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Abstract: In this study, the biomass expansion factor (BEF) method was combined with the tree growth
function in order to obtain a more accurate growth function of tree species through the fitting of
different growth functions to tree growth, and to determine the characteristics of the forest carbon
stock as well as the carbon sink potential of Huangshan National Forest Park (HNFP) in China. The
carbon sink potential of each tree species and the integrated influencing factors, such as the stand
and soil, were directly represented by structural equation modelling (SEM) to clarify the size and
path of each influencing factor against the carbon sink potential. The results showed the following:
(1) the logistic growth function fitting results for the seven major tree species in HNFP were better
than those from the Richard–Chapman growth function, and the R2 was greater than 0.90. (2) In 2014,
the total carbon stock of the forest in HNFP was approximately 9.59 × 105 t, and the pattern of carbon
density, in general, was higher in the central region and the northeastern region and lower in the
northern and southern regions, while the distribution of carbon density was lower in the northern
and southern regions. The carbon density pattern generally showed a higher distribution in the
central and northeastern regions and a lower distribution in the northern and southern regions; most
of the high-carbon-density areas were distributed in blocks, while the low-carbon-density areas were
distributed sporadically. (3) The total carbon sink of the forest in HNFP was 8.26 × 103 t in 2014–2015,
and due to the large age structure of the regional tree species, the carbon sinks of each tree species
and the total carbon sink of HNFP showed a projected downward trend from 2014 to 2060. (4) For
different tree species, the influencing factors on carbon sink potential are not the same, and the main
influence factors involve slope position, slope, altitude, soil thickness, etc. This study identified the
carbon stock and carbon sink values of the forest in HNFP, and the factors affecting the carbon sink
potential obtained by SEM can provide a basis for the selection of new afforestation sites in the region
as well as new ideas and methods to achieve peak carbon and carbon neutrality both regionally and
nationally in the future.

Keywords: BEF; tree growth function; SEM; carbon stock; carbon sink potential; HNFP; China

1. Introduction

The excessive extraction and utilization of energy by humans have led to an over-
abundance of carbon from fossil fuels being released into the atmosphere [1], posing a
considerable challenge that urgently needs to be addressed: the continual rise in global
temperatures due to these greenhouse gases [2]. The Paris Agreement [3] aims to keep the
global average temperature increase well below two degrees Celsius above pre-industrial
levels, and as a signatory, China has set strategic targets to ensure peak carbon emissions
by 2030 and achieve carbon neutrality by 2060.

Terrestrial vegetation has been an invisible yet significant force against global warm-
ing [4,5] that has played a substantial role over the past three decades [6], with forests, in
particular, serving as an irreplaceable factor in reducing the accumulation of greenhouse

Sustainability 2024, 16, 1351. https://doi.org/10.3390/su16031351 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16031351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su16031351
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16031351?type=check_update&version=1


Sustainability 2024, 16, 1351 2 of 19

gases in the atmosphere [7]. China has long been committed to forest conservation, im-
plementing afforestation, reforestation, and the establishment of protected areas. These
initiatives have significantly increased both the area of forested land [8] and the forest
carbon sink capacity [9] in the past thirty years, mitigating China’s greenhouse effect to
a certain extent [10]. China’s afforestation efforts have contributed to a notable carbon
sink [11]; however, studies indicate that the carbon sink potential of existing forests is set
to inevitably decline in this century [12]. Therefore, scientifically planning the timeline
for tree planting and forest carbon sinks based on the overall future potential is critically
important [13,14]. Investigating the impacts of environmental factors on the forest carbon
sink potential can aid in formulating more efficient forest management decisions [15–17],
thereby enhancing the long-term carbon sink capability of forests [16,18,19] and strength-
ening their role in mitigating global warming. Huangshan National Forest Park (HNFP)
serves as a successful case of forest conservation in China, where, under governmental
management, it has been well protected with minimal human interference, offering an
excellent opportunity to study the impact of geographic factors on a forest carbon sink.
Furthermore, diverging from the traditional approach of evaluating the carbon sink po-
tential based on forest types [20,21], research at the species scale aligns more closely with
the characteristics of afforestation in smaller areas (which involve specific tree species).
This research methodology and its findings are better suited to the precise management of
regional afforestation efforts.

Existing methods for estimating carbon sinks in forest ecosystems include the for-
est ecosystem carbon stock estimation method [22], the forest carbon balance modelling
method [23], and the forest ecosystem carbon flow estimation method [24]. Among them,
the forest ecosystem carbon stock estimation method, which calculates the carbon stock
and then obtains the potential of the carbon sinks, has been widely used due to its low
operational difficulty, high reliability, and wide range of applications. Among forest carbon
stock estimation methods, the direct measurement method [25] requires high forest data,
the remote sensing method [26] tends to estimate forest carbon stock at a large scale, and
the biomass expansion factor (BEF) method is more practical and accurate in the absence
of detailed information on tree measurement factors. The BEF method was proposed by
Fang et al. and has played a transformative role in accurately estimating carbon stocks in
China [21]; it has been applied in Europe [27], and the Americas [28]. The forest carbon sink
potential can be converted to the difference between the year of maximum forest carbon
stock and the forest carbon stock of a certain year, and because the growth of trees has a
maximum limit, the carbon stock of mature forests (or overmature forests) can be regarded
as the maximum carbon stock in the region [29]; thus, we can derive the total carbon sink
potential of regional forests.

Considering the growth process of trees, the increase in the forest carbon stock in forest
ecosystems is mainly caused by the increase in tree carbon density with the increase in age;
ecologists believe that the changes in tree carbon density and age are closely related [30],
and it is generally believed that the change in tree carbon density with age is consistent
with the logistic, Richard–Chapman, and Gompertz growth functions, among others [31].
Studies have used tree age to calculate the carbon density of trees to obtain the carbon sink
potential of forests in both large areas [9,21] and small areas [20,32]. Due to differences in
the growth rates and conditions of different tree species, to obtain more accurate carbon
stocks in forest ecosystems, different growth functions for different tree species can improve
the accuracy of forest ecosystem carbon stocks, and thus improve the accuracy of carbon
sink calculations.

Forest carbon stock is an important indicator for studying the exchange of carbon
between forest ecosystems and the atmosphere. Existing studies have explored many
factors affecting forest carbon stock, including environmental factors [33,34], climatic
factors [35], and artificial influences [36]. However, carbon stocks vary depending on the
population composition and dominant species type [37], and a selection of carbon stock
studies ignore the growth condition of forests and so cannot directly reflect the response of
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forest ecosystems. Carbon sink potential refers to the amount of carbon that can be absorbed
and stored by forest ecosystems within a certain period in the future, and it is an important
indicator for assessing the responsiveness of forest ecosystems to climate change. Therefore,
studying the influencing factors of carbon sink potential can help us to understand the
responsiveness of forest ecosystems and develop corresponding management strategies. In
the past, most studies have focused on single aspects such as the altitude factor, landform,
canopy density, etc. [35,38], with fewer indirect studies focusing on the interactions between
influencing factors and these features. In fact, in addition to the factors directly affecting
carbon sink potential, some environmental factors may affect carbon sink potential through
indirect pathways. Such studies can be more comprehensive and integrated to analyze the
effects of various factors such as site conditions and stand density.

In terms of study methodologies, SEM has become one of the main methods for
contemporary ecological data analysis [39]. Unlike other multivariate statistical methods,
SEM is driven by theoretical assumptions and can not only obtain correlations among
variables, but can quantify direct and indirect causal relationships among multiple variables
simultaneously [40,41]. The application of SEM to the study of factors influencing the
potential of carbon sinks can directly determine the directions and magnitudes of the
influences of environmental factors on the potential of carbon sinks, which provides new
perspectives.

HNFP is an important natural ecological reserve, forest park, and geological park, and
the forest diversity in the park is of national and global conservation significance [42]. In
this study, we chose HNFP in Anhui Province, China, as a case study, and the objectives
of the study were (1) to simulate relationships between the carbon stocks of different
tree species and forest ages in HNFP; (2) to estimate the carbon sinks and sink potentials
of a forest under a long-term time series in HNFP; and (3) to investigate the influence
of environmental factors on the magnitudes and paths of the carbon sink potentials of
different tree species in HNFP.

2. Materials and Methods
2.1. Study Area

HNFP (118◦01′–118◦17′ E,30◦01′–30◦18′ N) is located in Huangshan City in the south
of Anhui Province (Figure 1); the official establishment of HNFP was approved by the
former National Ministry of Forestry in 1988. From 1988 to the present, the operation
of HNFP has been devoted to the protection and maintenance of its subtropical forest
ecosystem, preserving the rich forest resources, wide diversity of tree species, the region’s
natural ecological conditions, and the integrity of the forest ecosystem. For 35 years,
HNFP has been an important natural ecological reserve, forest park, geopark, and tourism
area, representing one of China’s most important biodiversity conservation and water
conservation ecological function areas. Moreover, HNFP is located in one of the thirty-
five priority areas for biodiversity conservation in China (Huangshan–Huayu Mountain
Biodiversity Conservation Priority Area), and it is one of the twenty-six World Nature
Conservation Units of the International Union for the Conservation of Nature (IUCN); the
diversity of plants in the park is of national and global significance for conservation [43,44].

This forest park is located in the subtropical monsoon climate zone: the climate varies
with altitude; the temperature decreases vertically; the north and south slopes are subject
to dramatic differences in solar radiation; the local topography plays a dominant role in the
formation of a special mountain monsoon climate; there is average precipitation of 2394 mm
per year; and the climate is cool (an average of 7.8 degrees Celsius). The vegetation type
in the forest park is mainly broad-leaved evergreen forest, with more than 900 species
of trees and shrubs of 41 families, and the forest coverage rate is 84.7%, with an area of
160.6 km2. The topography of HNFP is rich in variety, with high, mountainous terrains;
height differences of up to 1700 m; and an obvious vertical distribution of vegetation, in
which 94.40% of the forest patches are higher than 500 m above sea level. In summary,
HNFP exhibits diversified forest types, with its origin dominated by natural forests, a



Sustainability 2024, 16, 1351 4 of 19

warm and humid climate, abundant rainfall, and typical features of southern subtropical
montane forests.
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Figure 1. Geographic location, elevation, and basic information of the forest survey in HNFP. (a) Lo-
cation and elevation. (b) Distribution of forest types (full species names are detailed in Section 2.2).
(c) Area share of major dominant tree species (classes). (d) Age groups (young forest: ≤20; middle-
aged forest: 20–30; near-mature forest: 30–40; mature forest: 40–60; and overmature forest: ≥60).
(e) The origin of forest patches (natural/planted forests).

2.2. Data Sources

According to the “Main Technical Provisions of Forest Resources Survey”, assessments
of the land, trees, animals, and plants within the forest area and their environmental
conditions are referred to as forest surveys. Their purpose is not only to determine the
relationships between forest resources, quality, growth, and the demise of dynamic patterns
in the natural environment in addition to economic and even management conditions;
they are also used for the formulation and adjustment of forestry policy, the preparation of
forestry plans, and the identification of forest management effect services. Such surveys
also serve to formulate and adjust forestry policies, prepare forestry plans, and appraise the
effectiveness of forest management, ultimately achieving the effective utilization of forest
resources and improving the potential productivity of forests.

The basic data for this study were obtained from the forest management inventory
data (FMID) in HNFP. There were 712 forest patches with a total area of 13,462.36 ha, which
were composed of natural forest stands (naturally underplanted, artificially facilitated
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regeneration, or germinated after disturbances such as natural forest logging) and planted
forest stands (completely sown by machine or artificially, such as nursery, seeding, and fly
sowing), of which natural forests dominated the study (95.96%). After eliminating invalid
data, 658 valid forest survey patches were obtained, with a total area of 12,773.73 ha. The
survey accuracy of the sampled volume and forest patch factors was ensured through
systematic sampling, and the overall regional volume accuracy reached 80–85%. According
to the dominant tree species in the forest sub-groups in the second land survey data, there
were fourteen main species (classes) of trees, which were as follows: Cunninghamia lanceolata
(Lamb.) Hook., Metasequoia glyptostroboides Hu et W. C. Cheng, Cryptomeria japonica var. sinensis
Miq., Pinus massoniana Lamb., Pinus taiwanensis Hayata, Pseudolarix amabilis (J. Nelson) Rehder,
Quercus, Castanopsis sclerophylla (Lindl. et Paxton) Schottky, Liquidambar formosana Hance,
Castanea, Schima, other broadleaf hardwood (OBLHother broadleaf softwood (OBLS), and
Phyllostachys heterocycle (Carr.) Mitford cv. Pubescens. Among them, Quercus, P. taiwanensis,
and C. sclerophylla accounted for a higher proportion of the total forest area, covering 36.8%,
32.4%, and 18.3%, respectively.

In terms of age, mature and overmature forests dominated in HNFP, with mature
forests accounting for 29.20% and overmature forests accounting for 47.64% of the total
forest area; 55.76% of the total forest area was over 60 years old. In total, 73 forest factors
were recorded in the second survey data of HNFP, including (i) site conditions (elevation,
slope direction, slope, soil thickness, humus thickness, etc.), (ii) stand characteristics (age
group, average age, average diameter at breast height, average height of tree, degree
of closure, etc.), and (iii) evaluation factors (public welfare forest protection class, stand
protection class, etc.). These factors provided sufficient conditions for the establishment of
a structural equation model. In the 658 effective forest survey patches, there were fourteen
main species (classes) of trees. Due to the need to fit the growth equations, seven tree
species (accounting for 98.2% of the total area) with a high number of forest sample plots
were selected for the study, namely, L. Formosana, C. sclerophylla, C. lanceolate, OBLH,
P. massoniana, P. taiwanensis, and Quercus.

2.3. Methods for Estimating the Forest Carbon Sink Potential
2.3.1. Estimation of Forest Carbon Stocks

The BEF method assumes that forest biomass is directly proportional to hectare volume,
and the relationship between biomass and hectare volume for different forest types is
obtained from the sample plot survey data, which is then converted to the carbon stock
through the carbon content coefficients of various forest trees. The forest carbon sink
potential can be converted to the difference between the year of maximum forest carbon
stock and the forest carbon stock in a certain year; because tree growth has a maximum
limit, the carbon stock of mature forests (or overmature forests) can be regarded as the
maximum carbon stock in the region, so the total carbon sink potential of regional forests
can be determined. The BEF method was used to estimate the biomass density of each
forest patch, and then the carbon stock of the corresponding tree species was obtained
through the carbon content coefficient. The parameter values of the BEF method were
obtained through reference [45,46]. Firstly, the biomass conversion factor was calculated
according to the hectares of standing trees in each patch, and then the biomass density was
calculated. The equations are as follows:

BEF = a +
b
x

(1)

B = BEF ∗ X (2)

where X in Equations (1) and (2) is the volume density (m3/ha) of a patch (data from the
FMID), B is the biomass density, a and b are constants for the forest type, and BEF is the
biomass conversion factor. The biomass density calculated by this method is the average
biomass density of the forest type at that age.
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2.3.2. Estimation of the Forest Carbon Sink Potential

In this study, a space-for-time substitution approach was employed, leveraging data
from the second national forest inventory to model the relationship between biomass
density and forest age. This yielded estimates of biomass density growth for various
species of trees in the Huangshan region over an extended temporal sequence from 2014
to 2060.

Two prominent growth functions, the Richard–Chapman and logistic growth models,
were utilized to perform the nonlinear fitting of biomass density against forest age for a
given tree species. The Richard–Chapman growth function is adaptable to a wide range of
biological growth patterns, from unimodal to asymmetric S-shaped curves, by adjusting
its parameters. It is particularly adept at capturing the early rapid and later slow stages
of forest growth, offering greater accuracy with larger datasets. Conversely, the logistic
growth function aptly describes the tendency of forest growth to stabilize after a certain
point, which is crucial for simulating the carbon sink potential of forests as they mature.
This function is more applicable when the dataset is of moderate size. Fitting results were
tested using the highest coefficient of determination (R2) and the p-value, and the results
were cross-validated through the leave-one-out cross validation to ensure the accuracy of
the model. The equations are as follows:

Richard − Chapman : y = a
(

1 − e−bt
)c

(3)

Logistic : y =
w

1 + ke−at (4)

where y is the biomass density of a patch, t is the stand age of trees, a, b, c, w, and k are the
fitting parameters of the corresponding functions (a in the Richard–Chapman function and
w in the logistic equation represent the maximum biomass density of a tree species under
the natural growing conditions), and the maximum biomass density of overmature forests
of the corresponding species in the HNFP area was taken as the value. The Chapman
equation and Slogistic3 equation were used in Origin2021 for model fitting.

Assuming that there will be no deforestation or death of forests in HNFP before 2060,
the carbon stock of the existing forests in a certain year in the future can be calculated using
the corresponding growth function, taking the logistic growth equation as an example; the
equation is as follows:

CT = V ∗ γ ∗ w
1 + ke−at (5)

where CT denotes the carbon stock of a patch in year T, V is the patch area, γ is the carbon
content coefficient of the main tree species of the corresponding patch, w, k, and a are
the fitting parameters of the logistic equation for the species, and t is the stand age of the
tree species of the patch in a corresponding year.

Carbon sink capacity is the ability of vegetation to fix carbon per unit of time, expressed
as the increase in carbon stocks over time. When the forest carbon density is relatively
stable, the carbon sink potential is the difference between the carbon stock that tends to
reach its maximum value and the current year’s carbon stock. The carbon sink potential is
calculated through the following equation:

CS = CT − CT−1 (6)

where the annual carbon sink, CS, of a given patch is the difference between the carbon
stock, CT, of the neighboring year and the corresponding carbon stock, CT−1, and the
current carbon sink potential is the difference between the year of the largest carbon stock
and the current year’s carbon stock.
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2.3.3. Influencing Factor Analysis Method

Multiple correlation diagnostics were performed first to calculate the variance inflation
factor (VIF), as shown in Equation (7):

VIF =
1

1 − R2 (7)

where R2 is the coefficient of determination of the regression of a factor on other inde-
pendent variables when it is the dependent variable. Generally, a VIF greater than 10 is
considered indicative of strong multicollinearity [47], which may affect the stability of
model parameter estimation. By eliminating variables with high VIF values, we ensured
that the independent variables in the model remained relatively autonomous, reducing
bias in parameter estimation and providing a solid foundation for subsequent SEM.

Structural equation modelling is a method for constructing, estimating, and testing
causal relationship models. The model may include observable manifest variables as well
as latent variables that cannot be directly observed. SEM can replace multiple regression,
path analysis, factor analysis, and analysis of covariance, among other methods, to clearly
analyze the impact of individual indicators on the overall system and the inter-relationships
between them. Piecewise structural equation modelling (pSEM) extends traditional SEM to
handle non-normal distributions and hierarchical structures, which we employed to further
investigate the relationships between geographical factors and the carbon sink potential. We
utilized the following five indices [39,48,49]: degrees of freedom (DF), p-value, standardized
root mean square residual (SRMR), root mean square error of approximation (RMSEA),
and the goodness-of-fit index (GFI). DF reflects complexity, with lower values typically
indicating a more parsimonious model. The p-value is used to test the overall statistical
significance of a model, with a significant p-value (<0.05) suggesting a good fit to the data.
The SRMR is a measure of the discrepancy between observed and model-predicted values,
with lower SRMR values (<0.08) indicating smaller residuals and a better fit. The RMSEA
takes into account model complexity, with smaller values indicating a higher degree of
fit between the model and observed data; RMSEA values less than 0.06 are generally
considered indicative of an excellent model fit. The GFI measures the fit of the model
relative to a perfect model, with values close to 1 indicating a very good fit. These analyses
were implemented using the piecewiseSEM and lavaan packages in R 4.2.3.

3. Results
3.1. Growth Function Selection and Forest Carbon Stock Distribution

We explored the major tree species in the HNFP through Richard–Chapman and
Logistic growth functions. The results of the fitting are shown in Figure 2 and Table 1. The
results showed that the overall fitting of the two growth functions for the seven major
tree species were better in HNFP, in which the growth functions of six tree species were
successfully fitted using the Richard–Chapman growth function, with an R2 value greater
than 0.85, and the growth functions of seven tree species were successfully fitted using
the logistic growth function, with an R2 value greater than 0.90. All of the fitting results
of the logistic growth function for all tree species were better than those obtained with
the Richard–Chapman growth function. This indicates that the logistic growth function
is more in line with the growth pattern of trees in the study area, and that it has better
applicability to the estimation of forest biomass in HNFP; therefore, the results of the
logistic growth function were used for the calculation of carbon stocks and the carbon
sinks of all tree species. The logistic growth function describes the relationship between
forest biomass and the forest age of the dominant species, which provides a basis for more
accurate estimations of the carbon stock and sink potential.
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Table 1. BEF parameters and growth function fitting parameters.

Tree Species

Biomass
Expansion Factor Richard-Chapman Fitting Curve Logistic Fitting Curve

BEF = a + b/V y=a(1−e−bx)c y= w
1+ke−at

a b a b c R2 w a k R2 p

L. formosana 0.475 30.603 102.816 0.028 ± 0.011 1.012 ± 0.159 0.944 <0.01
C. sclerophylla 1.036 8.059 127.682 0.054 3.225 0.953 127.682 0.058 ± 0.006 5.75 ± 1.401 0.975 <0.01
C. lanceolate 0.400 22.541 91.404 0.046 0.573 0.898 91.404 0.056 ± 0.012 0.979 ± 0.340 0.915 <0.01

OBLH 0.644 8.310 51.274 0.054 0.472 0.937 51.274 0.076 ± 0.015 1.094 ± 0.190 0.938 <0.01
P. massoniana 0.801 4.055 154.243 0.057 5.045 0.929 154.243 0.072 ± 0.065 14.224 ± 4.136 0.948 <0.01
P. taiwanensis 0.517 33.238 140.732 0.075 17.504 0.925 140.732 0.090 ± 0.006 50.005 ± 18.162 0.934 <0.01

Quercus 1.145 8.547 159.727 0.054 2.558 0.973 159.727 0.064 ± 0.003 6.266 ± 0.850 0.986 <0.01

For the Biomass expansion factor, a and b are constants for different forest types; for the Richard–Chapman fitting
curve, a is the maximum biomass, and b and c are coefficients determining the growth rate; for the logistic fitting
curve, w is the maximum growth, and a and k are coefficients determining the growth rate.

In 2014, the average carbon density of HNFP was 75.08 t/ha, the pattern of carbon
density was higher in the central and northeastern regions and lower in the northern
and southern regions, and most of the areas with high carbon density were distributed
in blocks, while the areas with low carbon density were distributed sporadically. At the
same time, to better understand the distribution characteristics of carbon stocks of each tree
species, we divided the altitude into low altitude (0–600 m), middle altitude (600–1200 m),
and high altitude (1200–1800 m), and we analyzed the contribution of carbon densities of
different age groups of different tree species at different altitudes, as shown in Figure 3.
Forest patches were more frequent in the middle-elevation interval, and the average carbon
density of tree species at this elevation was 69.72 t/ha, although there was a considerable
difference between the carbon densities of young forests and overmature forests, which
were 20.18 t/ha and 83.23 t/ha, respectively. The tree species Quercus and P. taiwanensis
contributed the most to the average carbon density at this elevation, accounting for 52.84%
and 20.75%, respectively. In the low-elevation zone, the average carbon density of tree
species was 55.55 t/ ha, to which Quercus contributed the most, accounting for 27.35%,
and the carbon density of other tree species accounted for a relatively similar proportion.
In the high-elevation area, the tree age group type was dominated by mature forests and
overmature forests, and the average carbon density of tree species at this elevation was
the highest at 83.54 t/ha, which was mostly represented by the tree species P. taiwanensis
and Quercus, accounting for 72.95% and 24.34%, respectively. In the study area, the carbon
density increased with elevation in the low-, middle-, and high-elevation zones, and the
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carbon density of overmature or mature forests was the highest in one elevation zone,
which was in line with the law of tree growth.
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Figure 3. Characteristics of the current carbon sink capacity of forests in HNFP. The geographical
distribution map shows the spatial distribution of forest carbon density in 2014; the carbon density
stacking graphs show the percentage of carbon density of each age class forest type in HNFP at
elevation gradients of (0 to 600), (600 to 1200), and (1200 to 1800).

In 2014, the total forest stock of HNFP was 1.38 × 106 m3, the biomass was approx-
imately 1.92 × 106 t, and the total forest carbon stock was approximately 9.59 × 105 t.
Carbon stock responded to the overall status of different tree species. Among them, Quer-
cus and P. taiwanensis contributed the most to the carbon stock of HNFP, with 3.98 × 105 t
and 3.45 × 105 t, respectively, accounting for 41.50%, and 35.97% of the total forest carbon
stock of HNFP in 2014, whereas L. Formosana, OBLH, and C. lanceolate contributed less
to the carbon stock of HNFP, accounting for a total of 4.93% of the forest carbon stock
of HNFP.

3.2. Analysis of Spatial and Temporal Patterns of Forest Carbon Sinks

According to the forest age distribution of existing forests in HNFP, the relationships
between the biomass of the tree species and the forest age were explored with the growth
function, which was used to obtain the relationship between the carbon stock of the
tree species and the forest age and to obtain the spatial and temporal pattern of carbon
sinks in HNFP from 2014 to 2060. From Figure 4, it can be seen that the carbon stock will
continue to grow until 2060, although the carbon stock growth rate will slow down by 2060.
Quercus and P. taiwanensis will consistently contribute the most to the carbon stock, and the
share of the carbon stock of each tree species presents a relatively stable state. From 2014 to
2060, the carbon stock of HNFP will keep rising, and in 2060, it is expected that the total
forest carbon stock of HNFP will reach 11.17 × 105 t, which is an increase of 1.58 × 105 t
compared with that in 2014. Remaining the most important contributors to the carbon
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stock of HNFP, Quercus and P. taiwanensis will account for 76% of the total forest carbon
stock in 2060.

Sustainability 2024, 16, x FOR PEER REVIEW 10 of 20 
 

3.2. Analysis of Spatial and Temporal Patterns of Forest Carbon Sinks 
According to the forest age distribution of existing forests in HNFP, the relationships 

between the biomass of the tree species and the forest age were explored with the growth 
function, which was used to obtain the relationship between the carbon stock of the tree 
species and the forest age and to obtain the spatial and temporal pattern of carbon sinks 
in HNFP from 2014 to 2060. From Figure 4, it can be seen that the carbon stock will con-
tinue to grow until 2060, although the carbon stock growth rate will slow down by 2060. 
Quercus and P. taiwanensis will consistently contribute the most to the carbon stock, and 
the share of the carbon stock of each tree species presents a relatively stable state. From 
2014 to 2060, the carbon stock of HNFP will keep rising, and in 2060, it is expected that the 
total forest carbon stock of HNFP will reach 11.17 × 105 t, which is an increase of 1.58 × 105 
t compared with that in 2014. Remaining the most important contributors to the carbon 
stock of HNFP, Quercus and P. taiwanensis will account for 76% of the total forest carbon 
stock in 2060. 

 
Figure 4. Carbon sink potential of different tree species from 2000 to 2060: (a) changes in carbon 
stocks of different tree species; (b) contributions of different tree species to the total forest carbon 
stocks; (c) changes in annual carbon sinks of tree species; and (d) contributions of different tree spe-
cies types to the total annual carbon sinks. 

Based on the carbon stock changes in the forests of HNFP under the time series of 
2014–2060, the annual carbon sink, as well as the carbon sink potential of HNFP, can be 
obtained. The total carbon sink potential of forest trees in HNFP in 2014–2060 is 3.15 × 105 
t, of which Quercus and P. taiwanensis exhibit the largest carbon sink potentials, of 1.32 × 
105 t and 0.79 × 105 t, respectively. It can be seen from Table 2 and Figure 4c,d that in the 
years 2014–2060, the carbon sinks of each tree species, as well as the total forest carbon 
sink in HNFP, exhibit downward trends. From Figure 1, it can be seen that the age 

Figure 4. Carbon sink potential of different tree species from 2000 to 2060: (a) changes in carbon
stocks of different tree species; (b) contributions of different tree species to the total forest carbon
stocks; (c) changes in annual carbon sinks of tree species; and (d) contributions of different tree
species types to the total annual carbon sinks.

Based on the carbon stock changes in the forests of HNFP under the time series of
2014–2060, the annual carbon sink, as well as the carbon sink potential of HNFP, can be
obtained. The total carbon sink potential of forest trees in HNFP in 2014–2060 is 3.15 × 105 t,
of which Quercus and P. taiwanensis exhibit the largest carbon sink potentials, of 1.32 × 105 t
and 0.79 × 105 t, respectively. It can be seen from Table 2 and Figure 4c,d that in the years
2014–2060, the carbon sinks of each tree species, as well as the total forest carbon sink in
HNFP, exhibit downward trends. From Figure 1, it can be seen that the age structure of
Huangshan’s forests has developed past being youthful, due to the age group of each tree
species in the Huangshan Mountains being dominated by mature forests and overmature
forests, generating a phenomenon of increased carbon sink capacity. Regarding Quercus and
P. taiwanensis, which contribute the most to the carbon sinks in the Huangshan Mountains,
the annual carbon sink contribution ratio of Quercus will still increase due to its large forest
area, while the annual carbon sink contribution ratio of P. taiwanensis will decrease due to
its large forest age structure, even though it accounts for a large area. It is worth mentioning
that C. sclerophylla has the highest annual average hectare carbon sink capacity during the
period of 2014–2060 due to its younger age distribution.
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Table 2. Status of the carbon density/carbon stock of different tree species.

Tree Species Forest
Volume (ha)

Forest Volume
Density
(m3/ha)

Tree Biomass
(×105t)

Forest Carbon
Stock (×105t)

Forest Carbon
Density (t/ha)

Total Carbon
Sink (×103t)

Forest Carbon
Sink Intensity

Growth (t/ha/a)

L. formosana 404.23 74.52 0.38 0.19 46.05 3.90 0.21
C. sclerophylla 2214.71 79.18 2.36 1.18 53.42 30.28 0.30
C. lanceolate 269.67 147.13 0.30 0.15 55.62 3.25 0.26

OBLH 207.46 53.45 0.28 0.14 66.01 2.26 0.24
P. massoniana 608.09 137.56 1.00 0.50 81.98 12.40 0.44
P. taiwanensis 4276.29 135.28 6.90 3.45 80.78 39.69 0.20

Quercus 4793.28 98.13 7.96 3.98 83.01 65.77 0.30
overall 12,773.73 103.61 19.18 9.59 75.06 157.55 0.27

3.3. Analysis of the Forest Carbon Sink Potential

From the spatial and temporal distribution of carbon sinks in HNFP, the total carbon
sink of Huangshan forests from 2014 to 2015 was 8.26 × 103 t. Among them, Quercus, P.
taiwanensis, and C. sclerophylla contributed the most to the carbon sink in HNFP, with values
of 3.18 × 103 t, 2.70 × 103 t, and 1.37 ×103 t, accounting for 38%, 33%, and 16% of the total
forest carbon sink of HNFP in 2014. Before 2060, the carbon sink potentials of L. Formosana, C.
sclerophylla, C. lanceolate OBLH, P. massoniana, P. taiwanensis, and Quercus were 1.18 × 104 t,
1.06 × 105 t, 1.52 × 104 t, 9.87 × 103 t, 4.15 × 104 t, 1.96 × 105 t, and 2.43 × 105 t, respectively,
among which Quercus and P. taiwanensis had the highest potentials for total forest carbon sink
due to their large forest areas. The tree species with the highest average carbon sink potential
per hectare was P. massoniana, with an average carbon sink potential of up to 68.26 t/ha.

According to Figure 5, the highest carbon sink potential of HNFP is 87.56 t/ha; the
distribution of the carbon sink potential was high at the edge and low in the middle. In
comparison with Figure 1, it can be observed that the areas with high carbon sink potential
were mainly the younger patches of P. massoniana and P. taiwanensis, due to the high bulk
densities of both these tree species; in addition, the patches with high carbon sink potential
were preferentially concentrated in low-altitude areas.
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3.4. Exploration of Factors Influencing the Carbon Sink Potential

First, we screened and diagnosed the multiple correlations of several influencing
factors, excluded the influencing factors with multiple covariance, and finally selected the
slope, slope position, slope direction, elevation, soil thickness, humus thickness, depression,
elevation, and tree age as the influencing factors to be used to construct the structural
equation model with the carbon sink potential of the seven major tree species in HNFP.

For P. taiwanensis (Figure 6), it was found that the carbon sink potential was mainly
affected by the slope position (standardized total effect value (STEV) = 0.122 *), tree age
(STEV = −0.733 ***), soil thickness (STEV = −0.145 *), and elevation (STEV = 0.142 *), with
tree age having the greatest effect on the carbon sink potential. Among the geographic
factors, elevation had the greatest effect on the carbon sink of P. taiwanensis, and elevation
indirectly affected the carbon sink potential of P. taiwanensis by influencing the slope, soil
thickness, and tree age factors [12]. The soil thickness and slope indirectly affected the
carbon sink potential of P. taiwanensis by influencing the age of the trees, while slope also
affected the carbon sink potential of P. taiwanensis by influencing the thickness of the soil
layer and the direction of the slope.
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Figure 6. SEM of carbon sink-influencing factors of P. taiwanensis. (“*” indicates a significance level of
0.05, suggesting a 95% confidence in the observed relationships or differences. “***” signifies an even
higher level of statistical significance at 0.001, offering a 99.9% confidence level).

For Quercus (Figure 7), its carbon sink potential was mainly affected by the direct
influences of the degree of depression (STEV = −0.259 ***), tree age (STEV = −0.637 ***),
and soil thickness (STEV = 0.161 **), among which age had the greatest influence on the
potential of carbon sinks, followed by the degree of depression. Among the geographic
factors, slope had the greatest effect on Quercus carbon sinks, and it indirectly affected the
carbon sink potential of P. taiwanensis by influencing soil thickness and tree age. Elevation
affected the carbon sink potential by indirectly influencing the soil thickness and slope
direction, which correlates with the age of the trees; slope position also affected the carbon
sink potential by influencing the age of the trees.
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Figure 7. SEM of carbon sink influencing factors of Quercus. (“*” indicates a significance level of
0.05, suggesting a 95% confidence in the observed relationships or differences. “**” represents a more
stringent significance level of 0.01, providing a 99% confidence level. “***” signifies an even higher
level of statistical significance at 0.001, offering a 99.9% confidence level).

For C. sclerophylla (Figure 8), its carbon sink potential was mainly affected by the direct
effects of depression (STEV = −0.270 *), tree age (STEV = −0.462 ***), and soil thickness
(STEV = −0.274 *), with tree age having the greatest effect on the carbon sink potential,
followed by soil thickness. Among the geographic factors, elevation indirectly affected the
carbon sink potential of C. sclerophylla by influencing soil thickness and depression. Slope
position indirectly affected the carbon sink potential by influencing the closure and tree
age, and the slope also affected the carbon sink potential by influencing the soil thickness.
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Figure 8. SEM of factors influencing the carbon sink of C. sclerophylla. (“*” indicates a significance
level of 0.05, suggesting a 95% confidence in the observed relationships or differences. “**” represents
a more stringent significance level of 0.01, providing a 99% confidence level. “***” signifies an even
higher level of statistical significance at 0.001, offering a 99.9% confidence level).
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4. Discussion
4.1. Assessment of Forest Carbon Stock and Sink Potential

The method of constructing biomass–age relationships based on species growth func-
tions is now one of the main techniques for estimating forest biomass carbon stocks and
predicting future forest carbon sink potentials. Several studies have used the biomass–age
method to estimate the carbon sink potential of regional forests at large regional scales,
such as nationally and provincially, as well as at smaller regional scales. When using this
method in small areas, it is necessary to obtain a biomass–age growth function that is
as accurate as possible to improve the accuracy and precision of assessments of regional
carbon stock and sink potential.

In this study, taking into account the differences between tree species, the growth
trends may be different during the growth processes; therefore, two growth functions
were used to fit the biomass–age function of each tree species to select the growth function
that is more suitable for the growth process. At the same time, the maximum biomass of
tree species in different regions are also different due to variable geographic and climatic
factors in the region. When setting the maximum biomass of tree species in the function,
the maximum biomass of overmature forest of the species in the study area was taken as
the appropriate value to derive a biomass–story–age function that was more in line with
the study area. The biomass–age function of the dominant tree species in the Huangshan
Mountain region obtained in this study was more representative of the growth characteris-
tics of the tree species and the geographic and climatic environment of the region, which
was more accurate under the limited data on forest biomass and forest age.

In this study, we obtained an average carbon density of 75.08 t/ha and an average
sink potential of 11.70 t/ha in HNFP in 2014. In contrast to some studies on carbon stock
and sink potential in Anhui Province, Ji et al. [50] used the BIOME4 model to estimate that
the forest carbon density in Anhui Province in 2009 could reach up to 150.4 t/ha for young
forests and 464.9 t/ha for overstory forests; Li et al. [15]. used the biomass-accumulation
function to estimate the forest carbon density in Anhui Province in 2014 to be between
12.02 and 20.70 t/ha, with a sink potential of 35.67 t/ha. The results of this study show that
the forest carbon density in the Huangshan region is between the two, and as a national
forest park is higher than the national average forest vegetation carbon density level of
41–43 t/ha [51], this is more reasonable. Figure 4 indicates that the carbon stock of HNFP
will rise less from 2014 to 2060, and the carbon stock in 2060 will only be 16% higher than
the carbon stock in 2014. From Figure 1, an analysis of the structure of forest types in the
study area, it can be found that Quercus, P. taiwanensis, and C. sclerophylla occupy 36.8%,
32.4%, and 18.3% of the forest area in HNFP, respectively, which altogether accounts for
87.5% of the total HNFP forest area. Moreover, Figure 1 shows the age structure of Quercus,
C. sclerophylla, and P. taiwanensis, with the highest area covered by aging forest, and the base
carbon stock already very high. Here, 91.6% of the total sample plots of P. taiwanensis were
overmature forests. Due to the age structures of Quercus, P. taiwanensis, and C. sclerophylla
being large, with the small age structures of L. Formosana and OBLH, the growth of carbon
stock is limited; thus, the growth of carbon stock in HNFP will be small in the period
from 2014 to 2060. Meanwhile, the average carbon sink potential of the forests in HNFP is
relatively low compared with the results of some other studies, which is due to the large
age structure of the forests and the high base carbon stock. The forests in the study area
have made a large contribution to carbon sinks at this stage, but the carbon sink potential is
not high because of the large age structure of the forests, and it will be necessary to adjust
this age structure through future management practices to achieve greater carbon sink
potential in the forests in the study area.

4.2. Factors Influencing the Forest Carbon Sink Potential

Based on the age–biomass growth of different tree species in the study area, the
carbon stock and future carbon sink potential of HNFP were estimated. The carbon density
changes greatly with aging from young to mature forests; then, growing from mature
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to overmature forests, the carbon density still increases, but more slowly. This growth
trend of forest carbon stock is consistent with the results of some previous studies [41].
In the Huangshan region, due to the large age structure of the forest, the three main tree
species occupying the largest area are dominated by mature forests and overmature forests.
Although mature forests and overmature forests will continue to accumulate carbon with
the increase in forest age, the carbon stock of the whole region will grow slowly in the
future. However, the high carbon density of HNFP at this stage indicates that the area has
already brought huge carbon sinks and ecological value, which are closely related to the
long-term aims of ecological protection and continuous afforestation in the area. In the
next forty years, China will continue to carry out afforestation, ecological restoration, and
eco-region construction projects, and to increase the forest area to achieve the goals of peak
carbon emissions by 2030 and future carbon neutrality. According to the China Forestry
Sustainable Development Strategy Research Group, the quantity and quality of existing
Chinese forests are expected to enter a stable development phase, which means that the
increase in the carbon sink potential of forests may be limited. Therefore, it is important
to discuss multiple influencing factors and sink potentials for different tree species and to
study under which environment different tree species will have greater sink potentials.

SEM for various tree species revealed that the factors influencing carbon sink potential
differ between species. For P. taiwanensis, the slope position exerts a direct positive effect
on the carbon sink potential, while soil thickness has a direct negative impact. Although
altitude contributes directly and positively, its effects on slope position, soil thickness,
and age ultimately exert a negative influence on carbon sink potential. Crown density
indirectly affects the carbon sink potential through forest age, having a positive impact.
Slope gradient has a weaker negative effect on carbon sink potential, which is indirectly
influenced by slope position, soil thickness, and crown density.

For Quercus, altitude indirectly negatively affects the carbon sink potential through
soil thickness and age, while the slope position indirectly has a positive effect through age.
Unlike P. taiwanensis, crown density directly negatively impacts carbon sink potential for
Quercus, whereas soil thickness has a direct positive effect. Slope gradient indirectly exerts
a positive influence on the carbon sink potential through soil thickness and forest age.

For C. sclerophylla, the interacting pathways among influencing factors are more
complex. Crown density and soil thickness both directly negatively impact the carbon
sink potential. Slope gradient indirectly has a positive effect through its influence on soil
thickness. Slope position ultimately negatively affects carbon sink potential through its
effects on crown density and age. Altitude exerts a positive final impact on carbon sink
potential by affecting the slope position, slope gradient, and crown density.

It is evident that geographical factors have varied impacts on the carbon sink potential
of different tree species. For instance, altitude has a negative effect on the carbon sink
potential of P. taiwanensis and Quercus species, but a positive effect on C. sclerophylla. Slope
gradient has a positive influence on the carbon sink potential of Quercus and C. sclerophylla,
but a negative effect on P. taiwanensis. The pathways of influence also differ between
species; for example, the carbon sink potentials of Quercus and C. sclerophylla are directly
affected by crown density, soil thickness, and forest age, whereas that of P. taiwanensis is
directly influenced by the slope position, altitude, soil thickness, and age. Unlike previous
studies focused on small areas, some research [20,52] has found that site factors such as
slope gradient and aspect are positively correlated with carbon sink potential because
the direction and degree of slopes can redistribute light, heat, and water resources on the
surface, affecting the forest’s carbon sink process. However, when refining the study of
influencing factors to different tree species, environmental factors can have various impacts
on the carbon sink potential due to the different growth environment preferences of species;
for example, P. taiwanensis commonly grows in high mountain areas, whereas C. sclerophylla
prefers lower altitudes.

Therefore, different planting sites and management strategies are required for different
tree species. For example, when planting P. taiwanensis, a reforestation species in the



Sustainability 2024, 16, 1351 16 of 19

study area, it is not sufficient to merely consider the species’ habit of growing at high
altitudes; factors such as soil thickness and slope position must also be taken into account.
Selecting site conditions that are more suitable for the specific tree species can enhance
its carbon sink potential, providing greater ecological value over the long term. Ideally,
detailed reforestation management tailored to the tree species can significantly increase the
forest’s carbon sink capacity, offering insights for the enhancement of China’s future forest
carbon sinks.

4.3. Uncertainties and Potential Constraints

Carbon stocks in forest ecosystems include the carbon stocks in the aboveground forest
vegetation and apomictic parts and the carbon stocks in the belowground soil parts. In this
study, the carbon stock in the forest ecosystem of HNFP was calculated only for the tree
layer, and the carbon stock of the above categories was not calculated due to the lack of data
for the shrub layer, herb layer, dead wood and humus layer, and the soil layer; therefore, the
carbon stock in the forest ecosystem of HNFP was greatly underestimated. Secondly, the
maximum carbon sink potential determined from the spatial and temporal carbon storage
curves obtained from the biomass–age function in this study is the maximum carbon sink
potential that could be realized under the ideal situation of assuming no forest disease
or death. In reality, forests are subject to various kinds of disturbances, as well as deaths
during the growth process, which greatly reduce the ideal carbon sink potential [53].

At the same time, estimations of carbon stock and carbon sink potential in the HNFP
area were only performed for the main tree species in the area, which underestimated the
carbon stock and carbon sink potential of the Huangshan area to a certain extent. HNFP is
a protected area; thus, anthropogenic interference was ignored, and climate factors such as
rainfall, temperature, and humidity were not included in the structural equations because
of the small study area. In fact, by including anthropogenic and climatic factors in SEM,
the effects and pathways of various factors on the potential of carbon sinks can be more
clearly observed.

Regarding the limitations of this study, although numerous investigations [20,46] have
employed FMID data to explore aspects of carbon storage, sequestration, and potential
sequestration, it is possible that the precision of FMID data may not match that acquired
through forest inventory methods, which involve measurements of individual trees within
a region. The latter requires the investment of substantial time and high costs for a large
number of professionals, which, in turn, constrains the accuracy of the outcomes derived
from related research. This study, initially performed with FMID data and after calculating
growth curves by tree species, has yielded relatively accurate results. Future work may
include detailed regional forest surveys to obtain more precise data, which will enable
more accurate construction of SEM models.

Secondly, temperature and humidity are critical factors influencing tree growth and
carbon sink potential. By 2060, with the concerted efforts of nations worldwide, the
environmental temperature and humidity within the study area are expected to undergo
certain changes. This research did not incorporate a study of the variations in carbon
storage, sequestration, and sequestration potential in response to changes in temperature
and humidity before 2060, which is incongruent with the actual growth conditions of
forests. Subsequent studies considering temperature and humidity factors within the tree
growth models will enhance the reliability of the results. In addition, the BEF coefficient
may actually change with the growth status of the trees [27]; the dynamic BEF value was
not considered in this study. SEM would also be more accurate and convincing if it was
based on the potential for carbon sinks with more factors taken into account.

Finally, due to the differing adaptability of specific tree species in HNFP to regional
geographic and climatic characteristics, the carbon sink potential results of the study may
only apply to the HNFP region and regions with similar geographic and climatic character-
istics, and the results of the study may have been different under diverse geographic or
climatic conditions.
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5. Conclusions

In this study, the BEF method was synergistically applied with growth functions, and
through the fitting of a variety of growth functions, more accurate growth functions for the
principal tree species in HNFP were determined. This yielded relatively precise values for
forest carbon storage and carbon sink potential. Performing SEM for the main tree species
also clarified the extent to which, and the pathways of how, environmental factors have
impacts on these species.

Despite the projected continuous increase in carbon storage in HNFP until the year
2060, the rate of carbon sink growth is expected to decline, potentially reflecting the future
growth conditions of most existing forests across China [12]. To meet China’s carbon peak
and neutrality goals, as well as global carbon neutrality objectives, enhancements in forest
carbon sinks are essential. Therefore, small-scale, targeted afforestation management aimed
at augmenting the carbon sink potential is undoubtedly viable. For example, the principal
tree species for afforestation in HNFP are C. lanceolate and P. taiwanensis. During afforesta-
tion management, it is possible to select site conditions more conducive to these species
(such as altitude and slope position), which could lead to a more optimal distribution of
afforestation areas and, consequently, a higher future carbon sink capability.

It is foreseeable that, in the context of the global trend towards energy conservation and
emissions reductions, the calculation of more precise regional carbon storage and carbon
sink potential will be increasingly utilized. Although the research findings are somewhat
applicable in similar climatic zones, the climates of afforestation regions in China vary
considerably, as do the different tree species used for afforestation in different locales.

Future research should, therefore, investigate the factors affecting the carbon sink
potential of various tree species nationally, and even globally, to provide sound afforestation
guidance for larger areas. Additionally, with a substantial research data foundation, it is
important to consider temporal variations in temperature and humidity, as well as changes
in the BEF during trees’ growth processes, and to incorporate a broader range of influencing
factors into the research field. And, the intrinsic mechanisms of the complex interactions of
the factors need to be revealed. This will enhance the accuracy of the results, thereby better
contributing to the achievement of global carbon neutrality goals.
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