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Abstract: Background: This article presents the results of a literature review from 2018 to 2023,
which focused on research related to human and AGV system cooperation in a shared workspace.
This study defines AGV systems as systems using Automated Guided Vehicles or Autonomous
Guided Vehicles. An Automated Guided Vehicle is a cart that follows a guided path, while an
Autonomous Guided Vehicle is an Automated Guided Vehicle that is autonomously controlled. The
analyses conducted answered two research questions: (RQ1) In what aspects are the human factor
examined in publications on the implementation and operation of AGV systems? (RQ2) Has the
human-AGV collaboration aspect been analyzed in the context of a sustainable work environment?
Methods: The literature review was conducted following the systematic literature review method,
using the PRISMA approach. Results: Based on the search of two journal databases, according to the
indicated keywords, 1219 documents pertaining to the analyzed issues were identified. The selection
and elimination of documents that did not meet the defined criteria made it possible to limit the
number of publications to 117 articles and proceedings papers. On this basis, the authors defined
a classification framework comprising five basic research categories and nine subcategories. The
analyzed documents were classified, and each distinguished group was characterized by describing
the results. Conclusions: The development of a two-level classification framework for research from
the analyzed area according to the assumptions of the concept map and the identification of research
gaps in the area of human-AGV interaction.

Keywords: human factor; AGV; risk; cooperation; sustainable workspace; work environment

1. Introduction

Humans are crucial elements in any operating system, a feature that is challenging
to recreate in contrast to technology [1]. For this reason, a whole area of research on the
human factor exists. From the point of view of technical systems, the human factor is often
analyzed due to the possibility of errors made by it, which may interfere with the system’s
proper functioning [2]. Numerous studies have also mentioned human error as being
the cause of most recorded accidents [3]. Instances in the literature have distinguished
between two approaches with regard to human failure [4]: (1) It relates to the mistakes
of individuals and focuses on issues related to their behavior (forgetfulness, inattention,
moral weakness, etc.); (2) It relates to the conditions in which people work and focuses
on building defense mechanisms to avoid or mitigate the effects of mistakes that occur.
Concept (1) is a personal approach, while (2) is a systems approach. The concept of
human error and blame has been prevalent in society throughout history. In contrast,
the engineering perspective has only just begun using formal safety approaches, such
as accident investigation, completed by systems theory and complexity science within
ergonomics and human factors (EHM) [5]. According to the guidelines of the Human
Factors and Ergonomics Society [6], the assumption for the purposes of research is the
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systematic use of the knowledge concerning relevant human characteristics to achieve
compatibility in the design of interactive systems of people, machines, environments, and
devices of all kinds to ensure specific goals. However, the human factor is often primarily
identified with ergonomics, which results in the strong focus of the research being on
safety issues, with no analysis of the impact on productivity [7]. However, efficiency is
an important parameter for assessing the effectiveness of human work in terms of its
replacement by automatic and autonomous systems [8].

The human factor has increasingly become the subject of research in production en-
gineering [9,10] and transport [11,12]. As part of these studies, the mental and physical
requirements for operators operating a given system are often determined. The effects of
these requirements may relate to employees’ required training, knowledge, and compe-
tencies, but also pertains to their fatigue, discomfort, and injuries [1]. At the same time,
the failure to consider these requirements may translate into operator errors, a decrease
in the efficiency of the entire process, and a loss in terms of achieving goals. Such an
approach aligns with socio-technical systems theory, in which the proper alignment of
system technology with human operators is critical in achieving a common goal [1].

In addition to the requirements for operators, an important factor affecting their safety
and productivity is the workplace created for them, including its equipment, organization,
and working conditions. Therefore, the creation of sustainable workplaces has become an
important issue. In numerous publications, this concept is referred to as reducing environ-
mental impact and waste, but also improving employee health and creating a friendlier
and more productive environment [13]. Therefore, research on social sustainability in
manufacturing plants focuses on workers’ rights, preventive occupational health and safety,
a human-centered design of work, workers’ empowerment, individual and collective learn-
ing, employee participation, and work-life balance [14]. As Papetti et al. highlighted, in
most of these studies, the authors have demonstrated that improvements in workplace
conditions beyond the requirements of current laws result in greater employee engagement
and increased job satisfaction [14].

Many authors have emphasized that in complex sociotechnical systems, outcomes
(e.g., behaviors, accidents, successes) emerge from the interactions between multiple system
components [15]. These interactions are dynamic, non-linear, and non-deterministic. Com-
plex sociotechnical systems are open to the environment, which makes it necessary to react
and flexibly adapt to the environment. People operating in these systems often do not have
full knowledge of the system as a whole, which is why they act locally, and the decisions
made refer to different perspectives and worldviews. Additionally, Ottino pointed out that
complex systems are inseparable, so the unit of analysis must be the whole system [16]. For
this reason, current research on the human factor in operating systems should be dominated
by systemic thinking, emphasizing interactions and relationships, multiple perspectives,
and patterns of cause and effect. A key consequence of systems thinking is also that the
behavior of a component is only considered in the context of the whole [15]. In addition,
Salehi et al. emphasized that the behavior of a complex socio-technical system does not
necessarily depend on the behavior of its individual components [17]. This means that
occurrent disturbances and accidents cannot be solely attributed to the behavior of selected
components, and their analysis should be carried out in relation to the entire system. An
example of modern complex social engineering systems is Industry 4.0 (I4.0) systems, in
which human and machine cooperate on entirely new principles. Many publications have
pointed to the significant changes introduced by I4.0, which relate to the rules of competi-
tion, prevailing socio-environmental norms, the functioning of the labor market, and new
guidelines for educational processes [18,19]. In a literature review on the role of I4.0 in
sustainable supply chains, Naseem and Yang identified five dominant I4.0 technologies:
Automated Guided Vehicles (AGV), the Internet of Things, cyber-physical systems, drones,
and Smart Factory [20]. This study defines AGV systems as systems using Automated
Guided Vehicles or Autonomous Guided Vehicles. An Automated Guided Vehicle “is an
automated guided cart that follows a guided path” [21]. However, an Autonomous Guided
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Vehicle is an Automated Guided Vehicle that has been “upgraded into autonomously
controlled” [22]. Although AGV systems have been known about for several decades, only
the development of the Industry 4.0 concept made companies interested in their large-scale
implementation in their logistics processes. The most important benefits related to the
implementation of AGV are presented, among others, in [23]. From the point of view of the
research presented in this article, improving human safety should be considered the most
important benefit of implementing the AGV system, primarily by reducing the number
of accidents in warehouse processes involving employees [24]. However, as Telukdarie
et al. [25] noted, the implemented solutions of Industry 4.0 provide companies with tremen-
dous opportunities but also involve many challenges for organizations. These challenges
include not only adapting processes to changing technologies but also a new approach to
managing the people involved [26]. Therefore, in line with our previous research in [27],
implementing AGVs in complex cyber-physical-human systems also generates other risks,
not only those related to employee accidents. Therefore, the issue of creating sustainable
workplaces, including collaborative shared spaces between humans and automated and
autonomous systems, becomes critical. Therefore, it becomes crucial to analyze the research
areas in human-AGV system interaction and identify the current research gaps.

This article presents the results of a literature review from 2018 to 2023, which focused
on research related to human and AGV system cooperation in a shared workspace. The lit-
erature review was conducted following the systematic literature review method, using the
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach.
The following research questions were defined for the conducted research:

RQ1: In what aspects is the human factor examined in publications on the implementation and
operation of AGV systems?

RQ2: Is the human-AGV collaboration aspect being analyzed in the context of a sustainable work
environment?

Following this, the main contributions of this paper include:

• Review of the literature on the cooperation of humans and AGV systems from the last
five years;

• Identification of the main research trends for the analyzed area based on the concept
of mind map;

• Grouping and preparing the characteristics of 117 documents according to the adopted
division criteria based on the results of literature research;

• Identification of research gaps in the area of human-AGV interaction.

The outline of this review paper is as follows: Section 2 presents the research method
based on the PRISMA concept. The identification of publications accepted for further anal-
ysis resulted from the search for thematically related articles. Section 3 describes the main
results of the conducted bibliometric analysis. Section 4 presents the detailed results of the
conducted analytical procedure, including a map of concepts, the division into categories
and subcategories, the results of the classification procedure, and the characteristics of
articles assigned to individual categories. Section 5 will deliver the discussion results and
identify the research gaps in the analyzed area. Section 6 describes the theoretical and
practical contributions of the presented research, the identified limitations of the conducted
classification, and further research directions.

2. Research Design

Due to the research questions posed, was decided to conduct a systematic literature
review. The conducted research process aims to identify and critically evaluate research
on the cooperation between humans and AGVs in contemporary socio-technical systems.
Following the guidelines for this literature analysis method [28], the conducted procedure
identifies all empirical evidence that fits the prespecified inclusion criteria to answer a
particular research question.
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Preparing a review article begins by finding the appropriate literature, and which
collection could explore the chosen topic. The PRISMA method was chosen to realize the
subject in which topics about humans and AGV are connected. PRISMA enables the creation
of a systematic and explicit review with established methods of identification, selection,
and evaluation [29]. Figure 1 contains a diagram that illustrates the used PRISMA method.
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2.1. Identification

For the identification step, two databases were chosen: Scopus and Web of Science
(WoS). These databases were selected as they have some of the largest business and technical
research repositories and are typically used in literature reviews, e.g., [30].

For each database, three searches were conducted with the following keywords:

• ‘Automated guided vehicle’ and ‘human’,
• ‘AGV’ and ‘human’,
• ‘Autonomous guided vehicle’ and ‘human’.

The research subject was AGVs appearing in the literature under their full name
or abbreviation. The occurrence of these two forms resulted in a search for documents
divided into these two entries. The AGV abbreviation was also used for autonomous
guided vehicles, whose human-vehicle interactions are similar, so it was appropriate to
include them as a keyword for the third search. The second search element was limited to
the word human, as the research focuses on sociotechnical systems in which the human
element is referred to as the human factor. The word human refers to people representing
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different roles in the system. Keywords were searched for among document titles, abstracts,
and keywords assigned to documents. After this first stage of the PRISMA method,
1219 documents were selected for the screening stage.

2.2. Screening

In the second step, searched documents were limited with clarified criteria. Exclusion
criteria were established based on discussion by the authors. The selection considered
the current trends and development of Industry 4.0, the dominant role of AGVs in it, and
the role of humans, which is increasingly noticed by researchers. The primary publishing
dates were set to the period from 2018 to 27 November 2023 (the day of the searching
in databases). This period was selected because, since 2017, the concept of Industry 4.0
has been developing, which changed the role of humans in the sociotechnical system
and, at the same time, caused the development and increased interest in AGV as one
of the leading tools in cyber-physical systems. Second, the literature written in English
was selected—it is an international language that allows specialists worldwide to hold
a scientific debate. Lastly, research was determined for articles and proceedings papers,
which consist of practical information and case studies related to the subject of AGVs
and humans in industries. The analysis was limited to publications reflecting the latest
scientific research results and, at the same time, meeting the requirements of peer-reviewed
publications, proving the quality of the presented results. These constraints made it possible
to obtain a set of 648 documents, where some of them were duplicated from both WoS and
Scopus databases. Searching in two databases and using three sets of keywords resulted
in significant overlapping of search results, proving the search’s consistency. Removing
duplicated articles or proceedings papers allowed for the preparation of 447 documents in
the last stage of the PRISMA method.

2.3. Eligibility

The last stage required checking whether the documents found thematically corre-
sponded and were valuable for the analyzed issue. Decisions and exclusion conditions
were based on the contents of the whole article and were subject to discussion before final
removal. The criteria for excluding documents were as follows:

• medical documents, in which the abbreviation “AGV” was found, which stands for
Ahmed glaucoma valve or apple geminivirus;

• human was mentioned as a subject in the AGV work environment but was not a main
subject in the actual study;

• the abbreviation “AGV” also appeared for “autonomous ground vehicles”.

After eliminating documents that met the above criteria, 117 articles or proceedings
papers were selected for further analysis.

2.4. Identifying Research Trends

The next step in the analysis was to determine the main directions of the research
work described in the identified set of 117 documents. The Mind Map method was used
to carry out the qualification procedure. The different categories were defined based on
a preliminary analysis of the documents, which primarily focused on the abstracts and
keywords used in the publication. On this basis, the identification of the main research
trends was carried out. Then, based on an analysis of the full texts of the publications,
individual documents were assigned to the highlighted thematic groups. Articles not
classified in any identified collections were placed under “Other”.

3. Bibliometric Analysis

The created collection of articles related to AGV and humans included 81 proceeding
papers and 36 articles. Figure 2 shows an increase in the number of publications in the
researched area. The analysis of publications grouped by year shows that, in 2019, there
was an almost threefold increase in their number compared to 2018. The dominance of
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conference publications can also be observed. The reason for such proportions may be that
the issue of human cooperation with automatic and autonomous systems is a new issue,
still under development. The large number of proceedings in 2020 may result from the
pandemic period, during which the availability of many prestigious conferences increased
due to their implementation in virtual mode. The decrease in the number of articles in 2023
is due to a search conducted before the end of the year.
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Figure 2. The number of publications.

IEEE is the publishing house with the most significant number of published materials.
This publishing house is a co-organizer of numerous conferences in the field of computer
and science engineering. Therefore, it mainly publishes proceedings papers. The distin-
guished publishers with many publications also include Springer and Elsevier. In these
two cases, proceedings papers dominate; however, this disproportion is less spectacular
than in the case of IEEE. Within the analyzed publications was a large variety of journals;
therefore, the remaining 42 documents were combined into one group—Other publishers.
The results of the analysis are presented in Table 1.

Table 1. The number of publications.

Publisher Document Type Number of
Documents Total Number %

IEEE
Article 8

49 42%Proceedings Paper 41

Springer Article 3
18 15%Proceedings Paper 15

Elsevier
Article 2

8 7%Proceedings Paper 6

Other
Article 23

42 36%Proceedings Paper 19

The articles were also analyzed for the number of citations in the WoS and Scopus
databases. Articles with the highest number of citations, according to Table 2, presented a
high level of research and analysis.
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Table 2. The most cited publications.

Authors/Article Title Scopus WoS

Goli A., Tirkolaee E.B., Aydin N.S.: Fuzzy Integrated Cell Formation and Production
Scheduling Considering Automated Guided Vehicles and Human Factors 61 50

Sabattini L., Aikio M., Beinschob P., Boehning M., Cardarelli E., Digani V., Krengel A.,
Magnani M., Mandici S., Oleari F., Reinke C., Ronzoni D., Stimming C., Varga R.,
Vatavu A., Castells Lopez S., Fantuzzi C., Mayra A., Nedevschi S., Secchi C.,
Fuerstenberg K.: The PAN-robots project: Advanced automated guided vehicle
systems for industrial logistics

40

Gebser M., Obermeier P., Schaub T., Ratsch-Heitmann M., Runge M.: Routing
Driverless Transport Vehicles in Car Assembly with Answer Set Programming 18 10

Indri M., Lachello L., Lazzero I., Sibona F., Trapani S.: Smart sensors applications for a
new paradigm of a production line 28

Prati E., Peruzzini M., Pellicciari M., Raffaeli R.: How to include User experience in
the design of Human-Robot Interaction 21

Research teams prepared all of the most cited articles. At the same time, it was not
possible to identify one outstanding author among the most cited articles.

Keywords indicated by the authors of the publication were also analyzed. The authors
used the abbreviation AGV in keywords with a much greater frequency (36 cases) than the
system’s full name (19 cases). The “Human” keyword was often considered a stand-alone
term (22 cases). This expression appeared seven times in the combination “human-robot”.
It is also worth noting that in nine publications, the authors included “Interaction” among
the keywords, which referred to the cooperation of a human and the AGV system.

4. Results

Based on the Mind Map investigation, four basic research trends and an additional
“Other” group were identified. Then, based on a detailed analysis of the full content
of the studied articles, additional subcategories were distinguished for the three basic
categories. The distinguished subcategories made it possible to detail the scope of the
described research. The results of the final classification of research trends at both levels of
detail are shown in Figure 3 and characterized in Table 3.
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Table 3. Documents assigned to categories and subcategories.

Category Subcategory Articles

Review articles [31–38]

Comparison of AGV and
human work

Process improvement [8,34,39–52]

Dangerous environment [53–55]

Support for human [45,56–60]

Human AGV cooperation

Human-centered design [58,61–65]

Communication [55,58,66–81]

Organization of collaborative
workspace [45,59,60,70,74,82–86]

Designing a safe
work environment

Human detection [75,87–112]

Navigation [70,108,110,113–136]

Safety validation [85,109,133,137–143]

Other [144–146]

4.1. Review Articles

Only two of the seven review publications directly concerned the analysis of articles
relating to the cooperation of humans and the AGV system. These were the studies reported
by [31], and this publication is the most consistent with the direction of the analysis. Its
authors presented the evolution of the literature focused on AGV systems, emphasizing
the latest research trends and the emerging gaps, also including the ones related to the
shared presence of humans and AGVs within the same environment, which can affect
the overall performances and the implementation phases. The second literature review
was prepared by [32] and included 50 publications selected from a group of 282 articles.
Among other things, the authors of this publication focused their attention on the ethical
concerns associated with the deployment of AGVs. This is because these systems can collect
information about people’s behavior without their consent or knowledge. The extensive
sensing capabilities used in AGV solutions are now becoming a challenge to respecting the
privacy of people interacting with the vehicles. In other literature reviews, the human only
appears as a reference point. In the analysis presented in [33], the publications focus on
using artificial intelligence (AI) in autonomous and automated guided vehicles. The task of
these vehicles is to support human work, but the authors do not analyze the interactions
between the vehicle and the person. In addition to human support, AGV systems are
implemented to replace human work. A literature review in this area is presented by [34].
The researchers presented the results of comparing AGVs and human work in the order-
picking process. The point of reference was to compare the results achieved by humans
or AGVs without analyzing their interaction. Another publication compares solutions
regarding the local position system, which is used in research on human tracking, object
tracking, animal tracking, and AGV tracking [35]. In their review, the authors of this
publication analyzed articles on popular Local Position System (LPS) technologies. Also,
in this case, the research primarily focused on technology, not the human’s role in the
technical system. A similar situation occurred in a review prepared by [38]. The authors of
this publication studied the application of autonomous vehicles in flexible manufacturing
systems to improve the processes implemented in them. The human in this research
appeared as an object that would be relieved by the implemented autonomous solutions.
In the literature review presented in [36], publications on the possibility of using Monte
Carlo Tree Search (MCTS) in improving automatic solutions implemented in smart factories
were analyzed. Senington proved that MCTS can support the cooperation of automatic
systems with a human and allows for the optimization of the movement of AGV systems
in a designated area (including improving path planning). The last review concerned
self-organizing production systems cooperating with a human [37]. The authors presented
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a literature review on two views of such a design: a technical and a human-machine system.
The limits and advantages of both views were presented, followed by the merged view,
based on the use of the cognitive work analysis (CWA) approach.

4.2. Comparison of AGV and Human Work

A large number of the articles concerned the analysis of the legitimacy of implementing
automated solutions in processes and operations previously carried out by humans. For this
reason, the first research category we distinguished was comparing the operation of an AGV
system and a human in a specific operating environment. In most cases, such a comparison
is intended to gather arguments in favor of replacing human work with automated systems.
Therefore, some researchers have focused on comparing human work’s effects and AGVs [8,
34,39]. This comparison applies to selected processes that are usually labor-intensive and
time-consuming, but repeatable. Human labor is costly today, so employing it to implement
simple, repetitive operations is economically unprofitable [52]. An example of such a
process may be order picking, which is often the arena of implementation for AGV systems.
This is confirmed by the literature review prepared by [34].

In the analyzed articles, the implementation of AGVs is a solution that improves and
streamlines the current implementation of selected processes and operations. The main
attention of researchers is focused on analyzing the impact of replacing humans with AGVs
through the prism of such aspects as:

• productivity [8,42,43,57],
• efficiency [8,40–49],
• cost reduction [49],
• time reduction [45,48–50,57],
• increase available working time [51],
• reduction of human errors [41,42,47],
• congestion [43],
• improvement of safety [40,42–44].

It should also be noted that most of the articles in this group referred to the comparison
of human and AGV work in connection with the implementation of Industry 4.0 solutions
and the potential benefits of automating and digitizing repetitive operational activities.

AGVs are also used to support or replace a human in a dangerous work environ-
ment. The COVID-19 pandemic became a testing ground for implementing automated
solutions, the use of which was to protect hospital staff against infection. AGVs were
intended to replace people in contaminated areas for delivery logistics, patient care, and
disinfection [53–55]. Thanks to this, it was possible to implement solutions that limited the
danger of human exposure to extreme infections and fatal illnesses.

AGVs also support operations that cause excessive physical strain on the employee.
An example here may be the transport of people in a hospital between rooms, which can
be supported by AGV systems [56]. Restaurants are another example where an AGV
can assist staff. To reduce the burden on the waiting staff, AGVs can transport dishes to
customers and bring dirty dishes [57]. Automatic systems can also cooperate with humans
and support them in jointly implementing selected operations related to assembly [58] or
order picking [45,59,60].

4.3. Human—AGV Cooperation

The growing requirements in the internal transport sector, seen as achieving the
highest possible effectiveness or efficiency, means that researchers are looking for new
ways to improve AGV systems. One of the possibilities is to focus on cooperation be-
tween AGVs and humans, which is settled in a dynamic environment and changes over
time [64,70,72,84,85,92]. Human experience [56,58–63,65,80,82] is considered in these cases.
To describe this cooperation, the authors used the following:

• HRC—human-robot collaboration [58,74],
• HRI—human-robot interaction [58,70,81],
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• HMI—human-machine interference [66,73].

In a system with a human-centered design, where workers cooperate with AGV, it
is important to use information about people’s ways of acting. In [61], the work of the
AGV was based on human behavior and was analogous to nature, so the AGV work was
more predictable and understandable for workers. A similar approach was presented in
the research prepared by [108], where AGVs could anticipate human behaviors and predict
their trajectory because human movements are usually directly motivated by their tasks.
In [62], a controller was proposed, which mimics the standards of human vehicle control,
for example, “situation-aware speed adjustment on curved paths”. Prati et al. adopted
a human-centered approach to prepare a set of guidelines with details on information
exchange between humans and robots. These investigations highlighted that using these
methods could improve system performance [58]. Equally important is how to introduce
the AGV system into the enterprise. Challenges and measures to support communication
between AGVs and employees were mentioned in [63]. In [65], a survey of employees
who had interacted with AGVs was presented. The survey tested employees’ opinions on
success factors and acceptance, as well as on their satisfaction with the implementation of
AGVs. The results revealed significant differences in the perception of AGVs by high-level
managers, project leaders, and operational staff.

To prepare the system described above, designers need proper information and the
database, so there must be complete communication between AGV and humans. Vlachos
foregrounded that AGV information should be used to raise awareness and improve the
interaction between humans and AGV. For this reason, to ensure the possibility of data
exchange between the AGV and a human, the prepared interface should be straightforward
and convenient for the operator [66]. David et al. proposed an architectural approach
for AGVs, which was interoperable and accessible and could be used with any type of
AGV. In this approach, every piece of information could be helpful and used for future
research or system updates [67]. Ballal et al. [68] proposed a wireless data acquisition
and communication system between the user and the AGV. The data acquisition from the
AGV was accomplished with the help of sensors mounted on the vehicle. The sensors
could continuously collect the incoming signals along the path, which were transmitted via
Wi-Fi, and the information was displayed to the user on a laptop [68]. Some researchers
highlighted that communication with AGV must be bidirectional [58,69,70]. In the wireless
communication systems described in [71], the important feature was the communication
between sensors located on AGVs with Access Points (APs), based on which the truck’s
position in space could be determined. Other researchers assigned to this group prepared
systems that enabled real-time co-working with AGV. Correct communication can be
accomplished in the following ways:

• call system [72,73],
• follow-me system [73–78],
• guide-me system [55],
• control system [69,79–81], mainly performed by hand gestures [79–81].

Mohsin analyzed the appropriate settings of the AGV user panel (parameters such
as height, angle, and distance to the operator) and its impact on working conditions for
a human to design an ergonomic workplace with all required applications [82]. In the
case of human-AGV cooperation in special applications, such as automobile assembly
lines, parameters related to the speed of the AGV cart along with the human positioned
on it are important [83]. Coelho points to an equilibrium between human resources
and AGVs to project a collaborative workspace with an optimal number of workers and
AGVs [84]. The examination of AGV and human cooperation could also be used in the
order-picking process, where humans and AGVs cooperate and need to be scheduled
in the most appropriate way [45,59,60,85,86]. Papcun proposed an Augmented Reality
environment where planned AGV paths can be checked, and users have the possibility to
determine areas for humans, AGVs, or where both cooperate [70]. In addition, AGV-human
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cooperation can be checked by simulations [84], numerical simulations [85], or Virtual
Reality [74].

4.4. Designing a Safe Work Environment

One of the main categories is “Designing a safe work environment”. Safety plays a
key role in designing communication paths and navigating AGVs because AGVs move in a
shared space with people, as shown in Figure 4. Sharing space creates dangerous situations
that may threaten the life and health of employees and also damage AGVs.
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The first subcategory refers to detecting environmental obstacles, including fixed
obstacles and people. During operation, technical systems should obtain the required infor-
mation about the position of obstacles in the space they move [75,87–94]. Therefore, articles
in this group focused on technologies and methods for collecting real-time data on elements
on the AGV route. In the analyzed publications, this data was directly collected by the
transport device [95–98], by using cameras [96,98–102], laser sensors [95,99–101,103–105],
and ultrasound [95], as well as indirectly, using sensors located on a human (Ultra-
wideband system—UWB) [99,104,106–108]. In some articles, hybrid solutions were pre-
sented [101,103,104,109,110,112]. Hybrid solutions are most often a response to the limita-
tions of traditional detection systems. For this reason, some authors focused their research
on developing advanced detection systems that would make it possible to make high-level
decisions in dynamic environments. An example of such a solution is the PAN-ROBOTS
project described in [111].

The critical aspect is the navigation system, which allows the AGV to smoothly
move along the designated route. For this purpose, appropriate programs, algorithms,
and systems are created, responsible for the correct movement of AGVs along fixed
routes [108,113–124]. Regarding navigation, it is also crucial that the AGV continues
the task in the event of a disturbance (e.g., an obstacle). For this reason, a large portion of
the publications concern [70,110,125–133]: (1) the reaction of the vehicle to the occurrence
of a disturbance during the task; and (2) the method of determining a new, optimal route to
achieving a goal for a given mission. The aspect of path optimization becomes crucial in
this case, as it allows for more efficient use of the available infrastructure. This is possible
by appropriately using software adapted to the place of application based on VLC (Visible
Light Communication) [134], a heuristic model [128], color Petri nets [136], and FSD (Free
Space Detection) algorithms [135].

The third subcategory is safety validation. This validation has been divided into three
research areas. The first refers to the possibility of using risk analysis to validate the safety of
the AGV system. Such analyses were presented in [137,138]. Thanks to the analyses carried
out in [137], it was possible to identify the wrong places in the system and consider the risk
of situations threatening its functioning. On the other hand, in [138], the authors’ attention
was primarily focused on the risks of human-machine interaction. Some authors used
various simulation tools and test programs to identify dangerous situations and determine
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the level of risk. These articles constituted the second research area in this subcategory
and included research related to verifying simulation methods [85,139–141] and systems
and testing available solutions [109]. The last area of research in this subcategory is safety
assessment publications to prevent future accidents. An example of such solutions is the
research presented in [133], which describes a system for preventing accidents between a
human and a machine. In [142], the authors presented a disturbance management support
system based on the CBR (Case-Based Reasoning) system, which assigns disturbances to
appropriate classes. On the other hand, [143] presented CSMA/CA-based Random Access
Control Suitable for Delay-Constrained Packet Transfer, designed to prevent collisions in
smart factory environments.

4.5. Other

The “Other” group included articles that were inconsistent with any of the distin-
guished categories. In these articles, human-AGV interactions were studied in approaches
other than those discussed above. In [144], the authors studied the role of AGVs and
human factors as indispensable components of automation systems in the cell formation
and scheduling of parts under fuzzy processing time. In [145], the authors described coop-
erative autonomous product tracking and maintenance systems using automated guided
vehicles to minimize human interaction inside a smart factory. Noteworthy is the project
experiences related to implementing automated solutions described by [146]. In their
publication, the authors pointed out that only some recipes for introducing automation in
the factory exist. However, cooperation between humans and machines is crucial to reduce
production costs by automating simple and repetitive logistics operations.

5. Discussion

The analysis of the articles selected by the systematic literature review indicated an
increasing interest in the subject of challenges related to human-AGV interaction in complex
sociotechnical systems. The upward trend has primarily been observed since 2019, which
two phenomena may have caused: (1) the development of the Industry 4.0 concept and
the growing interest in the automation of simple and repetitive logistics and production
operations; and (2) the COVID-19 pandemic demonstrated the limitations on the work of
teams exposed to virus infection and absenteeism caused by numerous illnesses.

Therefore, it is worth noting that the links regarding human-AGV interactions related
to the development of Industry 4.0 are clearly indicated and emphasized in the published
studies. In contrast, references to the impact of the COVID-19 pandemic are only indicated
in a few publications. However, this trend may change due to research currently being
conducted in the post-pandemic period.

The research issue’s importance is also evidenced by the fact that the search returned
four review articles in this area in the last three years [31,33,34,36]. This means that the
topic of human-AGV interaction appears more and more often in publications and allows
for identifying new related research areas. This is justified by the growing popularity of
implementing Industry 4.0 tools (including AGV systems) and the growing importance
of human security in cyber-physical systems. Digital technologies, which are the basis
of Industry 4.0, provide significant opportunities but also carry new forms of risk [147].
It is also worth noting that the heterogeneous nature of the Industry 4.0 network causes
significantly more degrees of freedom in the social-technical relationship that was not
conceivable in the context of conventional technologies [148], which translates into new
levels of human-AGV cooperation.

When answering the research questions, it should be emphasized that mainstream re-
search focuses on safety-related aspects. Safety issues are analyzed in publications included
in the “Designing a safe work environment” category, but also in selected documents classi-
fied in the “Comparison of AGV and human work” and the “Organization of collaborative
workspace”. In the “Designing a safe work environment” category, the described research
focuses on the risks associated with sharing the working environment and the possibil-



Sustainability 2024, 16, 974 13 of 21

ity of potential human-vehicle collisions. To eliminate the potential threat, the selected
documents describe possible simulation and testing tools that can reduce the occurrence
of potentially dangerous situations at the system design stage (“Safety validation”). In
the case of the “Process improvement” subcategory, only four documents concerned the
improvement of safety in the implementation of AGVs. However, articles classified in the
other subcategories of the “Comparison of AGV and human work” research focused on
improving human safety and health protection through implementing the AGV system.

Regarding safety, it is worth referring to earlier research published in [27]. In those
studies, a literature review was conducted to identify the risk associated with the func-
tioning of the AGV system in logistics processes. The conducted analysis showed that the
human factor as a source of risk related to the functioning of AGVs was only the subject
of research in a few publications. This could suggest that this factor is not perceived as
a significant risk source in the AGV systems’ operation. However, this approach seems
unjustified, considering the analysis presented in this article. A human is a source of risk in
AGV systems not only due to a potential collision with a moving vehicle but also due to
errors made in cooperation with the technical system.

This research has proven that communication between the operator and the system
turned out to be an equally important issue. This was confirmed by numerous publications
classified in the “Human—AGV cooperation” category, which addressed the issue of
improving systems for exchanging messages between a human and a vehicle in real time.
This improvement concerned communication methods and specific guidelines for the
design of the AGV user panel. Many publications on human-AGV interaction also referred
to the benefits of replacing human work with an automated solution. Documents included
in the “Process improvement” category allowed for distinguishing as many as six areas
of impact of replacing humans with AGVs. The increase in efficiency and productivity
recorded in these studies will contribute to their further development and implementation
in production and logistics systems, particularly in smart factories.

The analyzed publications indicate that Industry 4.0 has caused significant changes in
current social engineering systems. People and AGVs share the work environment in these
systems and perform everyday tasks [31]. This generates new challenges in the design,
implementation, and operation of AGV systems. This is confirmed by studies included in
the “Human—AGV cooperation” category, particularly those publications relating to the
requirements for communication between a human and the AGV system. At the same time,
as noted by [147], to take advantage of the potential benefits of implementing Industry 4.0,
it is necessary to ensure compliance not only with the technical architecture but also to
formulate Industry 4.0 as a socio-technical system. Meanwhile, as the same authors note,
the principles of Industry 4.0 currently primarily focus on technical implementation. This
causes the socio-technical aspects of this implementation to be still overlooked [147]. The
results of the analyses presented in this article emphasize the critical role of social aspects
that should accompany technology development. It should be remembered that the tools
of Industry 4.0 are primarily intended to serve people. Hence, it is essential to study the
relationship between human and machine to be able to define the principles of cooperation
better and strive for a situation where Industry 4.0 is not only a technological tool but also
an element of the organizational culture of the company, considering the needs of a wide
range of stakeholders [147].

The analysis of publications allowed us to propose a classification framework for
documents describing the human-AGV interaction. However, it is worth noting that the
topics in the selected documents covered issues belonging to several categories, which have
been included in Table 3 and a description of each category is presented. This shows the
complex relationship between a human and a vehicle sharing a working environment and,
in which, must interact with each other.

The proposed research framework for the area of cooperation between humans and
AGV systems, as well as the conducted classification of the analyzed publications, made
it possible to assess the degree of completion of individual groups. Analyzing the distin-
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guished thematic groups also made it possible to identify the current research gaps. The
first gap is the lack of research on the methods of assessing interdisciplinary risk related to
the functioning of humans and AGVs in a common work environment. Risk assessment
was the subject of the research described in publications belonging to the “Safety validation”
subcategory (among others in [137,138]) and was only concerned with safety aspects. As
has been proven in the reasoning presented above, safety issues are critical, but this is not
the only area of potential risk associated with human-AGV cooperation. The risk may
also occur in the form of errors that may reduce performance indicators or threaten the
achievement of operational goals. For this reason, research is needed to identify risk factors
and methods for their analysis and assessment, which will allow for the preparation of
appropriate risk management procedures at the design stage of the AGV system, but also in
the process of its operation and maintenance, and the implementation of commissioned op-
erational tasks. This is confirmed by research on other complex socio-technical systems [17].
AGV systems implemented as support for logistics processes in smart factories are an ex-
ample of complex socio-technical systems. They comprise numerous cooperating elements,
including technology, people, and organizations [149]. Interactions between these three
sets of elements can be non-linear and dynamic [150], which may intensify undesirable
consequences found in complex systems [151]. In addition, according to Hollnagel, this fact
makes it necessary to consider the transition from “human error” to “human performance
variability” [149] in the risk analysis, which means that conventional tools are unable to
understand the risk associated with the variability of results [152]. For this reason, research
is needed to identify risk factors and methods of their analysis and assessment, which
will allow the preparation of appropriate risk management procedures at the design stage
of the AGV system, but also in the process of its operation and maintenance, and the
implementation of commissioned operational tasks.

The second significant research gap is the lack of research focused on the requirements
for creating sustainable workplaces that include the shared space and working environ-
ment of humans and AGVs. Publications categorized under “Human-AGV cooperation”
primarily focused on the safety of interaction and mutual communication between humans
and automated vehicles. However, none of the analyzed articles included research results
directly aimed at aspects of sustainable planning and the design of the shared environment
and work organization. In our opinion, the critical issue in this case is using the results of
interdisciplinary risk assessment in creating sustainable workplaces. Based on the analysis
and evaluation of potential adverse events, it is possible to create a work environment that
is more friendly and productive for all participants in material handling processes while
making efficient use of the resources consumed.

6. Conclusions

The systematic review presented here identified 117 publications on human-AGV
system interactions. This study has important implications for practitioners and researchers.
The proposed classification framework shows the dominant directions of research over the
last five years. This allowed us to identify the current research gap that can be filled by
people researching the design and operation of AGV systems. This is important from the
point of view of Industry 4.0, the further development of which depends on reducing the
risk associated with the cooperation of automatic and autonomous systems with people.
At the same time, classifying the analyzed documents has a practical dimension. It groups
publications relating to individual aspects related to the implementation and operation of
AGV systems in such a way that the classification framework guides those seeking good
practice in this area. The presented characteristics of individual articles allow one to quickly
find documents providing information on guidelines for implementing automatic systems,
the benefits of AGV systems, and tools for testing their effectiveness.

The research procedure can be considered comprehensive. The two most crucial
journal databases were included. However, the focus of attention only on articles and
proceedings papers and the lack of non-reviewed documents in the analysis, which often
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appear in magazines and on industry websites, is a limitation. However, such action
was justified by the care for the quality of the documents accepted for analysis. It is also
worth noting that the work patterns and interactions between different types of AGVs and
humans may vary depending on specific application scenarios and system designs. In the
analysis presented here, this aspect concerning specific examples was omitted. The rationale
for this was the adopted goal of the conducted analyses, which focused on generalizing
research trends concerning the cooperation between humans and the AGV system. For this
reason, specific solutions relating to various cooperation schemes appeared in the described
publications but were not highlighted as a separate research issue. The limitation of the
research is also the lack of consideration of the prestige of the journal publishing the paper
and its citability. This is because it is understandable that prominent publications may
be more important for the research trends created, which should also be reflected in the
analytical procedure. However, this restriction was declined due to the limited number of
publications identified in the initial search.

The identified research gap indicates the direction of future research. For this reason,
the subject of further research will be to seek answers to the following questions:

• In what areas of functioning of cyber-physical-human systems should hazards to
human-AGV cooperation be sought?

• What methods of identifying adverse events should be used in the risk analysis of the
human-AGV interaction?

• How to assess the risks of human-AGV interaction in Industry 4.0 systems?
• How to use risk assessment results to design sustainable workplaces where humans

interact with AGVs?
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