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Abstract: The uncertainty of post-earthquake disaster situations can affect the efficiency of rescue site
selection, material, and personnel dispatching, as well as the sustainability of related resources. It
is crucial for decision-makers to make decisions to mitigate risks. This paper first presents a dual-
objective model for locating emergency logistics facilities, taking into account location costs, human
resource scheduling costs, transportation time, and uncertainties in demand and road conditions.
Then, stochastic programming and robust optimization methods are utilized to cater to decision-
makers with varying risk preferences. A risk-preference-based stochastic programming model
is introduced to handle the potential risks of extreme disasters. Additionally, robust models are
constructed for two uncertain environments. Finally, the study uses the Wenchuan earthquake as
a case study for the pre-locating of emergency logistics facilities and innovatively compares the
differences in the effects of models constructed using different uncertainty methods. Experimental
results indicate that changes in weight coefficients and unit transportation costs significantly impact
the objective function. This paper suggests that decision-makers should balance cost and rescue
efficiency by choosing appropriate weight coefficients according to the rescue stage. It also shows
that risk level and robust conservatism can significantly alter the objective function. While stochastic
programming models offer economic advantages, robust optimization provides better robustness.

Keywords: emergency logistics; facility location; uncertain environment; stochastic programming;
robust optimization

1. Introduction

Natural disasters, particularly in China’s central and western regions, have increased
in frequency and intensity due to geographical factors. According to the report of the United
Nations Disaster Prevention and Mitigation Agency in 2020, China is the country with the
most natural disasters recorded in the last 20 years and also the country with the largest
total affected population in the world, so the situation of disaster prevention and resistance
is very serious [1]. Therefore, in recent years, the country has paid more and more attention
to the construction of emergency logistics systems, disaster prevention, and mitigation. Not
only China but also the whole world is facing various difficulties in disaster emergency
response, and the report of the United Nations Office for the Coordination of Humanitarian
Affairs in 2022 pointed out that, due to new crown epidemics, climate change, geopolitical
conflicts, and the existence of huge catastrophes, about 274 million people in the world will
need emergency relief in 2022 [2]. Under the huge demand, academic research on disaster
emergency management has become more in-depth, among which the humanitarian emer-
gency logistics location problem is a valuable research direction. According to Kovacs and
Moshtari [3], as of 2018, 43 review-type articles related to emergency management have
been published in major journals, which contain hundreds of articles related to emergency
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logistics. In these studies, the construction of decision-making models for emergency logis-
tics site selection is very important, which can provide theoretical support and modeling
tools for actual emergency logistics operations.

Trunick [4] pointed out that logistics work accounts for 80% of rescue operations.
At present, the key to limiting the construction of China’s emergency material support
system is not the lack of material quantity, facilities and equipment, and human resources,
but how to efficiently and orderly allocate, transport, and distribute them. Research has
shown that the degree of casualties after a disaster is usually related to the response of relief
supplies such as food, purified water, medical care, and shelter, as well as emergency rescue
personnel, and the response efficiency is affected by the location of emergency logistics
facilities. Therefore, in this paper, we focus on the post-disaster emergency logistics facility
location problem and make decisions on facility locating, emergency relief human resource
scheduling, and emergency material dispatching with minimized cost and transportation
time. Because of the great uncertainty of the situation in each disaster site after the disaster,
we consider decision-making in an uncertain environment and take emergency material,
human resource demand, and road conditions as the parameters affected by the uncertain
environment. First, emergency relief facilities are staging points for supplies and personnel
and are a critical part of strategic planning for disaster relief, which we denote in this paper
by site selection costs. Second, accurate and timely dispatch of emergency relief personnel
is critical for measuring the safety, timeliness, and equity of disaster victims, which we
denote by human resource dispatch cost. Finally, for the objective of minimizing transport
time, this paper expresses the impact of post-disaster road damage on transport in terms of
uncertainty in road conditions and transport time. Balancing these factors plays a crucial
role in contributing to the stability and sustainability of humanitarian response logistics.

This article first establishes an emergency logistics facility location model based on
location selection, human resource scheduling cost, and transportation time in a determin-
istic environment. By adding weight coefficients, it further transforms into a dual-objective
model and performs dimensionality reduction through minimization. Subsequently, based
on the deterministic model, it further considers the uncertainty of demand and road condi-
tions. To assist decision-makers with different risk preferences in choosing the appropriate
optimization method, this paper constructs emergency logistics facility location models
with uncertain environments using both stochastic programming and robust optimization
methods for comparison. In the stochastic programming method, a risk-preference-based
stochastic programming model is constructed by adding CVaR to address the potential
risks of extreme disasters. On the other hand, in the robust optimization method, both
box uncertainty set and polyhedral uncertainty set scenarios are considered. Experimental
results show that both risk level and robust conservatism can cause significant changes in
the objective function, and decision-makers should set these according to their preferences.
The risk-preference-based stochastic programming model proposed in this paper combines
the high economic efficiency of stochastic programming and the high stability of robust
optimization, providing a new idea for decision-makers to carry out emergency logistics
facility location. The innovations of this paper are as follows:

1. In previous research, most studies have established models from a risk-neutral per-
spective. Therefore, this paper considers the risk preferences of decision-makers based
on the stochastic programming model, introducing CVaR to measure the impact of
extreme situations on the objective function.

2. This paper uses both stochastic programming and robust optimization methods for
modeling, and analyzes and compares the results of the two uncertainty methods for
the case background proposed in this paper, to assist decision-makers with different
risk preferences in making management decisions.

The rest of this article is organized as follows. Section 2 presents relevant literature and
research gaps. Section 3 introduces the problem and constructs the base model. Section 4
constructs a stochastic programming model. Section 5 constructs the robust optimization
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model. Section 6 carries out numerical cases and conducts the result analysis. Section 7
summarizes the article.

2. Literature Review
2.1. Concept of Emergency Logistics

Emergency logistics, also known as Relief or Humanitarian Logistics, is pivotal in
disaster relief, contributing to over 80% of its effectiveness [5]. It involves the strategic
planning and management of resources to meet the urgent needs of affected populations
during emergencies. The rise in natural disasters and public health crises has amplified
the importance of emergency logistics [6]. Scholars have delved into this area, focusing on
facility location, location-path issues, network design, and management systems.

Emergency logistics is a distinct field that responds to severe natural disasters and
unforeseen public health emergencies [7]. The literature reveals that it prioritizes the welfare
of affected individuals and rescue effectiveness over typical logistics concerns [8]. Today,
it is a widely researched field globally, particularly in disaster-prone regions. Research in
emergency logistics has evolved over three phases. Initially, the focus was on theoretical
research, including scheduling emergency supplies and linear programming models [9].
Post-2000, research expanded due to major global natural disasters, leading to a broader
range of topics including route-path issues and optimization models [10,11]. The most
recent phase focuses on complex real-world models considering factors like cooperation
and uncertainty [12–14]. Humanitarian emergency logistics is the process of planning,
implementing, and controlling the efficient and effective flow and storage of relief items
from the point of origin to the point of consumption in response to natural or man-made
disasters. However, this process is often challenged by various factors that affect the cost,
time, and quality of humanitarian operations. Some of the key factors are site selection cost,
human resource scheduling cost, transportation time, road conditions, and uncertainty
in material demand. Real-life examples can demonstrate the importance of these factors
in post-disaster emergency logistics. In the 2010 Haiti earthquake, the site selection cost
was high due to the lack of suitable land, damaged infrastructure, and security threats [15].
In the 2004 Indian Ocean tsunami, the human resource scheduling cost was high due to
the shortage of qualified and experienced personnel, the language and cultural barriers,
and the lack of common standards and protocols [16]. In the 2017 Hurricane Maria,
the transportation time was long due to the remote location of Puerto Rico, the limited
availability of air and sea transportation, and the damaged roads and bridges [17]. In the
2005 Pakistan earthquake, the road conditions were poor due to the mountainous terrain,
the landslides, and the snowfall [18]. In the 2011 Japan earthquake and tsunami, uncertainty
in material demand was high due to the nuclear radiation, the evacuation orders, and the
changing needs of the survivors. So, in this paper, these factors are simultaneously added
to the construction of the uncertainty model in the emergency logistics location problem.

2.2. Emergency Logistics Research Methodology

Research in emergency logistics primarily employs deterministic optimization and
uncertainty optimization methods. Deterministic optimization encompasses linear pro-
gramming, dynamic programming, and goal programming. Huang et al. [19] model a
three-objective allocation–distribution network, focusing on lifesaving utility, delay cost,
and equality, and capturing the deprivation cost in the delay cost. Liu et al. [20] integrated
the temporary medical center location and casualty allocation problems to maximize the
expected survivals and minimize total operational costs. The authors proposed a determin-
istic bi-objective model and an iteration method based on the ϵ-constraint method to solve
the model. However, real-world applications often involve uncertainties, necessitating the
use of stochastic programming and robust optimization. Stochastic programming requires
knowledge of the pre-set probability distribution of coefficients, while robust optimization
requires knowledge of the range of coefficient values. Two-stage stochastic programming
(TSP), a branch of stochastic programming problems, is commonly used to minimize the
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expected value of total cost. This method has gained recognition over the decades for
its effectiveness in constructing optimization models. For instance, Sun et al. [21] ap-
plied it to improve emergency evacuation capability in large-scale emergencies, while
Ghasemi et al. [22] used it for distribution and evacuation programming after an earth-
quake disaster. Similarly, Wang proposed a model for evacuation programming in disasters,
and Paul and Zhang [23] used it for locating and transportation programming. Wang [24]
proposed a TSP model for disaster evacuation plans, which includes forecasting, planning,
and execution. Oksuz [25] developed a model for locating temporary medical centers
for emergency relief. Aydin [26] proposed a stochastic p-median model to determine the
locations of the field hospitals to be established in case of an earthquake expected to occur
in Istanbul. Manopiniwes and Irohara [27] proposed a multi-objective stochastic integer-
programming model that integrates three different problems of facility and stock locations,
evacuation planning, and relief distribution for pre- and post-disaster. On the other hand,
robust optimization has been widely applied in emergency logistics to reduce risk and
improve model stability as demonstrated by Ben-Tal et al. [28], while Li et al. [29] proposed
a hybrid robust model that considers relief allocation for secondary disasters and casualty
allocation. Najafi [30] applied robust optimization to address transporting disaster relief
commodities and injured people after an earthquake. Ni et al. [31] propose a min–max
robust model for decision-making regarding facility location, emergency inventory pre-
positioning, and relief delivery operations. The model’s two-stage framework considers
decisions that span pre- and post-disaster actions. Balcik and Yanikoglu [32] study the site
location and routing selection decisions of the rapid needs assessment teams after a disaster
and propose a robust optimization formulation under travel time uncertainty. They also
examine the effects of the proposed uncertainty set compared with others. Ke [33] used
a two-stage robust optimization method to optimize the unreliable hazardous materials
emergency system, and embedded random interruptions of facilities and links into system
development. Du et al. [15] constructed a multi-stage mixed-integer linear programming
(MILP) model for humanitarian emergency logistics and used robust optimization methods
to transform the model into a multi-stage robust model to obtain feasible solutions in the
worst-case scenario. Scholars widely use stochastic programming and robust optimization
methods to deal with uncertain environments. The former assumes a probability distribu-
tion, while the latter tends to yield conservative results. However, most existing studies
only use one type of uncertainty optimization method and merely compare the constructed
deterministic model with the uncertainty model. There is little research on the differences
in uncertainty models constructed using different methods. Therefore, this paper constructs
models using both stochastic programming and robust optimization methods, and analyzes
these two methods.

2.3. Risk Metrics Applications

Value-at-Risk (VaR) is a widely accepted risk measure [34,35]. Based on VaR, scholars
have proposed CVaR. Given a probability of α%, VaR solves the problem of how much the
maximum loss is at a confidence level α [36]. The VaR measure is used both as the quantile
of α and as the conditional expectation, which represents the conditional mean of the
worst 1 − α% loss. CVaR can be expressed as an optimal solution to a special minimization
problem and it is tractable in general. In the case of discrete finite distributions, the op-
timization problem with the CVaR function can be expressed as a linear programming
problem; thus, it has an increasingly wide range of applications in finance [37,38]. To cope
with extreme risk factors in uncertain environments, incorporating risk into the objective
function from the perspective of risk aversion in the framework of TSP is an important
research direction. Ji and Ma [39] introduce CVaR to construct robust risk-maximizing
expert consensus models to circumvent the uncertainty and risk associated with unpre-
dictable decision-making environments. Ahmed [40] introduced TSP with an average risk
objective, considering multiple risk measures and providing computationally tractable
methods. Miller and Ruszczynski [41] constructed a new risk-averse TSP model, which



Sustainability 2024, 16, 1361 5 of 34

still has uncertainty after the second stage. Many scholars have applied this method to
more fields. For instance, Wang et al. [24] proposed a two-stage generation scheduling
stochastic programming model considering CVaR to minimize the system operating cost.
Xu et al. [42] proposed a data-driven two-stage optimal stochastic scheduling method for
wind energy and reserve energy considering the decision-maker’s risk preference given
the uncertainty of wind power. Das et al. [43] applied the risk-averse TSP model to the
closed-loop supply chain. Existing research often applies risk functions to the financial
insurance field, with less application in the field of emergency logistics. Therefore, this
paper fills a research gap in related fields by considering risk functions in the construction
of emergency logistics facility location models.

The literature above is summarized in Table 1. Previous literature has primarily fo-
cused on studying factors such as site selection cost, transportation cost, and transportation
time in both deterministic and uncertain environments. However, less consideration has
been given to the cost factor of human resource scheduling and more research has been
focused on single-objective problems. Additionally, these studies rarely compare and
consider robust optimization and stochastic programming. Furthermore, few scholars have
explored the use of CVaR in emergency logistics site selection problems. So, this article fills
the research gap by considering a dual objective model of location selection, scheduling
cost, and transportation time. Based on this, a robust model and a two-stage stochastic
programming model are constructed, and a comparative analysis is conducted.

Table 1. Summary of relevant literature.

Author Multi-Objective Problem Uncertainty MethodLC HRSC TT RO SP CVaR

Huang et al. [19] ✓ ✓ ✓ EVIA
Liu et al. [20] ϵ-constraint method
Sun et al. [21] ✓ ✓ Gurobi
Ghasemi et al. [22] ✓ ✓ ✓ ✓ NSGAII
Paul and Zhang [23] ✓ ✓ ✓ Cplex
Oksuz and Satoglu [25] ✓ ✓ ✓ Cplex
Aydin [26] ✓ ✓ Cplex
Manopiniwes and Irohara [27] ✓ ✓ ✓ ✓ Matlab
Li et al. [29] ✓ ✓ ✓ ✓ ✓ Matlab
Ke [33] ✓ ✓ Gurobi
Du et al. [15] ✓ ✓ Algorithm and Cplex
Barbarosoglu and Arda [10] ✓ ✓ Cplex
Paul and MacDonald [12] ✓ ✓ ✓ ✓ EV
Paul and Wang [13] ✓ ✓ ✓ Cplex
Shen et al. [14] ✓ ✓ ✓ Cplex
Jin and Xia [37] ✓ ✓ Gurobi
Qu and Li [38] ✓ ✓ Cplex
Ji and Ma [39] ✓ ✓ Matlab
Miller and Ruszczyński [41] ✓ ✓ DA
Wang [24] ✓ ✓ ✓ ✓ LRA
Xu et al. [42] ✓ ✓ Matlab
Das et al. [43] ✓ ✓ ✓ Gurobi
Najafi [30] ✓ ✓ SMSRM
Ni et al. [31] ✓ ✓ ✓ BDA
Balcik and Yanikoglu [32] ✓ ✓ ✓ TSHA
Our paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ Gurobi

Note: LC, HRSC, TT, RO, SP, EVIA, Gurobi, NSGAII, Cplex, EV, DA, LRA, SMSRM, BDA, and TSHA stand for
location costs, human resource scheduling costs, transportation time, robust optimization, stochastic programming,
efficient variational inequality algorithm, Gurobi solver, nondominated sorting genetic algorithm, Cplex solver,
evolutionary algorithm, decomposition algorithm, Lagrangian relaxation approach, solution methodology of the
structured robust model, Benders decomposition algorithm, and tabu search heuristic algorithm.
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3. Problem Formulation
3.1. Problem Description

The location of emergency logistics facilities has a direct influence on emergency relief
and management as a whole. In selecting a logistics location, decision-makers must not only
take into account the factors outlined in the prior section but must also carefully assess the
costs and benefits of each potential location. To promote stakeholder decision-making, this
article studies a secondary emergency logistics network composed of multiple emergency
logistics facilities and emergency material demand points. Emergency logistics facilities
can dispatch human resources and allocate emergency supplies to emergency material
demand points.

When selecting a location, the initial consideration should be the construction costs,
which typically encompass the expenses of the location, construction, and design. These
costs are influenced by the location of the prospective location. Precisely, such costs are
geographically dependent. As emergency logistics costs are considered a public welfare
expenditure and not for profit, budgets are generally limited. Hence, this paper considers
the upper limit of emergency facilities. Additionally, the cost of storing emergency materials
should be taken into account, which is a linear function depending on the storage capacity,
hence related to the volume of storage. The availability and scheduling of human resources
are very important in humanitarian emergency logistics. In this article, emergency logistics
facilities bear the responsibility of emergency rescue human resource scheduling. Modern
disaster emergency rescue should include a top-down emergency management system
and diversified emergency rescue capabilities and need to be built from three aspects:
professional emergency rescue forces, social emergency forces, and grassroots emergency
rescue forces. Therefore, this article calculates the cost of human resource scheduling from
the three types of emergency rescue personnel: professional, social, and grassroots.

Finally, this paper discusses the cost of transporting emergency supplies. As the cost
of loading and unloading has a negligible impact on overall costs, it has not been included
in the model. Therefore, the costs incurred during transportation are mainly taken into
account, and we express them as unit transport costs and transport volume in the model.
We do not incorporate loading and unloading costs as they have minimal effect on the total
expense. The model expresses cost as the weighted distance between the unit transport
cost and transport volume. Concerning rescue time, this paper aims to minimize total
transport time. It is taken into account that the transportation within the disaster area may
be impacted; as a result, this paper also looks into including a road congestion factor in the
model to further reduce the total transport time. All the exposed theories and case studies
are valid under the assumption that natural disasters occur in a particular region or area
under study, considering the historical data. To simulate realistic transportation scenarios
in disaster zones, this paper proposes the inclusion of a road congestion coefficient in
the model. In light of the above exposition, this paper presents a model for locating an
emergency logistics facility and outlines the following assumptions before its establishment:

1. Fixed costs: Emergency logistics facilities are assumed to have the functions of emer-
gency material allocation and human resource scheduling. The construction schedul-
ing, and storage costs of each emergency logistics facility are assumed to be known
and remain constant throughout the period under consideration.

2. Constant transport speed: The speed of each transport unit is assumed to be constant,
implying that the time taken between material demand points is directly proportional
to the distance.

3. Uniform transportation cost: The cost of transporting emergency supplies is assumed
to be uniform and known for all units.

4. Known distances: The distance from each emergency logistics facility to each emer-
gency logistics demand point is assumed to be known and does not change over time.

5. Allocation and scheduling rules: It is assumed that each emergency logistics facility
can provide materials and dispatch human resources to multiple emergency logistics
demand points, as shown in Figure 1(1). Each emergency supply–demand point



Sustainability 2024, 16, 1361 7 of 34

can be serviced by multiple emergency logistics facilities, as shown in Figure 1(2),
allowing for a flexible and robust supply chain.

6. Demand relationship: The demand for supplies at emergency supply points is propor-
tional to the demand for human resources. If a place has a large demand for supplies,
it may be densely populated or severely affected by a disaster. Therefore, it will have
more injured people and more affected groups, so it needs more emergency rescue
human resources.

The specific schematic diagram of the model is shown in Figure 1. The various
parameters required in the model, including sets, parameters, decision variables, etc., are
as follows:

Sets and subscripts:

I: The set of emergency supply–demand points, i ∈ I;
J: The set of emergency logistics alternative facility points, j ∈ J;
K: The set of emergency logistics rescue scenarios, k ∈ K.

Parameters:

ct: Unit transportation cost between emergency supply–demand point i and emer-
gency logistics facility j;
dij: Transportation distance between emergency supply–demand point i and emer-
gency logistics facility j;
dmax : Maximum service distance of emergency logistics facility;
f j: Construction cost of emergency logistics facility j;
cu: Storage cost of unit emergency supplies during pre-disaster emergency supplies
reserve;
vj: Storage capacity limit of emergency logistics facility;
pcj: The cost of dispatching a unit of professional emergency rescue human resources;
scj: The cost of dispatching a unit of social emergency rescue human resources;
gcj: The cost of dispatching a unit of grassroots emergency rescue human resources;
Di: Demand quantity of emergency supply–demand point i;
V: Speed of emergency supply transport vehicle;
Tij: Transportation time between emergency supply–demand point i and emergency
logistics facility j;
ζ1, ζ2, ζ3: The ratio coefficient of the demand for one unit of emergency supplies to
the demand for one unit of professional/social/grassroots emergency rescue human
resources at the demand point;
σ: Road congestion coefficient;
σk: Road congestion coefficient under scenario k;
P: Maximum number of emergency logistics facilities to be built.

Decision variables:

yj: 0–1 binary variable; if emergency logistics facility j is selected, the value is 1,
otherwise it is 0;
xij: 0–1 binary variable; if emergency logistics facility j provides supplies to demand
point i, the value is 1, otherwise it is 0;
xijk: 0–1 binary variable, under scenario K; if the emergency logistics facility j provides
supplies to the demand point i, the value is 1, otherwise it is 0;
uj: The quantity of emergency supplies stored at emergency logistics facility j;
qij: The amount of supplies allocated by emergency logistics facility j to emergency
supply–demand point i;
qijk: The amount of material distributed by emergency logistics facility j to emergency
material demand point i under scenario k;
prij: The number of professional emergency rescue human resources dispatched from
emergency logistics facility j to demand point i;
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srij: The number of social emergency rescue human resources dispatched from emer-
gency logistics facility j to demand point i;
grij: The number of grassroots emergency rescue human resources dispatched from
emergency logistics facility j to demand point i;
prijk: The number of professional emergency rescue human resources dispatched from
emergency logistics facility j to demand point i under scenario K;
srijk: The number of grassroots emergency rescue human resources dispatched from
emergency logistics facility j to demand point i under scenario K;
grijk: The number of grassroots emergency rescue human resources dispatched from
emergency logistics facility j to demand point i under scenario K.

Figure 1. Schematic diagram of emergency logistics facility location problem.

3.2. Basic Model

Based on the parameter settings above, this section first develops a mixed-integer pro-
gramming (MIP) model based on the minimum locating and dispatching cost. The objective
function is to minimize the total locating and dispatching cost, which includes construction
cost, storage cost, and transportation costs:

min Z1 = ∑
j∈J

f jyj + ∑
j∈J

cuuj + ∑
i∈I

∑
j∈J

ctxijqijdij + ∑
i∈I

∑
j∈J

(pcj prij + scjsrij + gcjgrij) (1)

s.t.
I

∑
i=1

qij ≤ uj ≤ vj, ∀i ∈ I, ∀j ∈ J (2)

qij ≤ M × xij, ∀i ∈ I, ∀j ∈ J (3)

dijxij ≤ dmax, ∀i ∈ I, ∀j ∈ J (4)

Di ≤ ∑
j∈J

qij, ∀i ∈ I (5)

∑
i∈I

prij ≤ yj M, ∀j ∈ J (6)

∑
i∈I

srij ≤ yj M, ∀j ∈ J (7)

∑
i∈I

grij ≤ yj M, ∀j ∈ J (8)

Di ≤ ζ1 ∑
j∈J

prij, ∀i ∈ I (9)

Di ≤ ζ2 ∑
j∈J

srij, ∀i ∈ I (10)
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Di ≤ ζ3 ∑
j∈J

grij, ∀i ∈ I (11)

yj ∈ {0, 1}, xij ∈ {0, 1}, ∀i ∈ I∀j ∈ J (12)

The objective function (1) aims to minimize the total cost of locating, comprising the
emergency logistics facility’s construction, the emergency supply storage cost, and transport
cost. Constraint (2) specifies that each emergency logistics facility’s delivered emergency
supplies are restricted by its storage capacity, which should not exceed the maximum
capacity limit of the facility. Constraint (3) specifies that the designated emergency logistics
facility is exclusively responsible for material delivery. A constraint factor of M, which
guarantees proper supply flow, is achieved by utilizing a large integer. Constraint (4)
prohibits the distance between the emergency logistics facility and the demand point from
surpassing the maximum service distance. Constraint (5) ensures that all demands can be
met through material distribution and that material transportation is always non-negative.
Constraints (6)–(8) indicate that human resource dispatch decisions cannot be made when
emergency logistics facility j is not selected. Constraints (9)–(11) require that the human
resource dispatch to demand point i must meet the demand volume. Constraint (12) states
that facility point yj is a binary variable that is equal to 1 when facility j is selected and 0
otherwise. The binary material allocation decision variable xij is equal to 1 when facility j
allocates material to the demand point and 0 otherwise.

Emergency logistics facilities are not designed to generate profits; thus, their expenses
are often restricted. This leads to a situation where facility location is limited in cases with
limited facilities. The previous section introduced the coverage model, which addresses the
maximum coverage problem by selecting P facilities from alternative locations J to serve
the maximum number of demand points I or satisfy the maximum amount of demand. This
section focuses on incorporating constraints into the decision-making process for logistics
facility locating.

∑
j∈J

yj ≤ P (13)

where P represents the threshold established by the decision-maker to prevent the number
of selected emergency logistics facilities from exceeding the upper limit specified.

Following an emergency event, the arrival of emergency supplies at the demand
point is often significantly delayed. Prolonged waiting times not only impact the affected
individuals’ mood, but also hinder post-disaster emergency response and recovery ef-
forts. To reduce the effects of emergencies on impacted individuals, this paper focuses on
minimizing total transportation time as the second objective function.

min Z2 = σ ∑
I,J

Tijxij (14)

s.t. Tij =
dij

V
, V ≥ 0, Tij ≥ 0 (15)

where σ denotes the road congestion coefficient; the occurrence of extreme disasters will
seriously affect the smoothness of the rescue road and accordingly affect the transportation
time of emergency supplies. Therefore, this paper introduces the σ parameter to enhance
the realism of the model. Equation (17) represents the corresponding constraint of the
objective function Z2, i.e., the transportation time between the emergency logistics facility
point J and the emergency logistics demand point I can be obtained by the ratio of distance
and transportation speed.

Considering both objective functions Z1 described above, the dual-objective emergency
logistics facility location model is obtained as Equation (16):

min Z = min Z1 + min Z2 (16)
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It is evident from Model (16) that time and transportation costs conflict with each other.
In an emergency logistics network system, increasing optional emergency facilities will
inevitably result in a reduction in transportation time and vice versa, as the cost rises.
The significance of transportation cost and transportation time varies in different conditions.
Therefore, this study aims to unify the two objective functions and proposes λ as the weight
coefficient for the two objectives. The value of λ ranges between 0 and 1, and adjusting
its value can alter the inputs of transportation time, and locating and dispatching cost.
Consequently, the transformed objective function Z is obtained.

min Z = min[λZ1 + (1 − λ)Z2]

= λ

(
∑

J
f jyj + ∑

J
cuuj + ∑

I,J
qijxijdijct + ∑

I,J
(pcj prij + scjsrij + gcjgrij)

)
+ (1 − λ)∑

I,J
Tijxij

(17)

Since objective function Z2, measured in time units, is challenging to evaluate along-
side objective function Z1, which is based on locating and dispatching costs, this paper
aims to establish a quantitative assessment for Equation (17). Additionally, we will use
the percentage standardization method to remove any unit discrepancies in the objective
function. Set Z∗

1 and Z∗
2 as the minimum values of the single objective of the objective func-

tions Z1 and Z2. Furthermore, let ZT
1 and ZT

2 denote the transformed objective functions.
Thus, the degree of affiliation function of the objective function may be expressed in the
following manner.

ZT
1 =

Z1

Z∗
1

, ZT
2 =

Z2

Z∗
2

(18)

Substituting Equation (18) into Equation (17):

min Z = min λZT
1 + (1 − λ)ZT

2

= λ

(
∑J f jyj + ∑J cuuj + ∑I,J qijxijdijct + ∑I,J(pcj prij + scjsrij + gcjgrij)

)
Z∗

1

+ (1 − λ)
∑I,J Tijxij

Z∗
2

(19)

The above model follows the Equations (2)–(13) and (15) mentioned earlier. Equation (19)
is a MIP for locating emergency logistics facilities proposed in this section, which takes
into account transportation costs and transportation time, and is transformed into a single-
objective model by normalizing the time weights λ and percentages. When λ is set to
1, the model is equivalent to the single-objective model based on locating and dispatch-
ing cost. When λ is 0, the model is equivalent to a single-objective model based on
transportation time.

Property 1. The MILP model constructed in this paper has feasible solutions.

Proof. The model is a MILP problem, which involves both continuous and binary variables.
One way to prove the existence of feasible solutions for a MILP problem is to use the concept
of relaxation. Relaxation means removing some of the constraints or variables from the
original problem to make it easier to solve. For example, if we relax the binary constraints
on yj and xij, we obtain a linear programming (LP) problem, which can be solved efficiently
by standard methods. The feasible region of the LP relaxation is larger than or equal to the
feasible region of the MILP problem. Therefore, if the LP relaxation has a feasible solution,
then the MILP problem also has a feasible solution. This is called the sufficiency condition
for feasibility. Then, through Theorems 4.1 and 2.1 [44,45], it can be clearly concluded that
the MILP model constructed in this article has feasible solutions.
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Property 2. If the continuous variables are bounded, the MILP model constructed in this paper has
an optimal solution.

Proof. According to Theorem 1 as cited in [46], if the continuous variables within a model
are bounded, and both the objective function and constraints are continuous, it results
in the feasible region being a compact set. In such a scenario, the objective function is
guaranteed to attain its optimal value within this set. Given that the continuous variables
in our model are indeed bounded, we can infer that the mixed-integer programming model
we have constructed will have an optimal solution.

If there is only one point in the feasible domain, then the solution of the MILP model
constructed in this paper is unique. However, in our model, the decision variables xij and
yj are binary, which means they can take on either of two values: 0 or 1. This inherently
introduces multiple combinations of variable assignments that could potentially satisfy the
constraints and optimize the objective function. In a MILP problem, the feasible region
is a discrete set and there can be multiple points (solutions) in this set that give the same
optimal value of the objective function. This is especially true when the objective function
is linear, as is the case in MILP. In such cases, any point on the line segment connecting
two optimal solutions is also optimal, leading to an infinite number of optimal solutions.
Let us consider a simple scenario where there are two facilities (j = 2) and two customers
(i = 2). Even in this simplified case, there are 22∗2 = 16 possible combinations for the
binary decision variable xij alone. Each of these combinations could potentially be a feasible
solution, depending on the specific parameters and constraints of the problem. Moreover,
the objective function in our model is a linear combination of the decision variables. In linear
programming, if the objective function is parallel to one of the constraints at the optimal
point, multiple optimal solutions can exist. This is because moving along the constraint
does not change the value of the objective function. So, we cannot prove the uniqueness
of the solution for the MILP model constructed in this article. Just as Huang et al. [47]
proved in their paper that MILP is an NP hard problem with multiple solutions, the original
problem needs to be divided into several subproblems for solving.

4. Stochastic Programming Model

This section considers a TSP model for emergency logistics facility locations with
environmental uncertainty. In the first stage, the construction and storage costs of the
emergency logistics facility are considered. As a decision-maker, one needs to first decide
on whether to place a location at a J point and the amount of emergency supplies to be
stored at that facility point. Decisions at this stage, the strategic level, are independent of
uncertainty, and incur the same costs regardless of the probability of an event occurring and
how demand changes. The first stage of the problem can then be represented separately as
Equation (20).

min Z = ∑
j∈J

f jyj + ∑
j∈J

cuuj (20)

After confirming the objective function of the first stage, consider the problem of the
second stage. The second stage is called the practical layer, which can also be understood
as the pursuit and compensation for the first-stage problem. This section takes Q as the
objective function, representing transportation costs and transportation time. In actual
emergency material relief, the uncertainty of material demand and road conditions will
lead to instability in transportation costs and transportation time. Corresponding to the
model, that is, the change in qij is related to Di. On the other hand, this article adds a road
congestion coefficient σk to the transportation time and changes the transportation time
under different scenarios by taking different values of σk, to simulate the real rescue road
situation. In summary, considering transportation costs and transportation time separately
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in the second stage can effectively avoid mutual influence with the decision-making of the
first stage, specifically expressed as Equation (21):

Qk(x, q, pr, sr, gr, σ) = λ
(

ctxijkqijkdij + pcj prijk + scjsrijk + gcjgrijk

)
+ (1 − λ)σkTijxijk

(21)

Because we need to calculate the expectation of the objective function in the second
stage, Equation (21) is further expanded into an extended form of a scenario-based stochas-
tic programming model. Considering the probability of different scenarios K occurring as
PK, PK ∈ P, the expected cost of the second stage can be expressed as Equation (22):

EK[Q(x, q, pr, sr, gr, σ)]

= ∑
i∈I,j∈J,k∈K

PkQk(x, q, pr, sr, gr, σ)

= ∑
i∈I,j∈J,k∈K

Pk

[
λ
(

ctxijkqijkdij + pcj prijk + scjsrijk + gcjgrijk

)
+(1 − λ)σkTijxijk

]
s.t. ∑

k∈K
Pk = 1

(22)

Therefore, the TSP model for emergency logistics facility location established in this paper
can be expressed as Equation (23):

min Z = ∑
j∈J

f jyj + ∑
j∈J

cuuj + EK[Q(x, q, pr, sr, gr, σ)] (23)

The above model follows the Equations (2)–(13), (15) and (22) mentioned earlier. Similarly
to the dimension conversion method in Section 3, Equation (23) can be expanded and
transformed into Equation (24):

min Z = λ
∑j∈J f jyj + ∑j∈J cuuj

Z∗
1

+ EK

[
λ

∑i∈I,j∈J(xijkqijkdijct + pcj prijk + scjsrijk + gcjgrijk)

Z∗
1

+(1 − λ)
∑i∈I,j∈J σkTijxijk

Z∗
2

] (24)

where Z∗
1 and Z∗

2 are, respectively, the minimum values of transportation costs and trans-
portation time in the MIP model proposed in Section 3.

TSP Model for Emergency Logistics Facility Location Based on Risk Preference

To effectively measure the extreme tail risk in the emergency logistics facility location
studied in this paper, CVaR is introduced to further optimize the TSP model proposed in
Section 3. Since the uncertainty of demand and road conditions is related to the second
stage, this paper changes the expected value of the second stage to a target function based
on CVaR:

CVaRα(Q(x, q, pr, sr, gr, σ)) = min
{

η + (1 − α)−1E[(Q(x, q, pr, sr, gr, σ)− η)+]
}

(25)

where η is the threshold that the expected loss does not exceed and

[Q(x, q, pr, sr, gr, σ)− η]+ = max
n∈R

{0, Q(x, q, pr, sr, gr, σ)− η} (26)
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Notice that the function of cost and time exists in CVaRα(Q(x, q, σ)) at the same time.
For convenience of calculation, the following transformation is made to Equation (25):

CVaRα(Q(x, q, pr, sr, gr, σ))

= CVaRα

[
λ
(

ctxijkqijkdij + pcj prijk + scjsrijk + gcjgrijk

)]
+ CVaRα

[
(1 − λ)σkTijxijk

]
= λ CVaRα

(
ctxijkqijkdij + pcj prijk + scjsrijk + gcjgrijk

)
+ (1 − λ)CVaRα

(
σkTijxijk

)
= min λ

{
η1 + (1 − α)−1E

[(
ctxijkqijkdij + pcj prijk + scjsrijk + gcjgrijk − η1

)
+

]}
+ (1 − λ)

{
η2 + (1 − α)−1E

[(
σkTijxijk − η2

)
+

]}
(27)

where α is the same risk level, and η1, η2 are, respectively, the expected transportation cost
and transportation time determined by the decision-maker. To prove the effective range of
η, the following proposition is proposed:

Proposition 1. The range of expected loss value η is [0, ηmax ], where ηmax is the upper limit
defined by the decision-maker. That is

η ∈ [0, ηmax] (28)

Proof of Proposition 1. According to the CVaR formula proposed by Rockafellar and Urya-
sev [48]:

CVaRα(X) = min
η∈R

{
η + (1 − α)−1E[(X − η)+]

}
(29)

When η ≤ 0, we can obtain:

η + (1 − α)−1E[(X − η)+] =
(

1 − (1 − α)−1
)

η + (1 − α)−1E[X] (30)

Since α ∈ [0, 1], so at this time
(
1 − (1 − α)−1) < 0, Equation (30) tends to negative

infinity as η changes. When η ≥ ηmax , we can obtain:

η + (1 − α)−1E[(X − η)+] = η (31)

It is easy to know that, at this time (1 − α)−1E[(X − η)+] = 0, Equation (31) tends to
positive infinity as η changes. Considering the convexity of the function, the effective range
of η is [0, ηmax ]. In summary, the risk preference two-stage stochastic programming (RP-
TSP) model for emergency logistics facility location based on risk preference established in
this paper can be written as follows:

min Z = ∑
j∈J

f jyj + ∑
j∈J

cuuj + CVaRα(Q(x, q, pr, sr, gr, σ)) (32)

The above model follows the Equations (2)–(13), (15), (27) and (28) mentioned earlier. The
dimension handling method of Equation (32) is the same as that of Equation (24) and it will
not be repeated here.

5. Robust Optimization Model

In this section, we use the method of robust optimization for emergency logistics
facility location modeling. First, we will establish a robust model based on the box uncer-
tainty set and then establish a robust model based on the polyhedron uncertainty set with
adjustable robust conservatism. Since the robust model of Ben-Tal and Nemirovski [28]
is a second-order cone model and has not been widely applied, it is not considered in
this paper.
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5.1. Robust Model for Emergency Logistics Facility Location Based on Box Uncertainty Set

First, according to Soyster’s [49] robust model, we establish a robust model based on
the box uncertainty set. Suppose am is the mth row vector of the uncertainty parameter
matrix A, where Nm is the set of the uncertain part amn in the mth row of matrix A.
The uncertainty parameter amn can vary in the interval [āmn − âmn, āmn + âmn], where āmn
is the nominal value, âmn is the perturbation value, and âmn ≥ 0. Referring to the Soyster
robust model, the uncertainty set of demand Di in constraint (4) can be expressed as follows:

max{Di} = max

{
∑

n∈Nm

amnDi + ∑
n/∈Nm

amnDi

}

= max

{
∑

n∈Nm

amnDi + ∑
n/∈Nm

āmnDi

}

= max

{
∑

n∈Nm

amnDi + ∑
n∈Nm

āmnDi − ∑
n∈Nm

āmnDi + ∑
n/∈Nm

āmnDi

}

= max

{
∑
n

āmnDi + ∑
n∈Nm

(amn − āmn)Di

}
= ∑

n
āmnDi + ∑

n∈Nm

|âmnDi|

(33)

Then, constraint (5) and (9)–(11) can be rewritten as follows:

∑
n

āmnDi + ∑
n∈Nm

|âmnDi| ≤ ∑
j∈J

qij, ∀i ∈ I (34)

∑
n

āmnDi + ∑
n∈Nm

|âmnDi| ≤ ζ1 ∑
j∈J

prij, ∀i ∈ I (35)

∑
n

āmnDi + ∑
n∈Nm

|âmnDi| ≤ ζ2 ∑
j∈J

srij, ∀i ∈ I (36)

∑
n

āmnDi + ∑
n∈Nm

|âmnDi| ≤ ζ3 ∑
j∈J

grij, ∀i ∈ I (37)

Introduce variable Hi to eliminate the absolute value in Equations (34)–(37):

∑
n

āmnDi + ∑
n∈Nm

âmn Hi ≤ ∑
j∈J

qij, ∀i ∈ I

∑
n

āmnDi + ∑
n∈Nm

âmn Hi ≤ ζ1 ∑
j∈J

prij, ∀i ∈ I

∑
n

āmnDi + ∑
n∈Nm

âmn Hi ≤ ζ2 ∑
j∈J

srij, ∀i ∈ I

∑
n

āmnDi + ∑
n∈Nm

âmn Hi ≤ ζ3 ∑
j∈J

grij, ∀i ∈ I

s.t. − Hi ≤ Di ≤ Hi

Hi ≥ 0

(38)

Then, the original model is equivalent to the following:

min Z = λ

(
∑
j∈J

f jyj + ∑
j∈J

cuuj + ∑
i∈I,j∈J

qijxijdijct + ∑
I,J
(pcj prij + scjsrij + gcjgrij)

)
+ (1 − λ)σ ∑

i∈I,j∈J
Tijxij

(39)

The above model follows the Equations (2)–(4), (6)–(8), (12), (13), (15) and (38) mentioned
earlier. Model (39) is the robust optimization model based on the box uncertainty set (RO-B)
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for the emergency logistics facility location set up in this paper. The dimension handling
method of this model is the same as that of Equation (24) and it will not be repeated here.

5.2. Robust Model for Emergency Logistics Facility Location Based on Polyhedral Uncertainty Set

To further consider the uncertainty of demand Di, this section continues to refer to the
robust model proposed by Bertsimas and Sim for modeling.

Assume D̄i is the nominal value of Di and D̂i is the perturbation value of demand;
then, Di changes in the interval

[
D̄i − D̂i, D̄i + D̂i

]
. Similarly, set up the uncertainty pa-

rameter matrix A(m × n) and introduce the parameter Γ of perturbation value to adjust
the conservatism of the model, where amn ≤ Γm. Let a part of Di in the model fluctuate,
where ⌊Γm⌋ changes in

[
D̄i − D̂i, D̄i + D̂i

]
(where ⌊Γm⌋ represents the maximum integer

not exceeding Γm), 1 changes in
[
D̄i − D̂i(Γm − ⌊Γm⌋), D̄i + D̂i(Γm − ⌊Γm⌋)

]
, and the rest of

Di does not change, and does not specify the specific change in Γm uncertainty parameters.
Therefore, the uncertainty parameter Di in the model can be expressed as follows:

Di = ∑
n

amnD̄i + G(Di, Γm) (40)

where

G(Di, Γm)

= max
{Sm∪{tm}|Sm⊆Nm ,|Sm |∈Γm ,tm∈Nm\Sm}

{
∑

n∈Sm

âmn|D∗
i |+ (Γm − ⌊Γm⌋)âmtm |D∗

i |
}

(41)

where the subscript S in the objective function is the set of points where demand fluctuation
occurs. When Γm is 0, Equation (40) degenerates into a nominal problem. When Γm = |Nm|,
Equation (40) is equivalent to the robust model proposed by Soyster. Therefore, by changing
Γm in the interval [0, |Nm|], the conservatism of the model can be effectively controlled. It is
not difficult to see that Equation (40) is a nonlinear problem, and it will be transformed into
a linear problem for the solution next. When Γm is an integer:

G(Di, Γm) = max
Sm⊆Nm ,Sm∈Γm

∑
n∈Nm

âmn|D∗
i | (42)

Introduce auxiliary variable zmn to eliminate the constraint of subscript S in the
objective function:

G(Di, Γm) = max ∑
n∈Nm

âmn|D∗
i |zmn

s.t. ∑
n∈Nm

zmn ≤ Γm

0 ≤ zmn ≤ 1 ∀n ∈ Nm

(43)

The dual problem of model (43) is the following:

min ∑
n∈Nm

pmn + zmΓm

s.t. zm + pmn ≥ âmnDi ∀m, n ∈ Nm

pmn ≥ 0 ∀n ∈ Nm

zm ≥ 0 ∀m

(44)



Sustainability 2024, 16, 1361 16 of 34

where p is the auxiliary variable of the dual problem. Therefore, constraints (34)–(37) in the
model can be rewritten as follows:

∑
n

amnD̄i + ∑
n∈Nm

pmn + zmΓm ≤ ∑
j∈J

qij, ∀i ∈ I

∑
n

amnD̄i + ∑
n∈Nm

pmn + zmΓm ≤ ζ1 ∑
j∈J

prij, ∀i ∈ I

∑
n

amnD̄i + ∑
n∈Nm

pmn + zmΓm ≤ ζ1 ∑
j∈J

srij, ∀i ∈ I

∑
n

amnD̄i + ∑
n∈Nm

pmn + zmΓm ≤ ζ1 ∑
j∈J

grij, ∀i ∈ I

zm + pmn ≥ âmnDi ∀m, n ∈ Nm

pmn ≥ 0 ∀n ∈ Nm

zm ≥ 0 ∀m

(45)

Then, the original model is equivalent to the following:

min Z = λ

(
∑
j∈J

f jyj + ∑
j∈J

cuuj + ∑
i∈I,j∈J

qijxijdijct

)
+ (1 − λ)σ ∑

i∈I,j∈J
Tijxij (46)

The above model follows the Equations (2)–(4), (6)–(8), (12), (13), (15) and (45) mentioned
earlier. The model of Equation (46) is the robust optimization model based on the polyhedral
uncertainty set (RO-P) for the emergency logistics facility location set up in this paper.
The dimension handling method of this model is the same as that of Equation (24) and it
will not be repeated here.

6. Numerical Analysis
6.1. Numerical Example

There are many application scenarios for the locating of emergency logistics facilities,
including natural disasters such as earthquakes and various public health events. In this
paper, we have selected the more frequent earthquakes in China’s southwestern region of
Sichuan Province for research. Regarding the historical data of the Wenchuan earthquake
and the map of Sichuan Province, this paper selects sixteen counties and cities that were
severely affected by the earthquake as the emergency material demand points for modeling
and analysis, and their geographic locations are mainly concentrated in the northwest of
the Sichuan Basin along the Longmen Mountain Range. The sixteen counties and cities
are Wenchuan County, Beichuan County, Mianzhu City, Qingchuan County, Mao County,
Dujiangyan City, Pingwu County, Pengzhou City, Santai County, Lezhi County, Zhongjiang
County, Renshou County, Zitong County, Yanting County, Hongya County, and Ya’an
City. Figure 2 represents the geographic locations of the study cases in this section and the
approximate distribution of the locations of the demand points.

6.1.1. Pre-Locating of Emergency Logistics Facilities

This section discusses the criteria and factors necessary for the placement of an emer-
gency logistics facility, as presented in this paper’s case study. Unlike traditional logistics,
emergency logistics, characterized by suddenness, uncertainty, nonroutine activities, un-
conventionality, and a weak economy, requires a more rigorous process for facility locating.
The selection of locations for these facilities must be objective, incorporating historical
data, objective factors, and scientific models to ensure a comprehensive and reasonable
choice. Emergency logistics prioritizes people and aims to reduce the impact of disasters on
individuals. It adopts a comprehensive approach to disaster relief to minimize community
devastation. As per the relevant literature [50–52], the analysis of emergency logistics
facilities should focus on location factors. This paper considers factors such as popula-
tion density, service area, transportation accessibility, spatial capacity, and economic costs
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for pre-locating emergency logistics facilities. In the context of Sichuan Province, seven
cities—Chengdu, Deyang, Mianyang, Guangyuan, Ziyang, Meishan, and Suining—were
selected as alternative locations for the facilities. These prefecture-level cities each have a
population of over 1 million and are within 500 km of the hypothetical demand point for
emergency supplies. Additionally, these locations offer good transportation conditions with
multiple highways and railroads ensuring timely response and service to affected areas.
Figure 3 shows the abstract model map of the alternative emergency logistics facilities and
demand points.

Figure 2. Schematic diagram of the geographical location of the case background.

Figure 3. Abstract model map of the case background.

6.1.2. Parameters of Model

The maximum capacity, unit storage cost, and construction cost of each facility option
are shown in Table 2. The capacity, storage cost, and construction cost of the emergency
logistics facilities are referenced to the ‘Standards for the Construction of Disaster Relief
Material Reserve Depots’ issued by the Ministry of Civil Affairs in 2009, as well as the local
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development level of the city. We rank the scheduling costs of three types of emergency
rescue human resources based on the number of human resources and the difficulty of
mobilization: professional > social > grassroots, and provide corresponding parameters in
the table based on statistical data.

Table 2. Overview of emergency logistics facilities.

Alternative fj cu vj pcj scj gcj

Locations (USD 10,000)
(USD 10,000/10,000

Units)
(10,000 Units)

(USD 10,000/10,000
Units)

(USD 10,000/10,000
Units)

(USD 10,000/10,000
Units)

Chengdu 240 0.3 80 260 180 40
Deyang 180 0.25 60 340 230 50
Mianyang 180 0.25 60 400 260 65
Guangyuan 180 0.25 60 480 310 80
Meishan 150 0.2 50 340 230 50
Ziyang 150 0.2 50 340 230 50
Suining 150 0.2 50 400 260 65

The distance between each emergency logistics facility alternative point and each
emergency material demand point is calculated concerning the navigation route in Google
Maps, and the specific data are shown in Table 3. Considering factors such as road condi-
tions, safety considerations, vehicle capabilities, efficiency, and timeliness, the disaster area
is mostly mountainous, and the road conditions are poor and affected by the earthquake,
so we set the unit transportation speed in emergency logistics to 40 km/h. The ratio of
distance and speed can be obtained from the time between the alternative points of each
emergency logistics facility and the demand points of each emergency material, and the
specific data are shown in Table 4.

Table 3. Distances from demand points to facility options (kilometers).

Alternative Locations Chengdu Deyang Mianyang Guangyuan Meishan Ziyang Suining

Wenchuan County 144 162 198 328 202 225 297
Beichuan County 215 134 92 231 223 207 187
Mianzhu 116 35 60 221 180 180 185
Qingchuan County 300 218 174 92 389 353 313
Mao County 183 114 122 288 242 256 270
Dujiangyan 71 105 123 290 130 169 226
Pingwu County 293 212 160 167 360 347 302
Pengzhou 69 74 95 261 135 140 195
Santai County 138 106 72 222 207 160 99
Lezhi County 115 150 185 332 141 58 83
Zhongjiang County 97 39 59 235 165 120 141
Renshou County 78 152 200 367 34 65 179
Zitong County 201 122 60 150 268 258 194
Yanting County 174 135 126 222 243 196 94
Hongya County 123 208 255 438 63 139 253
Ya’an City 131 210 248 421 101 177 294

The demand for materials in each city and county is mainly based on the population
statistics in the 2021 Statistical Yearbook of Sichuan Province, as shown in Table 5. The other
main parameters involved in the case background are as follows: the transportation cost is
USD 0.0028 million/unit/km and the upper limit of facilities P is 7. The road congestion
factor σ for the defined environment in Section 6.2 is set to 1. To enable emergency supplies
to serve the affected area in time, the maximum service distance of emergency logistics
facilities dmax is set to 300 km.
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Table 4. Demand point to facility options (hours).

Alternative Locations Chengdu Deyang Mianyang Guangyuan Meishan Ziyang Suining

Wenchuan County 3.6 4.1 5 8.2 5.1 5.6 7.4
Beichuan County 5.4 3.4 2.3 5.8 5.6 5.2 4.7
Mianzhu 2.9 0.9 1.5 5.5 4.5 4.5 4.6
Qingchuan County 7.5 5.5 4.4 2.3 9.7 8.8 7.8
Mao County 4.6 2.9 3.1 7.2 6.1 6.4 6.8
Dujiangyan 1.8 2.6 3.1 7.3 3.3 4.2 5.7
Pingwu County 7.3 5.3 4 4.2 9 8.7 7.6
Pengzhou 1.7 1.9 2.4 6.5 3.4 3.5 4.9
Santai County 3.5 2.7 1.8 5.6 5.2 4 2.5
Lezhi County 2.9 3.8 4.6 8.3 3.5 1.5 2.1
Zhongjiang County 2.4 1 1.5 5.9 4.1 3 3.5
Renshou County 2 3.8 5 9.2 0.9 1.6 4.5
Zitong County 5 3.1 1.5 3.8 6.7 6.5 4.9
Yanting County 4.4 3.4 3.2 5.6 6.1 4.9 2.4
Hongya County 3.1 5.2 6.4 11 1.6 3.5 6.3
Ya’an City 3.3 5.3 6.2 10.5 2.5 4.4 7.4

Table 5. Emergency material requirements by point of requirement.

Cities/Towns
Demand

Cities/Towns
Demand

(10,000 Units) (10,000 Units)

Wenchuan County 8 Santai County 20
Beichuan County 10 Lezhi County 10
Mianzhu 20 Zhongjiang County 20
Qingchuan County 8 Renshou County 20
Mao County 10 Zitong County 8
Dujiangyan 25 Yanting County 10
Pingwu County 10 Hongya County 12
Pengzhou 15 Ya’an City 20

Given the intricacy and significant computational demands of the proposed model,
this article utilizes the Gurobi solver to compile and solve the model. The solver is executed
on a computer with an Intel Core i7-11700K CPU @ 4.80GHz operating environment.

6.2. Analysis of Location Results in Defined Environments
6.2.1. Comparative Analysis of Single Target Results

In this section, the location results of the single-objective MIP will be solved to obtain
the Z∗

1 and Z∗
2 required for magnitude processing. In the single-objective model based on lo-

cating and dispatching cost, Chengdu, Deyang, Mianyang, and Meishan are selected, with a
total locating and dispatching cost of Z1 of USD 1,640,100 and a total transportation time of
Z2 of 43.4 h. The distribution data on emergency supplies are shown in Table 6, and the
utilization rate of each alternative location is 75%, 93.3%, 100%, and 100%, respectively.

The model is based on the transportation time of the location results of all alternative
facilities selected, the total locating and dispatching cost Z1 for USD 2.346 million, and the
total transportation time Z2 for 33.2 h. The distribution data of emergency supplies are
shown in Table 7, and the facility utilization rate of each alternative location is calculated to
be 85%, 83.3%, 80%, 13.3%, 64%, 20%, 20%, and 20%, respectively.
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Table 6. Single-objective model results based on locating and dispatching costs (10,000 units).

Alternative Locations Chengdu Deyang Mianyang Meishan

Wenchuan County 8
Beichuan County 10
Mianzhu 20
Qingchuan County 8
Mao County 10
Dujiangyan 25
Pingwu County 10
Pengzhou 15
Santai County 6 14
Lezhi County 10
Zhongjiang County 20
Renshou County 20
Zitong County 8
Yanting County 10
Hongya County 12
Ya’an City 2 18

Table 7. Single-objective modeling results based on transit time (10,000 units).

Alternative Locations Chengdu Deyang Mianyang Guangyuan Meishan Ziyang Suining

Wenchuan County 8
Beichuan County 10
Mianzhu 20
Qingchuan County 8
Mao County 10
Dujiangyan 25
Pingwu County 10
Pengzhou 15
Santai County 20
Lezhi County 10
Zhongjiang County 20
Renshou County 8
Zitong County 10
Yanting County 10
Hongya County 12
Ya’an City 20

From the above results, the minimum values of Z∗
1 and Z∗

2 for the single-objective
model are 11,714,800 and 33.2 h, respectively. Through the analysis of the above results, it
can be found that, when the emergency logistics facility locating model is a single-objective
model, the locating and dispatching cost, and transportation time can be reduced by 30.1%
and 24.5%, respectively, compared with the relative situation, but, accordingly, it will
also bring about a significant increase in the value of the other objective function. It is
easy to find that, although the results in Table 7 minimize the emergency response time,
the utilization rate of emergency logistics facilities is lower; some facilities have a utilization
rate of even less than 20. Minimizing transportation time is certainly the first consideration
in the decision of emergency logistics location but, due to the nonprofit nature of emergency
logistics, the high cost of location and dispatching will often increase the economic burden
of local governments. Therefore, the following section will further analyze the importance
of the two objective functions of locating and dispatching cost, and transportation time in
the context of this paper by changing the weight coefficients in the model.
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6.2.2. Comparative Analysis of Dual Objective Results

In Section 3.2, the conflicting nature of locating and dispatching costs, and transporta-
tion time has already been mentioned. To enable decision-makers to effectively balance the
cost and time in locating emergency logistics facilities, this section analyzes the sensitivity
of the weighting coefficients to help decision-makers make the best decisions.

Shortening rescue time is more important in post-disaster emergency logistics (PDEL)
because it can save more lives and reduce human suffering. According to the golden
hour principle, the survival rate of disaster victims is significantly higher if they receive
medical treatment within one hour after the disaster [53]. Therefore, delivering relief
items as quickly as possible is crucial for PDEL. Moreover, shortening rescue time can also
prevent or mitigate secondary disasters, such as fires, floods, landslides, and epidemics,
which may cause more damage and casualties than the primary disaster [54]. On the other
hand, economic costs are less important in PDEL because they are often subsidized by
governments, donors, or international organizations [15]. Furthermore, economic costs can
be recovered in the long term through reconstruction and development, while human lives
cannot be restored once lost [55]. Human life is the most important part of sustainability.
The Haiti earthquake in 2010 killed more than 200,000 people and injured more than 300,000.
One of the main reasons for the high death toll was the delay in delivering relief items
due to the collapse of infrastructure, the lack of coordination, and security issues [56].
Ref. [57] estimated that, if the rescue time had been reduced by 10%, the number of deaths
could have been reduced by 20,000. The Indian Ocean tsunami in 2004 killed more than
230,000 people and affected more than 14 million people in 14 countries. One of the main
challenges for PDEL was the lack of information and communication, which resulted in
inefficient allocation and distribution of relief items. Ref. [32] showed that, if the rescue
time had been reduced by 10%, the number of affected people could have been reduced
by 1.4 million. The Wenchuan earthquake in 2008 killed more than 80,000 people and
injured more than 370,000. One of the main factors that affected the rescue time was the
accessibility of the disaster area, which was blocked by landslides and debris. Ref. [58]
found that, if the rescue time had been reduced by 10%, the number of deaths could have
been reduced by 8000.

These cases illustrate that shortening rescue time is more important in PDEL than
economic costs because it can save more lives and reduce human suffering, while economic
costs can be compensated for by other means. Considering the importance of time in
emergency logistics, the weighting coefficient λ should not exceed 0.5; therefore, this
section considers the case where the weighting coefficient λ varies in the range [0.1, 0.5],
as shown in Table 8 and Figure 4.

Table 8. Computational results under different weights.

Cost Weight Time Weight Locating and Dispatching Emergency Transport
λ 1 − λ Cost Z1 (USD 10,000) Time Z2 (h)

0.1 0.9 228.75 33.2
0.2 0.8 208.45 33.8
0.3 0.7 189.46 35.4
0.4 0.6 166.35 37.7
0.5 0.5 166.35 37.7

It is not difficult to find that, as the weight coefficient increases, the cost weight
increases, and the corresponding locating and dispatching cost decreases. At the same
time, the time weight decreases and the transportation time increases. When the value
of λ is 0.3, the locating and dispatching cost, and transportation time are located near
the average value, and the weight allocation is more reasonable at this time. It is noted
that, when the weight coefficient exceeds 0.4, the corresponding locating and dispatching
cost, and transportation time do not change, indicating that, when λ takes the value of
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[0.4, 0.5], the location scheme is not changed due to the change in the weight coefficient.
It is worth mentioning that, when the value of λ is 0.1, the minimum transportation time
Z∗

1 under the single objective has been reached and, when λ is larger than 0.4, the locating
and dispatching cost is USD 1,663,480, which is only 1.2% different from the minimum
value of locating and dispatching cost Z∗

2 under the single objective. Therefore, in the face
of mutually exclusive goals of cost and rescue time, decision-makers need to adjust the
cost weight coefficients within an appropriate range while ensuring that rescue time is
minimized. When λ is too small or too large, the impact on a single objective function is
not significant, affecting the effectiveness of multi-objective decision-making.

Figure 4. Calculation results under different weights.

Based on the comparative analysis of the weight coefficient λ, and the cost and time
intersection points in Figure 4, we set the weighting factor λ to be 0.3 in the following
numerical case study. The solutions derived in the following analysis are the Pareto
solutions of the corresponding models based on the given weight coefficients and satisfy
the decision preferences of the decision-makers set in this paper.

6.2.3. Sensitivity Analysis of Transportation Costs

In the previous research, this paper assumes that the transportation cost is a fixed
value. However, in the actual rescue process, there may be road interruptions or insufficient
transportation capacity, and these situations will dynamically affect the transportation cost.
Therefore, in this section, a sensitivity analysis of transportation costs will be carried out
to consider the impact of different transportation costs on the locating and dispatching
cost, and transportation time of the MIP model. When solving for the location results, this
section analyzes the change in the objective function in the range of transportation cost
from USD 0.0014 million/per 10,000 units/km to USD 0.0042 million/per 10,000 units/km;
the specific data are shown in Table 9 and Figure 5.

Table 9. Calculation results for different transport costs.

Cost Weighting Transport Cost ct Locating and Dispatching Emergency Transport
λ (USD Million/Million Units/km) Cost Z1 (USD 10,000) Time Z2 (h)

0.3 0.0014 139.79 37.7
0.3 0.0021 176.71 36.4
0.3 0.0028 189.45 35.4
0.3 0.0035 220.77 33.8
0.3 0.0042 233.07 33.8
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Figure 5. Calculation results for different transportation costs.

It can be seen that, when the unit transportation cost ct is USD 0.0014–0.0035 million
/10,000 units/km, as the unit transportation cost increases, the model locating and dispatch-
ing cost increases, while the transportation time decreases. It is worth noting that, when
unit transportation cost ct takes USD 0.0021–0.0028 million/10,000 units/km, the slope
of the change in locating and dispatching costs is smaller than other stages; this is due
to the change in the location program caused by the increase in emergency logistics fa-
cilities but the corresponding transport distance is reduced, so the total cost of location
and dispatching grows more slowly. When the unit transportation cost ct is more than
USD 0.0035 million/10,000 units/km, the model of the locating and dispatching cost is still
increasing, and the transportation time remains unchanged. This is because the increase
in unit transportation cost only affects the locating and dispatching cost, which does not
directly lead to the change in time due to the limitation of the weight coefficient.

From the above analysis, it can be seen that the model of locating and dispatching cost,
transportation time, and unit transportation cost is linearly correlated with the change in
unit transportation cost, which may lead to changes in the location program, which in turn
affects the rate of change in the objective function. When the transportation time reaches a
certain threshold, due to the limitation of the weight coefficient, the transportation time is
not directly related to the unit transportation cost.

6.3. Analysis of Location Results in Uncertain Environments
6.3.1. Location Results for Stochastic Programming Models

First, set the location scenario and necessary parameters under an uncertain envi-
ronment. In the stochastic programming model, it is assumed that emergency events
have the following three demand scenarios: normal scale, large scale, and extreme scale.
The demand change ranges corresponding to the three scenarios are 100%, 120%, and 150%
of the deterministic demand, respectively, with probabilities of 0.5, 0.3, and 0.2. Similarly,
it is assumed that the road congestion coefficient σk set in this paper has three scenarios:
normal, congested, and extremely congested. The corresponding values of σk are 1, 1.5,
and 2, respectively, and the probabilities are the same as those of the demand scenarios,
which are 0.5, 0.3, and 0.2. Therefore, considering the randomness of both demand and road
congestion coefficient simultaneously, nine emergency rescue scenarios K can be generated.
The specific probability distribution corresponding to the nine scenarios in the stochastic
programming model is shown in Table 10.
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Table 10. Probability distribution of random programming scenarios.

Road Conditions
Demand Scenarios

D1 D2 D3

σ1 K1(0.25) K2(0.15) K3(0.1)
σ2 K4(0.15) K5(0.09) K6(0.06)
σ3 K7(0.1) K8(0.06) K9(0.04)

In the practical application of CVaR, a risk level that is too low cannot provide sufficient
risk aversion and a risk level that is too high will bring a large amount of additional cost.
In most literature, the range of risk level α is [0.5, 0.9]. Therefore, in the RP-TSP proposed
in this paper, the risk level α is set to 0.7, and the values of η1 and η2 are, respectively, the
transportation cost and transportation time under scenario K5 (large-scale demand, road
congestion). According to calculations, their values are USD 0.5117 million and 44.2 h,
respectively. The method and environment for solving the model in this section are the
same as in Section 6.3, so they will not be repeated. The location results of the two stochastic
programming models are as follows:

(1) Location results of the TSP
The solution result of the TSP selected Chengdu, Deyang, Mianyang, Guangyuan,

Meishan, and Ziyang, six places, where the total locating and dispatching cost Z1 is
USD 2.202 million, and the total transportation time Z2 is 46.2 h. The specific emergency
material allocation data are shown in Table 11. Through calculation, the facility utilization
rates of each alternative point are, respectively, 71.3%, 100%, 96.7%, 36.7%, 76%, and 72%.

Table 11. Location results of the TSP model (ten thousand items).

Alternative Locations Chengdu Deyang Mianyang Guangyuan Meishan Ziyang

Wenchuan County 10
Beichuan County 12
Mianzhu 24
Qingchuan County 10
Mao County 12
Dujiangyan 29
Pingwu County 12
Pengzhou 18
Santai County 24
Lezhi County 12
Zhongjiang County 24
Renshou County 24
Zitong County 10
Yanting County 12
Hongya County 14
Ya’an City 24

(2) Location results of RP-TSP
The solution result of the RP-TSP selected Chengdu, Deyang, Mianyang, Guangyuan,

Meishan, and Ziyang, six emergency logistics facility alternative points, where the total
locating and dispatching cost Z1 is USD 2.244 million, and the total transportation time Z2
is 51.5 h. The specific emergency material allocation data are shown in Table 12. Through
calculation, the facility utilization rates of each alternative point are, respectively, 71.3%,
100%, 96.7%, 36.7%, 76%, and 72%.
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Table 12. Location results of the TSP model based on risk preference (ten thousand items).

Alternative Locations Chengdu Deyang Mianyang Guangyuan Meishan Ziyang

Wenchuan County 10
Beichuan County 12
Mianzhu 24
Qingchuan County 10
Mao County 12
Dujiangyan 29
Pingwu County 12
Pengzhou 18
Santai County 24
Lezhi County 12
Zhongjiang County 24
Renshou County 24
Zitong County 10
Yanting County 12
Hongya County 14
Ya’an City 24

It is not difficult to find that, compared with TSP, the demand for emergency materials
and the number of locations in RP-TSP do not change, but the expected locating and
dispatching cost, and transportation time increase due to considering the risk level which
leads to an increase in the objective function. To further analyze the impact of risk level α
on the objective function under the same expected transportation cost and transportation
time, we will continue to study in depth through sensitivity analysis.

6.3.2. Location Results for Robust Optimization Models

In the robust optimization model, since there are 16 demand points considered in the
case background, set Γ = 8, the maximum disturbance range of demand is 50%, and the
road congestion coefficient is 2. The method and environment for solving the model in this
section are also the same as in Section 6.3 so they will not be repeated here.

The location results of two robust optimization models are as follows:
(1) Location results of RO-B
The solution result of the RO-B selected Chengdu, Deyang, Mianyang, Guangyuan,

Meishan, Ziyang, and Suining as seven emergency logistics facility alternative points
where total locating and dispatching cost Z1 is USD 2.593 million and total transportation
time Z2 is 68.2 h. The specific emergency material allocation data are shown in Table 13.
Through calculation, the facility utilization rates of each alternative point are, respectively,
91.3%, 100%, 95%, 20%, 96%, 90%, and 90%.

(2) Location results of RO-P
The location result of the RO-P selected Chengdu, Deyang, Mianyang Guangyuan

Meishan, Ziyang, and Suining as seven emergency logistics facility alternative points
where total locating and dispatching cost Z1 is USD 2.498 million and total transportation
time Z2 is 68.2 h. The specific emergency material allocation data are shown in Table 14.
Through calculation, the facility utilization rates of each alternative point are, respectively,
82.5%, 90%, 83.3%, 18.3%, 84%, 80%, and 80%.

It is not difficult to find that, in the results of the two types of uncertainty sets, the loca-
tion results and transportation time are the same, but the locating and dispatching cost, and
transportation volume have changed. This is due to the different robust conservatism which
leads to changes in transportation costs. In terms of facility utilization rate, most emergency
logistics facilities have reached more than 80; only Guangyuan has always maintained a
lower level, which is caused by the distance between the Guangyuan facility alternative
point and most demand points. In the following research, we will further explore the
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impact of robust conservatism Γ on locating and dispatching cost, and transportation time
through sensitivity analysis.

Table 13. Location results of the robust optimization model based on box uncertainty set (ten thousand
items).

Alternative Locations Chengdu Deyang Mianyang Guangyuan Meishan Ziyang Suining

Wenchuan County 12
Beichuan County 15
Mianzhu 30
Qingchuan County 12
Mao County 15
Dujiangyan 38
Pingwu County 15
Pengzhou 23
Santai County 30
Lezhi County 15
Zhongjiang County 30
Renshou County 30
Zitong County
Yanting County 12 15
Hongya County 18
Ya’an City 30

Table 14. Location results of the robust optimization model based on polyhedral uncertainty set
(ten thousand items).

Alternative Locations Chengdu Deyang Mianyang Guangyuan Meishan Ziyang Suining

Wenchuan County 11
Beichuan County 13
Mianzhu 27
Qingchuan County 11
Mao County 13
Dujiangyan 35
Pingwu County 13
Pengzhou 20
Santai County 27
Lezhi County 13
Zhongjiang County 27
Renshou County 27
Zitong County 11
Yanting County 13
Hongya County 15
Ya’an City 27

6.3.3. Sensitivity Analysis of Parameters in Uncertainty Models

This section will select two important parameters, risk level α and robust conservatism
Γ, for sensitivity analysis of the established model.

(1) Impact of risk level α on the objective function
In previous studies, we assumed that the risk level is a fixed value. However, in the

actual decision-making process, decision-makers need to make different degrees of addi-
tional cost input according to their risk preferences. Therefore, this section will conduct
a sensitivity analysis of the risk level, considering the impact of different risk levels on
the locating and dispatching cost, and transportation time in the RP-TSP model. In the
previous discussion of this section, it was assumed that the risk level is 0.7. Therefore, this
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section will consider the change in locating and dispatching cost, and transportation time
of emergency logistics facilities under different risk levels α in the interval [0.5, 0.9], and the
specific results are shown in Figure 6.

Figure 6. Effect of risk level on the objective function.

As can be seen from Figure 6, as the risk level α increases, the corresponding locating
and dispatching cost, and transportation time also increase, and, as α approaches 1, the rate
of increase of the objective function also significantly increases. This also shows that at this
time the decision-maker has a high aversion to risk and the RP-TSP model established has
a high degree of risk aversion, which requires a large amount of cost and time. Therefore,
decision-makers need to choose an appropriate risk level according to their risk preferences
to avoid overly conservative solution results.

(2) Impact of robust conservatism Γ on the objective function
To balance the robustness and economy of the emergency logistics facility location

model, this section will analyze the changes in robust conservatism Γ under different
demand ranges for sensitivity analysis. Considering three different disturbance ranges,
which are 10%, 30%, and 50% of regular demand, respectively, demand will change within
110%, 130%, and 150% of regular demand, respectively. The solution results are specifically
shown in Figures 7 and 8.

Figure 7. Impact of robust conservatism on locating and dispatching costs.
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Figure 8. Impact of robust conservatism on transportation time.

It can be seen that, as robust conservatism Γ increases, the locating and dispatching
cost of emergency logistics facilities continues to increase. Among them, the larger the
disturbance range, the more significant the increase in locating and dispatching costs. This
is because the greater the uncertainty, the more emergency supplies demand increases. It is
worth mentioning that, in both cases where the disturbance range is 30% and 50%, there
is a sudden large increase in locating and dispatching costs. This is because the original
location scheme cannot meet changing demands and changes in location schemes.

In terms of transportation time, as robust conservatism Γ increases, changes in trans-
portation time are relatively small. This also shows that transportation time is not sensitive
to changes in robust conservatism, proving that the model has strong time robustness.
It should be noted that, when the disturbance range is 10%, there is no change in trans-
portation time. However, when the disturbance range is 30% and 50%, there are some
fluctuations in transportation time. The reason for this is similar to that of a large increase
in locating and dispatching costs; both are due to changes in location schemes.

Looking at overall changes, in robust models, maximum locating and dispatching
costs differ from minimum locating and dispatching costs by more than 20%. However,
the shortest transportation times differ from the longest transportation times by no more
than 3%. Therefore, when decision-makers use robust optimization methods for decision-
making they need to prioritize factors such as locating and dispatching costs to determine
corresponding robust conservatism.

6.3.4. Comparative Analysis of Uncertainty Optimization Methods

To compare the rescue efficiency, economy, and stability of emergency logistics fa-
cility location models with different uncertainty optimization methods, this section will
analyze four uncertainty models proposed in this section based on location results from
Section 6.3 from three aspects: locating and dispatching cost, transportation time, and
facility utilization rate. Through analysis, we can draw corresponding conclusions and
provide corresponding management insights for decision-makers.

The four models are, respectively, TSP, RP-TSP, RO-B, and RO-P, proposed in
Sections 4 and 5. To further highlight characteristics of uncertainty models, we add results
from the MIP of Section 3 for comparison considering two demand scenarios (K1, K9) under
MIP’s location results. It should be noted that, due to its conservatism, RO-B’s location
result is the same as MIP under scenario K9. Therefore, during the analysis process, we no
longer list MIP’s result under K9 separately.

First is the locating and dispatching cost. As can be seen from Figure 9, models
considering uncertain environments all produce higher locating and dispatching costs than
deterministic models. Stochastic programming models produce less additional locating
and dispatching costs than robust models. Among them, RP-TSP has a slight increase in



Sustainability 2024, 16, 1361 29 of 34

locating and dispatching cost compared to TSP, which is due to consideration of tail-end
extreme risks leading to cost increase. In robust models, RO-B is the most conservative.
Since RO-P can adjust robust conservatism, it is relatively more economical in terms of
economy, but the locating and dispatching cost of RO-P is still much higher than that of the
stochastic programming model.

Figure 9. Comparison of locating and dispatching costs under different models.

In terms of transportation time, as can be seen from Figure 10, models considering
uncertain environments still produce higher transportation time than deterministic mod-
els. This is because MIP does not consider the possibility of road congestion. Stochastic
programming models produce less transportation time than robust models. However,
RP-TSP differs more in transportation time from TSP than in locating and dispatching costs.
This shows that RP-TSP has a greater sensitivity to changes in transportation time. RO-B
and RO-P have the same results in terms of transportation time. This shows that robust
conservatism in the model set in this paper does not have a large impact on transportation
time and also proves the stability of this transportation time solution result.

Figure 10. Comparison of transportation time under different models.

In terms of facility utilization rate, Figure 11 shows facility utilization rates of
seven facility alternative points in different models. Among them, MIP selected five
facility points, the TSP and RP-TSP models both selected six facility points, and RO-B and
RO-P both selected seven facility points. All location models have higher facility utilization
rates in Chengdu, Deyang, Mianyang, and Meishan, all exceeding 60%. However, location
schemes for Guangyuan, Ziyang, and Suining are different. Among them, Guangyuan’s
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facility utilization rate is generally low. This is because this facility point has a large dis-
tance from most demand points and exceeds the maximum service distance dmax set by
the model. MIP did not select Ziyang, and only RO-B and RO-P selected Suining.

Figure 11. Facility utilization under different models.

Through analysis and comparison, it can be known that the number of locations
under uncertain environment models is more than that under deterministic environment
models. In uncertain environment models, the stochastic programming model has fewer
locations and its average facility utilization rate is between two robust models. Because of
its conservatism, the RO-B model considers worst-case demand changes so its facility
utilization rate is higher. The RO-P model controls conservatism relative to the RO-B
model but because the final location scheme is the same it leads to a larger surplus for each
emergency logistics facility.

In summary, by analyzing four uncertainty optimization models proposed in this
paper from three aspects, locating and dispatching cost, transportation time, and facility uti-
lization rate, this section draws the following conclusions: Firstly, to cope with widespread
uncertainty in emergency logistics application scenarios, decision-makers need to pay a
certain price such as higher locating and dispatching costs, and more expected transporta-
tion time. However, when extreme disaster scenarios occur models considering uncertainty
have more advantages in expected locating and dispatching costs. and transportation time.
Secondly, among the two uncertainty optimization methods, stochastic programming has
better economy and less expected transportation time, and its facility utilization rate is
between the two robust models. The RP-TSP model has a certain degree of risk aversion
so both its locating and dispatching cost, and transportation time are increased compared
to TSP. Robust optimization has better robustness among which RO-P has a certain reduc-
tion in locating and dispatching cost compared to RO-B which can effectively avoid the
over-conservatism of RO-B.

6.4. Management Insights

Through analysis and summary of conclusions from Sections 6.3 and 6.4, this section
also gives corresponding management insights for decision-makers as follows:

(1) Reasonably allocate locating and dispatching costs, and transportation time weights
When decision-makers face emergency logistics facility location problems, they need

to consider many factors. Firstly, the service target of emergency logistics is different from
traditional logistics so rescue efficiency should be given more attention compared to eco-
nomic cost. Therefore, the people-oriented target is very important so transportation time
needs to have more weight than locating and dispatching costs in most cases. In addition,
the weight coefficient needs to be adjusted within a reasonable value range; too high or too
low a λ may not cause changes in the objective function leading to invalid cost expenditure.
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(2) Scientifically set expected cost and risk level
When choosing locations for emergency logistics facilities, it is important to fully

consider potential extreme situations. Although the probability of extreme risks occurring
is relatively small, once they occur, the losses caused will be far higher than the average
level. This requires decision-makers to weigh between cost and risk. On the other hand,
the location of emergency logistics facilities belongs to public welfare facilities and cannot
make a profit. Excessive robustness often leads to a significant increase in costs, bringing
considerable economic pressure to relevant governments and enterprises. Therefore, when
using RP-TSP for location, it is necessary to choose an appropriate expected cost and risk
level based on historical data, the decision-makers’ risk preferences, etc., thereby avoiding
losses caused by extreme risks and excessive cost input at the same time.

(3) Decision-makers should choose uncertainty optimization methods according to
their risk preferences

In the location of emergency logistics facilities, uncertainty is widespread. When
faced with uncertainty, decision-makers should choose optimization methods that suit
their personal risk preferences. This means that, in the decision-making process, decision-
makers need to consider their tolerance for risk and their expectations for the results. Some
decision-makers are willing to take certain risks, and hope to reduce the cost of location
and dispatching through high-risk, low-input schemes, which are more suitable for using
stochastic programming methods. On the other hand, some risk-averse decision-makers
prefer stable and reliable results, which are more suitable for using robust optimization
methods. The RP-TSP model proposed in this paper combines the advantages of the high
economic efficiency of stochastic programming and the high stability of robust optimization,
providing a new method for decision-makers to select emergency logistics facilities in
uncertain environments.

Emergency logistics, management methods, and technical methods should be coordi-
nated in a harmonious and efficient manner to ensure the successful operation of the emer-
gency logistics system. Emergency logistics involves the strategic placement of emergency
facilities, efficient routing of emergency vehicles, and timely delivery of emergency sup-
plies. It requires careful planning and execution, taking into account various factors such as
geographical constraints, traffic conditions, and the urgency of the situation. Management
methods include strategies and policies for managing the logistics system, such as risk
management, resource allocation, and decision-making processes. Effective management
ensures that the logistics operations are carried out smoothly and efficiently, with minimal
delays and errors. Technical methods involve the use of technology and mathematical
models to optimize the logistics operations. For example, mixed-integer programming
can be used to determine the optimal locations for emergency facilities and simulation
techniques can be used to predict the outcomes of different logistics strategies.

To coordinate these elements effectively, communication is key. All parties involved
in the logistics operations should communicate regularly and share information freely.
This ensures that everyone is on the same page and working towards the same goals.
Integration of logistics, management, and technical aspects is crucial. This means that the
logistics operations should be guided by the management strategies and supported by the
technical methods. For example, the placement of emergency facilities (a logistics decision)
should be based on risk management strategies (a management decision) and determined
using mixed-integer programming (a technical method). Adaptability is also important.
The logistics system should be flexible enough to adapt to changing circumstances, such as a
sudden increase in demand for emergency supplies. This requires both robust management
strategies and versatile technical methods.

In conclusion, the coordination of emergency logistics, management methods, and techni-
cal methods is a complex task that requires careful planning, effective communication, and the
judicious use of technology. But, when done right, it can greatly enhance the efficiency of the
emergency logistics system and ensure the timely delivery of emergency supplies.
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7. Conclusions

In conclusion, this study addresses the critical issue of emergency logistics facilities
located in the face of uncertainties arising from natural disasters and public health events.
We developed single-objective and dual-objective MIPs for location, considering factors
such as construction cost, emergency rescue human resource dispatching cost, storage cost,
and transportation cost. We further incorporated stochastic programming, risk functions,
and robust optimization to handle uncertainties in demand and road conditions. Our
models were validated using the Gurobi solver, providing new research methods for
decision-makers and offering more scientific theoretical guidance.

Our study revealed that the weight values in the dual-objective model and the unit
transportation cost significantly impact the objective function. Decision-makers should
select appropriate weighting factors to balance the effectiveness and affordability of emer-
gency response at different stages, which will enhance the overall sustainability of the
emergency logistics system. Our sensitivity analysis showed that the risk function can
effectively measure the impact of tail extreme risks at different risk levels on the objective
function, which is beneficial for decision-makers with different risk preferences.

However, our research has certain limitations. First, although we considered many
factors in the modeling process of emergency logistics facility locating, all cost functions
considered in this paper are linear functions, which are dynamic in actual situations.
Second, we assumed that the type of emergency supplies is unique but, in actual rescue
processes, there may be more types involved, such as first aid kits, tents, etc., and different
regions have different demands for different types of supplies. Third, we assumed that
the established emergency logistics model is reliable but, in actual application scenarios of
emergency logistics, there may be possibilities of network interruption.

Therefore, future research can consider these situations comprehensively and explore
the problem of emergency logistics facility locating more deeply. Despite these limitations,
our study provides a new approach for decision-makers to solve the problem of emergency
logistics facilities sitting under uncertain environments by combining the high economic
efficiency of stochastic programming and the high stability of robust optimization.
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