes, reduce healthcare costs, and enhance the overall healthcare system by providing
healthcare professionals with valuable insights and knowledge.

3.1. Algorithms for Data Analysis in IoMT

When IoMT data analysis algorithms are used, computational methods are applied
to analyze data from IoT devices in the healthcare industry to extract useful information.
Making use of these techniques is essential for spotting trends, patterns, and anomalies
that may be used to improve patient outcomes and reduce healthcare costs. The algorithms
indicated above are utilized to identify patterns or trends in the data that could indicate the
existence of a health issue, such as diabetes or a cardiac condition. The IoMT’s data analysis
algorithms can identify patterns, create prediction models, extract useful information, and
examine signals coming from medical devices. Numerous data analysis methods can be
used in the IoMT domain, including the following:
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3.1.1. Statistical Analysis Algorithms

The purpose of analysis methods is to look over large datasets and find interesting
patterns or trends in the data. These instruments can be used to create correlations between
different data, such as blood pressure and heart rate;

3.1.2. Machine Learning Algorithms

Include a range of methods that are used to analyze data and find underlying patterns,
such as supervised and unsupervised learning. It is possible to use predictive models to
make predictions about future health problems;

3.1.3. Data Mining Algorithms

Large databases can have valuable information retrieved from them utilizing data
mining techniques. These instruments can identify trends or patterns in the data that may
point to a potential health issue. Signal processing algorithms are used in the examination
and interpretation of data via IoT healthcare devices, particularly heart rate monitoring
devices’ ECG values. These technologies can identify trends or patterns in information that
may indicate the existence of a potential health issue;

3.2. Statistical Analysis Algorithms for the IoMT

Statistical analysis techniques in the context of IoMT can be used to extract meaningful
information from large-scale datasets generated by IoT-enabled medical devices. An algo-
rithm can determine the average and variance in a patient’s heart rate by using descriptive
statistics. This allows for the discovery of abnormal heart rate patterns and may even aid in
the diagnosis of a cardiac condition. Data can be succinctly summarized and descriptively
illustrated through the use of statistical evaluation algorithms in the wider context of
the IoMT. Its further uses include finding correlations between variables, drawing logical
conclusions, and examining patterns and trends in data across time. Numerous statistical
analytic techniques are suitable for IoMT, including the following:

This section’s primary focus will be on the study of descriptive statistics. To sum-
marize and characterize the data, the aforementioned approaches are used, among other
things, to compute the mean, median, and standard deviation of a particular set of data.
These technologies are capable of analyzing and spotting patterns or trends in the dataset.
Additionally, temporal data analysis is utilized. These methods are used to evaluate infor-
mation that has been systematically and purposefully collected over a predetermined time
frame. These gadgets can recognize and evaluate patterns or trends in the data, including
changes in heart rate over time;

3.3. Using Cryptographic Algorithms in the IoMT Environment

Cryptography plays a crucial role in ensuring the privacy and confidentiality of
medical data within the framework of the Internet of Medical Things [25]. Cryptography is
the purposeful use of mathematical methods to safeguard and preserve the authenticity,
integrity, and confidentiality of data and communications. Cryptography is essential to
ensuring the confidentiality, integrity, and validity of medical IoMT data. To ensure safe
data processing by a variety of devices, safe data retention in databases, as well as secure
data transit over networks, cryptographic techniques are used;

It is important to recognize that IoT devices are limited in energy, storage, and comput-
ing capabilities. Thus, in order to prevent overtaxing these devices and possibly jeopardiz-
ing their security, great care must be taken while selecting the encryption techniques that
are utilized in them. In addition, medical institutions must comply with legal requirements
like the Health Insurance Portability and Accountability Act (HIPAA), which requires the
adoption of strong security protocols, one of which is the use of cryptography, to protect
patient information. The choice of cryptographic algorithm for Internet of Medical Things
(IoMT) systems depends on the particular needs and constraints of the system in question.



Sustainability 2024, 16, 1349 8 of 23

On the other hand, several cryptographic techniques often used in IoMT applications have
been found [26].

3.3.1. The Advanced Encryption Standard (AES)

One popular symmetric encryption technique used for encrypting information in
IoMT systems is AES. The system is quick, has strong security features, and does not have
much processing power.

3.3.2. Rivest–Shamir–Adleman (RSA)

A popular type of asymmetrical encryption that is often used for the safe transfer of
cryptographic keys between devices in IoMT systems is the RSA method. Additionally, it
is often used for the objective of digital certificate verification.

3.3.3. Elliptic Curve Cryptography (ECC)

Because of its strong security features and small key size, ECC is becoming a more
popular asymmetric encryption technique in IoMT systems. Hashing functions are impor-
tant in the field of computer science. Hash functions are commonly used in IoMT systems
to protect data integrity. Moreover, these technologies have real-world uses in the field of
digital signature methods.

3.3.4. Light-Weight Cryptography (LWC)

LWC is an innovative cryptography technique designed specifically to meet the needs
of low-power devices, which are commonly found in the IoT space. The encryption
technique that is being examined stands out due to its energy efficiency, affordability, and
lightweight construction.

It is crucial to recognize that an algorithm’s effectiveness depends on both its under-
lying architecture and how it is put into practice. Implementation performed correctly
is essential to maintaining system security. Moreover, in order to successfully neutralize
new threats and vulnerabilities, the system’s security must be continuously monitored and
updated [27,28].

3.4. Application of Elliptic Curve Cryptography (ECC) in the IoMT

The ECC’s relatively small key size, strong security features, and ability to support
digital signatures and exchange of keys make it a very good choice for deployment in
IoMT systems. Furthermore, the encryption algorithm’s smaller key size helps devices
require less processing and storage power. Because of this feature, it is especially well-
suited for usage in IoMT systems that operate with constrained resources, like IoT devices.
Attacks using quantum computing are less likely to succeed with ECC, a problem that
could occur with other encryption methods. The following steps are often included in the
integration of ECC into IoMT systems; key creation within the IoMT security architecture is
generating distinct key pairs utilizing NIST-compliant ECC techniques. The ECC method
and public key are used to encrypt medical data, guaranteeing safe transfer or storage.
The private key and the ECC method are necessary for decryption. Safeguarding keys,
creating new ones, and removing compromised keys are all essential components of key
management. Hashing functions detect unauthorized modifications, preserving data
integrity. Authentication limits access to authorized entities by using digital signatures or
certificates. ECC ensures confidentiality and communication integrity by facilitating secure
key exchange. Maintaining system performance and mitigating emerging hazards require
frequent updates and monitoring.

• It is imperative to recognize that the incorporation of ECC inside IoMT systems may
display unpredictability, depending on the unique requirements and constraints of
the system. Furthermore, to effectively handle new threats and vulnerabilities in
the system, continuous monitoring and security system maintenance are essential.
The ECC technique is a type of cryptography using public keys that provides a
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higher degree of security with smaller key sizes than other public-key cryptography
techniques such as RSA. This feature makes it extremely beneficial in situations where
resources, including processing power and storage space, are scarce. Three integers in
a row make up the provided data [29–31];

• Efficiency: When compared to other public-key encryption methods, the ECC algo-
rithm exhibits better computational efficiency and requires less memory and comput-
ing resources. This feature makes it especially beneficial to use in situations when
resources are limited, including mobile devices and Internet of Things devices [32–34];

• Scalability: Due to its versatility and scalability, ECC is appropriate for a wide range of
applications with different security requirements. The degree of protection of ECC may
be adjusted by increasing the key size, making it suitable for a range of applications
that require various degrees of security [32,35];

• Resistance against attacks by quantum computers: Despite the anticipated increase
in strength in the future, ECC is impervious to attacks by quantum computing de-
vices. This is because ECC’s underlying mathematics differs from other public-key
encryption techniques that are susceptible to quantum computer attacks [29–31].

4. Methodology

To ensure safe data transmission against injection, password, scanning, denial-of-
service, man-in-the-middle, and distributed denial-of-service attacks, we developed an
Internet of Things patient monitoring tool and healthcare surveillance device in this study.
Six machine learning models, including XGBoost, GradBoost, Decision Trees (DT), Random
Forest (RF), Logistic Regression (LR), and Support Vector Machines (SVM), were assessed.

The choice of employing XGBoost, GradBoost, Decision Trees (DT), Random Forest
(RF), Logistic Regression (LR), Support Vector Machines (SVM), and Random Forest (RF)
in our study was due to our need for thoroughly assessing our IoT patient monitoring
system within the proposed secure data transmission scheme. Each machine learning
model contributes unique features and strengths to the research, guaranteeing a thorough
evaluation of the system’s functionality. We leverage a variety of algorithms to capture
different aspects of the behavior of the model and determine the best strategy for improving
security against a range of potential attacks, such as injection, password, man-in-the-middle,
denial of service, distributed denial of service, and scanning attacks. Using various models
may increase the accuracy and consistency of our results, which leads to a more complex
comprehension of the system’s effectiveness and resilience.

The following subsections will illustrate all the phases of development, testing, and
comparison. For this research, we divided our experiment into six (6) consecutive and
distinguished phases:

Phase 1: The proposal of the unique framework (HCPMP), which consists of three
main stages: Control stage; Detection stage; and Data capturing stage;

Phase 2: Providing a Mobile application;
Phase 3: Providing real-time results for 37 individual patients from Cyprus;
Phase 4: Providing results for 630 individual patients by utilizing the HealthAdvisor

dataset to ensure the accuracy of the obtained result from phase 2;
Phase 5: Providing outcome from the obtained result under various attacks such as

man-in-the-middle, denial of service, distributed denial of service, injection, password, and
scanning on each ML algorithm separately to obtain each ML’s model accuracy, precision,
recall, and F1-score after the attack;

Phase 6: Comparing the security aspects of HCPMP with algorithms that utilized the
BoT-IoT dataset.

Each of these phases can be explained briefly in the following manner to illustrate
assurance of data confidentiality, integrity, and availability in cloud-based IoT systems:

Phase 1: The Unique Framework (HCPMP) proposal:
Control Stage: To prevent unwanted access to the framework, access restrictions and

user authentication procedures are put into place;
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Detection Stage: Using anomaly detection methods to spot odd behaviors or patterns
that might point to security risks;

Data Capturing Stage: Ensuring secure and encrypted data collection to prevent manip-
ulation or interception during transmission;

Phase 2: Developing a Mobile App:
Secure Communication: Implementing secure connection protocols, such as HTTPS, can

help prevent eavesdropping by encrypting data sent between the smartphone application
and the server in the cloud;

Phase 3: Presenting 37 Different Patients’ Real-Time Results:
End-to-end Encryption: Utilizing end-to-end encryption to ensure confidentiality while

protecting sensitive health data as they are transferred from patients as individuals to
the cloud;

Frequent Security Audits: To find and fix weaknesses in the system for delivering results
instantly, conduct regular security audits;

Phase 4: Presenting 630 Individual Patients Their Results:
Data validation: By ensuring the integrity and quality of conclusions produced from a larger

dataset (HealthAdvisor), data validation techniques boost data reliability (HealthAdvisor);
Data Anonymization: Employing strategies to uphold privacy norms and protect per-

sonal identities;
Phase 5: Presenting the Results of the Attacks Under Different Conditions:
Intrusion Detection Systems (IDS): Integrating IDS allows you to swiftly detect and stop

attacks, maintaining system availability and integrity. Encryption techniques are used to
secure data both during transmission and at rest. These techniques are particularly crucial in
the scenario of a man-in-the-middle attack. Distributed denial of service (DDoS) mitigation
is the use of DDoS mitigation strategies to preserve availability during denial-of-service
attacks;

Phase 6: Comparing Security Aspects with Security Metrics from the BoT-IoT:
Dataset Comparison: By addressing integrity, availability, and confidentiality issues at

each step of the HCPMP execution throughout cloud-based IoT platforms, these techniques
integrate to establish a strong security posture. Consistent monitoring, assessment, and
adaptation to new security threats are all part of this all-encompassing security plan. The
BoT-IoT dataset is used to evaluate safety measures like precision, recall, and F1-score to
contrast the safety features of HCPMP with methods. Confidentiality strategies will help
to ensure that no individual’s confidentiality within the BoT-IoT dataset is compromised
during the comparison.

4.1. Data Collection Tool

This research design was modeled based on the pattern of the ESP32 version 1.0.6
methodological framework. The ESP32, a component of the ESP family, is a flexible micro-
controller well-known for IoT applications. This study’s approach, which was inspired by
ESP32 IoT health initiatives, emphasizes the use of its capabilities for health monitoring.
Moreover, tests were conducted and collected from people whose vitals were intact, as well
as from certain patients, e.g., heart patients, etc. The development of our system includes
critical aspects that include both hardware and software components, which are specified
with specifications in Table 1.

Moreover, the component details about the IoT device (Hardware Components)),
which is proposed for patient monitoring, are provided in the list below.

Max 30100 pulse oximeter and heart rate sensor—This is a highly reliable integrated
pulse oximeter and heart rate sensor IC. It detects pulse oximetry (SpO2) and heart rate
(HR) signals with the aid of two LEDs, a photodetector, enhanced optics, and low-noise
analog signal processing. The Max 30100 is a pulse oximeter and heart rate sensor designed
to accurately measure and track heart rate and blood oxygen levels; The manufacturer
and location for this device are Analog Devices, Inc., Wilmington, and Massachusetts,
USA accordingly.
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Table 1. Hardware and software components in our framework.

System Components Specifications

Hardware

Max30100 pulse oximeter and heart rate sensor
DHT 11

Node MCU (esp8266)
Arduino Pro mini micro-controllers
Extras (serial cables and a laptop)

Software
Flutter (open-source UI software development kit (SDK))

MySQL Server and IoT analysis platform (Thinger.IO)
Visual Studio

Programing language JavaScript, Python
C++ on Arduino studio

DHT 11—This basic digital temperature and humidity sensor is incredibly inexpen-
sive. Using a capacitive humidity sensor and a thermistor, it measures the ambient air and
outputs a digital signal on the data pin (no analog input pins are needed). The DHT11 is a
digital temperature and humidity sensor; The manufacturer and location for this device are
AM2302, and Shenzhen, China accordingly.

Node MCU (esp 8266)—This is an open-source, Lua-based firmware and develop-
ment board for Internet of Things applications. It consists of the ESP-12E module, which
includes an ESP8266 chip with a Tensilica Xtensa 32-bit LX106 RISC microprocessor. This
microprocessor has a configurable clock speed ranging from 80 MHz to 160 MHz and RTOS
support. The NodeMCU has 128 KB of RAM and 4 MB of flash memory for storing data
and applications; The manufacturer and location for this device are Espressif System, and
Shanghai, China accordingly.

Arduino Pro mini microcontrollers—The Arduino Pro Mini is a small and low-cost
microcontroller board that is based on the ATMEGA328P microcontroller. It is designed to
be a compact, low-power alternative to the larger and more powerful Arduino boards, mak-
ing it suitable for use in portable devices, battery-powered projects, and other applications
where space and power consumption are important considerations; The manufacturer and
location for this device are Arduino, and Torino, Italy accordingly.

Extras—serial cables are utilized to facilitate communication between the Arduino
board and other gadgets or a computer. A serial port, commonly referred to as a UART
or USART, is included on every Arduino board, and some even have multiple of them.
Pins 0 and 1 are used on older boards (Uno, Nano, Mini, and Mega) to communicate with
the computer.

4.2. Data Collection Procedures

Our system incorporates two prominent microcontrollers. The utilization of the
Node MCU, alternatively referred to as ESP8266, is essential for establishing an internet
connection and facilitating the transmission of data to an internet server. Conversely, the
Arduino Pro Mini assumes the role of the principal unit responsible for processing the
acquired data. Moreover, it is equipped with two separate sensors that are utilized to
evaluate the individual’s well-being. The DHT11 sensor is commonly used for measuring
temperature, whereas the Max30100 sensor is typically employed for monitoring heart rate
and blood oxygen levels. The sensors are positioned in direct contact with the patient’s
finger, specifically the heartbeat sensor. Subsequently, the Arduino Pro-mini device is
responsible for converting the unprocessed data acquired from the pulses detected by the
said sensor into relevant information regarding the patient’s heartbeat and blood oxygen
levels. The identical procedure occurs when utilizing the DHT11 temperature sensor. The
connection between the Arduino Pro-Mini and the ESP8266 is established through the
hardware interface. This connection is required because the ESP8266 needs to receive the
processed data from the Arduino Pro-Mini. In turn, the ESP8266 is in charge of enabling
data analysis on the IoT platform and transferring information about patients to MySQL



Sustainability 2024, 16, 1349 12 of 23

servers or databases. The construction of a serial communications link between the two
controllers enables the accomplishment of this goal. One popular serial communication
technique is the Ubiquitous Asynchronous Receiver–Transmitter (UART). The Rx and Tx
ports on both microcontrollers can be used to transfer data from the wireless transmitter to
the receiver. The ESP8266 is configured to use Wi-Fi to connect to the internet. After that, a
patient’s data are sent to the IoT analyzer. The patient’s information is then sent via APIs
(application programming interfaces) and HTTP (Hypertext Transfer Protocol) commands
to the MySQL server and the IoT analysis platform. The IoT platform is responsible for the
real-time monitoring and analysis of the patient’s health status. The aforementioned data
are also saved within the database to facilitate enhanced comprehension and utilization
for several other objectives. The database will receive and store the patient’s identification
number, heartbeat measurement, blood oxygen saturation level, body temperature, as well
as the timestamp indicating the date and time when the data were uploaded to the server
or database.

4.3. Phase 1: Proposed Framework of Health Condition Prediction and Monitoring
Protocol (HCPMP)

The suggested architecture (HCPMP), known as the Hybrid Cloud Performance Man-
agement Process, comprises three primary steps. The control stage involves the introduction
of the patient or individual to the Max30100 sensors and the hardware health detection
component depicted in Figure 1. The detection stage entails the placement of the individ-
ual’s finger on the Max30100 sensor, and once it is detected by the IoT Patient Monitoring
System, the person’s information is identified, as illustrated in Figure 2. The data capturing
stage involves the population of the patient’s data into an SQL database after it has been
detected by the IoT Patient Monitoring System.
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In Algorithm 1, we give the primary framework presented, where the variable “BPM”
denotes the expected heart rate in beats per minute; “SpO2” denotes the predicted oxygen
saturation in percentage, and “Temp” denotes the predicted body temperature. The system
utilizes a set of health features with specific threshold ranges for adults. These threshold
ranges are as follows: the threshold range for beats per minute (BPM) is between 60 and
100 beats; the threshold range for oxygen saturation (SpO2) is between 96 and 98 percent;
and the threshold range for body temperature is between 36.5 and 37.5 degrees Celsius.
Table 2 presents the threshold range for each age group and type.

Table 2. Hardware and software components in our framework.

Feature Threshold Range

Oxygen Saturation (Spo2)

95% to 100%
Babies (0 to 12 months): 100 to 160 bpm for infants

Kids (1–17 years old): 70–100 bpm
Adults (above 18): 60 to 100 bpm

Body Temperature (Temp)
Oral (Mouth): from 36.4 ◦C to 37.6 ◦C (from 97.6 ◦F to 99.6 ◦F)

Rectal (Rectum): from 37.0 ◦C to 38.1 ◦C (from 98.6 ◦F to 100.6 ◦F)
Armpit (Axillary): from 35.9 ◦C to 37.0 ◦C (from 96.6 ◦F to 98.6 ◦F)

This study involved the administration of 37 sample tests to a cohort of 37 participants,
with the results of only 5 individuals being shown in Table 3. The data were uniquely
recorded for each individual, utilizing their login ID, heartbeat (BPM), blood oxygen (SpO2),
body temperature, time stamps, and pertinent attributes such as “Age”, “Gender”, “BMI”,
“Activity Level”, “Glucose”, “Temp”, “Health_status”, and “Medication” are encompassed
within the input features. The data were gathered from persons residing in Cyprus. In order
to guarantee the precision of the acquired outcome, we incorporated the HealthAdvisor
dataset into our protocol and conducted a comparative analysis of the security features
between HCPMP and algorithms that employed the BoT-IoT dataset [36].

Table 3. Result for 5 individual patients.

Patient ID Metric Data Threshold Data RTIoMT Data with
External Device

AA1231

BPM 60–100 70.994619 69.8

SpO2 95–100 97 97

Body Temp 36.5–37.5 29.685 30

AA1232

BPM 60–100 75.00 75.3

SpO2 95–100 94 94

Body Temp 36.5–37.5 20.00 20.1

AA1233

BPM 60–100 79.450255 79

SpO2 95–100 95 95

Body Temp 36.5–37.5 30.00 30.21

AA1234

BPM 60–100 57.60589 58

SpO2 95–100 97 97

Body Temp 36.5–37.5 27.53 27.31

AA1235

BPM 60–100 60.00 60.1

SpO2 95–100 91 91

Body Temp 36.5–37.5 38.00 38.02
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Algorithm 1. Main framework of HCPMP

Input:

data = pd.read_csv(‘health.csv’);
patient’s information;
# Load the dataset (Training set TF consists of N Features F = {f 1,....fN});
# Split the data into features (X) and target variable (y);
# Split the data into training and testing sets;
# Scale the features using StandardScaler;
# Logistic Regression;
# Decision Tree;
# Random Forest;
# Support Vector Machines;
# XGBoost;
# GradBoost.

Output:

# Secure data transmission to the cloud server and hospital database;
# Set of N features providing the highest accuracy F* = {f*1,....f*N} (Generating the

performance metric of collected data for each algorithm (Accuracy, Precision, Recall,
F1-score));

# Transformed Training set TF∗:

1. Device initialization;
2. DB connection and data processing;
3. For each time interval tÎ T do {;
4. Calculate BPM by using pseudocode 1;
5. Calculate SpO2 by using pseudocode 2;
6. Calculate BodyTemprature by using pseudocode 3;
7. For i in {n,....N} do

1: Train ML model on TF;
2: Evaluate model performance;
3: Calculate feature importance or ranking;

8. While the collected data from the Thresholdrange {,

Return to patient real-time evaluation;
Otherwise,

9. IF BPM! = Thresholdrange Then {

a. Send voice alert “BPM is abnormal”;
b. Send BPM value to the cloud server securely by integrating ECC based encryption

algorithm;
c. Send an emergency call to the ambulance and notify the doctor};

10. IF SpO2! = Thresholdrange Then {

a. Send voice alert “SpO2is abnormal”;
b. Send SpO2value to the cloud server by integrating ECC based encryption algorithm;
c. Send an emergency call to the ambulance and notify the doctor};

11. IF BodyTemprature! = Thresholdrange Then {

a. Send voice alert “BodyTemprature is abnormal”;
b. Send BodyTemprature value to the cloud server by integrating ECC-based

encryption algorithm;
c. Send an emergency call to the ambulance and notify the doctor};

End while}
End For}

End for

12. Return TF∗, F* (Generate the performance metric of collected data (Accuracy, Precision,
Recall, F1-score))

13. Stop.
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Pseudocode 1. Calculating BPM

# Step 1: Define Standard Thresholds
bpm_threshold_min = 60
bpm_threshold_max = 100

# Step 2: Data Preprocessing
data = pd.read_csv(‘your_dataset.csv’)

# Step 3: BPM Measurement
abnormal_bpm = data[(data[‘BPM’] < bpm_threshold_min) | (data[‘BPM’] >
bpm_threshold_max)]

# Step 4: Generate Measurement Results
if not abnormal_bpm.empty:
print(“Abnormal BPM Measurements:”)
print(abnormal_bpm)

# Step 5: Return measurement’s status
BPM_status = (BPM >= BPM_threshold)? ‘Normal’: ‘Abnormal’

Pseudocode 2. Calculating SpO2

# Step 1: Define Standard Thresholds
spo2_threshold_min = 95

# Step 2: Data Preprocessing
data = pd.read_csv(‘your_dataset.csv’)

# Step 3: SpO2 Measurement
abnormal_spo2 = data[data[‘SpO2’] < spo2_threshold_min]

# Step 4: Generate Measurement Results
if not abnormal_spo2.empty:
print(“Abnormal SpO2 Measurements:”)
print(abnormal_spo2)

# Step 5: Return measurement’s status
SpO2_status = (SpO2 >= SpO2_threshold)? ‘Normal’: ‘Abnormal’

Pseudocode 3. Calculating BodyTemprature

# Step 1: Define Standard Thresholds
temperature_threshold_min = 36.5
temperature_threshold_max = 37.5

# Step 2: Data Preprocessing
data = pd.read_csv(‘your_dataset.csv’)

# Step 3: Temperature Measurement
abnormal_temperature=data[(data[‘Temperature’]<temperature_threshol
d_min)|(data[‘Temperature’]
>temperature_threshold_max)]

# Step 4: Generate Measurement Results
if not abnormal_temperature.empty:
print (“Abnormal Temperature Measurements:”)
print(abnormal_temperature)

# Step 5: Return measurement’s status
BodyTemp_status = (BodyTemp >= BodyTemp_threshold)? ‘Normal’: ‘Abnormal’

4.4. Phase 2: Proposed Mobile Application (System Interfaces)

To make using our device easier, we created a phone application that allows each
user to log into their account and see their heart rate in real- time. This also allows a
doctor to preview the heart rates of his patients from anywhere in the world and in real
time. Figure 3 shows the first interface, which is the login interface. Here, the user is
allowed to either create a new account or log into an existing one simply by entering his
personal information.
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Figure 4 shows an interface that permits the user to register by inserting the totality of
his personal information into the application. This information can later be accessed and
modified as needed.
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Figure 5 shows the monitoring of the user’s rates daily, and a reminder is then sent
to the user in the form of notifications. The rates monitored include temperature, blood
pressure, water levels, and blood oxygen.
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5. Result and Performance Evaluation
5.1. Phase 3: Obtaining Real-Time Results for 37 Individual Patients

The results obtained from the testing of our device have been compared with machines
in real time on the basis of certain metrics to determine its functionality. These data are
collected every 3 s, and the collected data are presented in Table 3 for only five patients. We
applied the Gradient Boosting Classifier (GBC) algorithm to our protocol. Gradient Boosting
is a machine learning ensemble method that combines a number of weak predictive models
(usually decision trees) to produce a strong predictive model. This approach for supervised
learning is generally employed for categorization jobs, which follow the steps of initializing
the ensemble, training the base learners, building an ensemble, iteratively refining the
ensemble, and making predictions. This table also provides two types of collected data to
check the accuracy of the obtained data from our proposed hardware, which is indicated
with “Data RTIoMT”, which shows real-time data collection, transmission, or processing of
medical data using our IoT device. On the other hand, “Data with External Devices” are
data collected from real devices already used in hospitals, and these medical devices are
readily available in the pharmacy. Therefore, we can see that our proposed device collects
accurate data. The average performance of the HCPMP protocol for these 37 volunteered
patients is illustrated in Table 4.

Table 4. Average Results of HCPMP—37 Volunteered Patients.

Algorithms/Parameters Accuracy Precision Recall F1-Score

Random Forest (RF) 99.2% 99% 99% 99%
Support Vector

Machines (SVM) 96.82% 100% 100% 100%

Decision Trees (DT) 100% 100% 100% 100%
Logistic Regression (LR) 97% 97% 97% 97%

5.2. Using the HealthAdvisor Dataset in the Proposed Framework

(A) Phase 4: Using the HealthAdvisor dataset [37] without attack
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This set is publicly available and comprises real-time data of 630 individual patients
with the values of age, gender, BMI, activity level measurement, medication, SpO2, BPM,
and temperature. A total of 56% of the patients were male, and 44% were female. The age
of the samples is 45–100 years old. The outcome of the experiment is shown in Table 5.

Table 5. Results of HCPMP—HealthAdvisor data-setdata set.

Algorithms/Parameters Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Random Forest (RF) 98.41% 98.52% 98.41% 98.395
Support Vector

Machines (SVM) 96.82% 97% 96.82% 96.76%

Decision Trees (DT) 99.2% 99.31% 99.2% 99.21%
Logistic Regression (LR) 96.85% 97.1% 96.83% 96.77%

(B) Phase 5: Security results from various attacks

In this phase, we illustrate the results obtained under various attacks. Hence, we apply
each individual attack, such as man-in-the-middle, denial of service, distributed denial
of service, injection, password, and scanning, on each ML algorithm separately to obtain
each ML’s model accuracy, precision, recall, and F1-score after the attack. We include all
the related tables, which are the outcomes of this phase, in the Supplementary Materials.
Table 6 shows the comparison of the weighted average of all the attacks of our ML models.

Table 6. Comparison of a weighted average of the attacks.

ML Algorithms/Parameters Precision Recall F1-Score

Random Forest (RF) 90.77% 91.66% 91.80%
Support Vector Machines (SVM) 89.44% 91% 90.9%

Decision Trees (DT) 89.33% 90.77% 90.7%
Logistic Regression (LR) 87.55% 91% 90%

5.3. Phase 6: Comparison of the Security Level of the Protocol with Others

In this phase of this study, we concentrated on comparing our protocol with others
in the literature. The BoT-IoT data set [36] is implemented in our protocol. This data set
includes DoS, DDoS, Reconnaissance, and Theft Attacks, and we compared the outcomes
to some existing algorithms. The BoT-IoT dataset was developed by creating a realistic
network environment at UNSW Canberra’s Cyber Range Laboratory. The traffic on the
network was a mix of regular and BoT-IoT types of traffic. The environment includes both
regular traffic and assaults like DoS and DDoS, as well as Reconnaissance and theft attacks.
There are 46 attributes in the data collection that are related to traffic characteristics. This
set is recent and representative of present IoT traffic. Table 7 shows the outcome from this
dataset and comparative analysis.

Table 7. Comparison with previous research—BOT-IoT.

Research/
Parameters Accuracy Precision Recall F1-Score Decision

Time
No. of

Features

[38] 100% 100% 100% 100% 17.2 s 20
[39] 99.80% - 98% - - 10
[40] 100% - - - 11.39 s 20
[41] 96.3% - - - - 26
[42] 99.99% - - - - 19
[43] 100% 100% 100% 100% 15 s 16

HCPMP
(Proposed) 100% 100% 100% 100% 16.3 s 46
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Moreover, the application of formal verification and validation (FV&V) approaches
can potentially address the issues of reliability and safety in IoT systems [44].

6. Discussion, Analysis, and Limitations

This section provides a concise evaluation of the performance of the four models based
on the outcomes of the categorization. Table 7 presents the accuracy, precision, recall, and
F1-score for each target class for all models. Also, it provides a comparison between the
proposed method and existing approaches.

6.1. Discussion and Analysis

In comparison to Table 5, ref. [38] we considered an event detection-based approach by
utilizing Extra Tree, Random Forest, and Deep Neural Network and achieved an accuracy
of 100%. It had a precision and recall of 100%. Halim et al. [39] used GA-based Feature
Selection (GbFS) in their study, which is an enhanced Genetic Algorithm (GA)-based feature
selection method for Securing a network from cyber attacks, and achieved an accuracy
of 99.80% and recall of 98%. The model used 10 features for classification. Rezaei A. [40]
proposed new ensemble learning by adopting ANN and DT models for detecting bots and
botnets in the IoT network and achieved an accuracy of 100%. Zeeshan et al. [41] proposed
a new Protocol-Based Deep Intrusion Detection architecture with an accuracy of 96.3% by
applying the LSTM algorithm. Nimbalkar et al. [42] proposed a system based on feature
selection by adopting Information Gain (IG) and Gain Ratio (GR) methods for detecting DoS
attacks by using 19 features and achieving 99.99% accuracy. Ismail M. et al. [43] present
a method for feature selection in small training sample classification called enhanced
recursive feature elimination (EnRFE). In terms of classification accuracy, it is 100%. Their
experimental results suggest that the proposed technique outperforms the original RFE.

From another perspective of our findings and experimental methods, by using several
ML techniques, the Random Forest (RF) model demonstrates outstanding performance
across all categories, exhibiting high levels of precision, recall, and F1-score for the majority
of classes. This model achieved a perfect accuracy rate of 100%, indicating that each forecast
made was correct. Both the weighted average and macro average measures provide a
100% value, indicating a uniform level of performance across all classes. Furthermore, the
performance of “INJECTION,” “MITM,” “PASSWORD,” and “SCANNING” is noticeably
worse, although their metrics remain satisfactory. Moreover, HCMP is more efficient than
other protocols in terms of the decision time, which is 16.30 s for 46 features.

The support vector machine (SVM) model exhibits strong performance, demonstrating
favorable precision, recall, and F1-score across the majority of classes. Similar to the
Random Forest model, it achieved a 100% accuracy rate, signifying that all of its predictions
were correct. Both the weighted average and macro average measures exhibit a consistent
and harmonious performance, with both measures achieving a perfect score of 100%.

Though it still performs admirably, the model using DT is marginally less effective
than both the RF and SVM methods. Most of the courses had good recall, accuracy, and
F1-scores. Even with a few errors here and there, the accuracy rate is still remarkably good
at 99% overall. The achievement of a 99% score within the weighted average and macro
average metrics indicates that the student has demonstrated a complete performance in
numerous classes.

For most classes, the logistical regression (LR) model performs well with good accuracy,
recollection, and F1-score metrics. With an accuracy of one hundred percent rate, the
model showed that it was highly reliable because all of the predictions it made came
true. Given that they both produce a 100% result, the weighted average metrics show
consistent performance.

Overall, the four models—Decision Tree (DT), Support Vector Machine (SVM), Ran-
dom Forest (RF), and Logistic Regression (LR)—perform admirably, displaying high F1-
scores and accuracy levels. While support vector machine (SVM) and the random forest
(RF) models offer ideal accuracy rates of 100%, the decision tree (DT) and logistic regression
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(LR) models show an accuracy rate of 99%. Most classes show strong prediction accuracy
concerning precision, recall, and F1-scores. It is crucial to remember that other aspects like
computing performance, interoperability, and dataset size may also have an impact on the
selection of the best model. However, based on the presented classification data, the SVM
and RF models perform better due to their perfect accuracy and uniform metrics within
all classes.

We used the same parameters as the candidate’s research in Table 7, which involved the
use of 20 features for classification via the method we employed to ensure a fair comparison.
Based on the obtained findings, it can be inferred that our suggested model, the Hybrid
Classification and Prediction Model (HCPMP), showed superior performance compared to
the other strategies. Specifically, the HCPMP achieved flawless accuracy, precision, recall,
and F1-score. In contrast to the preceding iterations, this particular version incorporated a
greater number of features, as outlined in Table 6. When evaluating the effectiveness of
these models, it is essential to consider several factors, such as the characteristics of the
dataset and its real-world application.

Maintaining an ongoing process of upgrading and retraining machine learning al-
gorithms is essential for efficiently adapting to evolving cybersecurity threats. However,
it is crucial to recognize that in some medical settings, access to necessary resources and
information might not always be easy. Thus, one of the most important areas of research in
IoMT cybersecurity is the creation of long-term and economical strategies for preserving
current machine learning algorithms.

Ultimately, developing standardized frameworks for communication, protocols, and
data formats is crucial to building a trustworthy, safe, and compatible health monitoring
system. The HCPMP architecture can maintain security and efficiency criteria while
effectively and ethically addressing the complexities of healthcare data.

6.2. HCPMP Framework Limitations

By exploring the potential limitations during the implementation and testing of the
system, we can mention security testing scenarios in Phase 5, which involve evaluating se-
curity features under different types of assaults on individual machine learning algorithms.
Nevertheless, real-world situations may entail many or more sophisticated attacks, and
this study’s emphasis on single attacks might not accurately represent the whole security
environment. Although thorough, the Phase 5 attacks (man-in-the-middle, denial of service,
etc.) might not cover all possible security risks in practical situations, leaving certain vulner-
abilities undiscovered. This study’s focus on specific attacks may not account for emerging
or evolving security threats in the rapidly changing landscape of healthcare cybersecurity.

However, it is important to recognize that selecting the best model involves more
than only accuracy measurements. The size of the dataset, interoperability, and processing
power are important considerations for choosing the best model. Nonetheless, when
considering the provided classification outcomes, the RF and SVM models prove to be
superior choices, displaying flawless accuracy and consistent metrics across all classes.
These findings demonstrate the transformative potential of machine learning and data
analytics in the analysis of health-related information in cloud-based environments, offering
not only accurate predictions but also recommendations for practical implementation in
healthcare settings.

7. Conclusions

Three key stages that comprise the framework (HCPMP) that we presented in this
research are as follows: the control stage; the detection stage; and the data-capturing step.
This real-time mechanism is implemented and tested in six (6) consecutive and distin-
guished phases for both hardware and software aspects. Extensive data were collected
from multiple persons and datasets to validate the proposed system’s performance. More-
over, the security comparison of HCPMP with six different methods in the literature in the
same context is evaluated by applying the BoT-IoT dataset. This suggested model, which
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is HCPM, showed superior performance compared to the other strategies. The outcome
improves healthcare results, resource allocation, secure data transmission, and patient
satisfaction. As medical IoT devices grow more common, it is critical to keep researching
and improving ML-based techniques in order to enhance their effectiveness in detecting
and mitigating cybersecurity threats in future directions. Also, to achieve high accuracy
and security of IoMT application, the heterogeneous ensemble learning method can be
applied to our method in the future and be compared with a few studies that implemented
this type of method.
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