Impact of the Citrus Industry on the Water Quality of the Filobobos River in Veracruz, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Bobos River Basin
2.2. Sampling
2.2.1. Area of Study
2.2.2. Water Samples
2.2.3. Quantification of NaOH (Sodium Hydroxide) (%)
2.3. Statistical Analysis
3. Results and Discussion
3.1. Temperature and Dissolved Oxygen
3.2. pH and Conductivity
3.3. Total Nitrogen, NO3−, and Total Phosphorus, PO4−
3.4. Total Nitrogen/Total Phosphorus Ratio
3.5. Chemical Oxygen Demand (COD) and Total Dissolved Solids (TDSs)
3.6. Fecal Coliforms (FCs)
3.7. Quantification of NaOH (%)
3.8. Statistical Analysis
3.8.1. Pearson Correlation
3.8.2. Principal Component Analysis (PCA)
3.9. The Environmental Impact of Martinez de la Torre, Veracruz, on the Bobos River
3.10. Preventive Measures to Avoid Contamination of the Bobos River and to Maintain Sustainable Development in the Region
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Strokal, M.; Bai, Z.; Franssen, W.; Hofstra, N.; Koelmans, A.A.; Ludwig, F.; Ma, L.; van Puijenbroek, P.; Spanier, J.E.; Vermeulen, L.C.; et al. Urbanization: An increasing source of multiple pollutants to rivers in the 21st century. NPJ Urban Sustain. 2021, 1, 24. [Google Scholar] [CrossRef]
- Jiang, L.; O’neill, B.C. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Chang. 2017, 42, 193–199. [Google Scholar] [CrossRef]
- Diamond, J.; Altenburger, R.; Coors, A.; Dyer, S.D.; Focazio, M.; Kidd, K.; Koelmans, A.A.; Leung, K.M.Y.; Servos, M.R.; Snape, J.; et al. Use of prospective and retrospective risk assessment methods that simplify chemical mixtures associated with treated domestic wastewater discharges. Environ. Toxicol. Chem. 2018, 37, 690–702. [Google Scholar] [CrossRef]
- Singh, J.; Yadav, P.; Pal, A.K.; Mishra, V. Water Pollutants: Origin and Status. In Sensors in Water Pollutants Monitoring: Role of Material; Springer: Singapore, 2020; pp. 5–20. [Google Scholar] [CrossRef]
- Coelho, S.T. Existing Barriers for WtE in Developing Countries and Policy Recommendations. In Municipal Solid Waste Energy Conversion in Developing Countries; Elsevier: Amsterdam, The Netherlands, 2020; pp. 219–234. [Google Scholar] [CrossRef]
- Calizza, E.; Favero, F.; Rossi, D.; Careddu, G.; Fiorentino, F.; Caputi, S.S.; Rossi, L.; Costantini, M. Isotopic biomonitoring of N pollution in rivers embedded in complex human landscapes. Sci. Total Environ. 2020, 706, 136081. [Google Scholar] [CrossRef]
- Ju, H.; Li, S.; Xu, Y.J.; Zhang, G.; Zhang, J. Intensive Livestock Production Causing Antibiotic Pollution in the Yinma River of Northeast China. Water 2019, 11, 2006. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J. Landscape patterns regulate non-point source nutrient pollution in an agricultural watershed. Sci. Total Environ. 2019, 669, 377–388. [Google Scholar] [CrossRef]
- Castañeda-Chávez, M.d.R.; Lango-Reynoso, F.; Navarrete-Rodríguez, G. Study on Contamination by Heavy Metals in the Cotaxtla-Jamapa Basin with Influence in the Central Zone of the Gulf of Mexico. Water Air Soil Pollut. 2020, 231, 99. [Google Scholar] [CrossRef]
- Chalchisa, D.; Megersa, M.; Beyene, A. Assessment of the quality of drinking water in storage tanks and its implication on the safety of urban water supply in developing countries. Environ. Syst. Res. 2018, 6, 12. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef]
- Gobierno del Estado de Veracruz, Diagnóstico Cuenca del Río Nautla. Available online: http://www.veracruz.gob.mx/proteccioncivil/wp-content/uploads/sites/5/2021/12/Diagn%C3%B3stico-Cuenca-del-rio-Nautla.pdf (accessed on 15 January 2024).
- Procuraduría Estatal de Protección al Medio Ambiente de Veracruz, Programa de Ordenamiento Ecológico de la Cuenca del Río Bobos. Available online: http://www.veracruz.gob.mx/medioambiente/poecrb/ (accessed on 30 December 2023).
- USEPA. Methods for Chemical Analysis of Water and Wastes; Report No. EPA-600/4-79-020; USEPA: Washington, DC, USA, 1983; p. 544. [Google Scholar]
- APHA. Standard Methods for Examination of Water and Wastewater; American Public Health Association, American Water Works Association, Water Pollution Control Federation: Washington, DC, USA, 1995; p. 1035. [Google Scholar]
- Norma Mexicana NMX-AA-030/1-SCFI-2012; Análisis de Agua—Medición de la Demanda Química de Oxígeno en Aguas Naturales, Residuales y Residuales Tratadas.—Método de Prueba—Parte 1—Método de Reflujo Abierto—(Cancela a la Nmx-aa-030-scfi-2001). Water Analysis—Determination of the Chemical Oxygen Demand, in Natural Waters, Wastewaters and Treated Wastewaters—Test Method—Part 1—Opened Reflux Method. 2012, México, DF. Available online: https://www.gob.mx/cms/uploads/attachment/file/166774/NMX-AA-030-1-SCFI-2012.pdf (accessed on 25 December 2023).
- Prambudy, H.; Supriyatin, T.; Setiawan, F. The testing of Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) of river water in Cipager Cirebon. J. Phys. Conf. Ser. 2019, 1360, 012010. [Google Scholar] [CrossRef]
- Dharma, A.D.; Gumiri, S.; Neneng, L.; Ardianoor; Arifin, S. Rapid Assessment of Water Quality on Environmental Health at Riverside Kahayan. Nat. Volatiles Essent. Oils 2021, 8, 21–33. [Google Scholar]
- Supardiono, S.; Hadiprayitno, G.; Irawan, J.; Gunawan, L.A. Analysis of River Water Quality Based on Pollution Index Water Quality Status, Lombok District, NTB. J. Penelit. Pendidik. IPA 2023, 9, 1602–1608. [Google Scholar] [CrossRef]
- Demetillo, A.T.; Japitana, M.V.; Taboada, E.B. A system for monitoring water quality in a large aquatic area using wireless sensor network technology. Sustain. Environ. Res. 2019, 29, 12. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Delpasand, M.; Loáiciga, H.A. Water quality, hygiene, and health. In Economical, Political, and Social Issues in Water Resources; Elsevier: Amsterdam, The Netherlands, 2021; pp. 217–257. [Google Scholar] [CrossRef]
- Dębska, K.; Rutkowska, B.; Szulc, W.; Gozdowski, D. Changes in Selected Water Quality Parameters in the Utrata River as a Function of Catchment Area Land Use. Water 2021, 13, 2989. [Google Scholar] [CrossRef]
- Rajesh, M.; Rehana, S. Impact of climate change on river water temperature and dissolved oxygen: Indian riverine thermal regimes. Sci. Rep. 2022, 12, 9222. [Google Scholar] [CrossRef]
- Liu, S.; Xie, Z.; Liu, B.; Wang, Y.; Gao, J.; Zeng, Y.; Xie, J.; Xie, Z.; Jia, B.; Qin, P.; et al. Global river water warming due to climate change and anthropogenic heat emission. Glob. Planet. Chang. 2020, 193, 103289. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Ludwig, F.; Zwolsman, J.J.G.; Weedon, G.P.; Kabat, P. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resour. Res. 2011, 47, 2. [Google Scholar] [CrossRef]
- Souaissi, Z.; Ouarda, T.B.; St-Hilaire, A. River water temperature quantiles as thermal stress indicators: Case study in Switzerland. Ecol. Indic. 2021, 131, 108234. [Google Scholar] [CrossRef]
- Zhao, N.; Fan, Z.; Zhao, M. A New Approach for Estimating Dissolved Oxygen Based on a High-Accuracy Surface Modeling Method. Sensors 2021, 21, 3954. [Google Scholar] [CrossRef]
- Hazen, E.; Craig, J.; Good, C.; Crowder, L. Vertical distribution of fish biomass in hypoxic waters on the Gulf of Mexico shelf. Mar. Ecol. Prog. Ser. 2009, 375, 195–207. [Google Scholar] [CrossRef]
- Dai, M.; Guo, X.; Zhai, W.; Yuan, L.; Wang, B.; Wang, L.; Cai, P.; Tang, T.; Cai, W.-J. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Mar. Chem. 2006, 102, 159–169. [Google Scholar] [CrossRef]
- Rajendiran, T.; Sabarathinam, C.; Panda, B.; Elumalai, V. Influence of Dissolved Oxygen, Water Level and Temperature on Dissolved Organic Carbon in Coastal Groundwater. Hydrology 2023, 10, 85. [Google Scholar] [CrossRef]
- Szewczyk, C.J.; Smith, E.M.; Benitez-Nelson, C.R. Temperature sensitivity of oxygen demand varies as a function of organic matter source. Front. Mar. Sci. 2023, 10, 1133336. [Google Scholar] [CrossRef]
- Giri, R.K.C.I.; Khadka, U.R. Water quality status in Bagmati river of Kathmandu valley, Nepal. In Ecological Significance of River Ecosystems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 481–502. [Google Scholar] [CrossRef]
- Akhter, F.; Siddiquei, H.R.; Alahi, E.E.; Mukhopadhyay, S.C. Recent Advancement of the Sensors for Monitoring the Water Quality Parameters in Smart Fisheries Farming. Computers 2021, 10, 26. [Google Scholar] [CrossRef]
- Mondal, I.; Bandyopadhyay, J.; Paul, A.K. Water quality modeling for seasonal fluctuation of Ichamati river, West Bengal, India. Model. Earth Syst. Environ. 2016, 2, 113. [Google Scholar] [CrossRef]
- Mitryasova, O.; Pohrebennyk, V. Hydrochemical Indicators of Water System Analysis as Factors of the Environmental Quality State. In Sustainable Production: Novel Trends in Energy, Environment and Material Systems; Springer International Publishing: Cham, Germany, 2020; pp. 91–104. [Google Scholar] [CrossRef]
- Patel, M.P.; Gami, B.; Patel, A.; Patel, P.; Patel, B. Climatic and anthropogenic impact on groundwater quality of agriculture dominated areas of southern and central Gujarat, India. Groundw. Sustain. Dev. 2020, 10, 100306. [Google Scholar] [CrossRef]
- Koki, I.B.; Bayero, A.S. Assessment of Water Quality in Rivers and Lakes With Respect to Heavy Metals and General Water Quality Parameters: A Review. Int. J. Sci. Res. 2016, 4, 135–140. [Google Scholar]
- Mathur, A. Conductivity: Water Quality Assesment. Int. J. Eng. Res. Technol. 2015, 3, 1–3. [Google Scholar]
- Ríos-Villamizar, E.A.; Piedade, M.T.F.; Da Costa, J.G.; Adeney, J.M.; Junk, W.J. Chemistry of different Amazonian water types for river classification: A preliminary review. In Water and Society II; Brebbia, C.A., Ed.; Wessex Institute of Technology: Southampton, UK, 2013; pp. 17–28. [Google Scholar]
- Deepa, P.; Raveen, R.; Venkatesan, P.; Arivoli, S.; Samuel, T. Seasonal variations of physicochemical parameters of Korattur lake, Chennai, Tamil Nadu, India. Int. J. Chem. Stud. 2015, 3, 116–123. [Google Scholar]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Rivas, Z.; Sánchez, J.; Troncone, F.; Márquez, R.; Ledo de Medina, H.; Colina, M.; Gutiérrez, E. Nitrógeno y fósforo totales de los ríos tributarios al sistema lago de Maracaibo, Venezuela. Interciencia 2009, 34, 308–314. [Google Scholar]
- Secretaría de Salud y Asistencia. Salud Ambiental, Agua Para Uso y Consumo Humano-Lí¬mites Permisibles de Calidad y Tratamientos a Que Debe Someterse el Agua Para su Potabilización. NOM-127-SSA1-1994. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4866379&fecha=18/01/1996#gsc.tab=0 (accessed on 20 January 2024).
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef]
- Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017.
- Arteaga-Cortez, V.M.; de Postgraduados, M.C.; Quevedo-Nolasco, A.; del Valle-Paniagua, D.H.; Castro-Popoca, M.; Bravo-Vinaja, Á.; Ramírez-Zierold, J.A.; de México, M.U.N.A. Estado del arte: Una revisión actual a los mecanismos que realizan los humedales artificiales para la remoción de nitrógeno y fósforo. Tecnol. Y Cienc. Del Agua 2019, 10, 319–342. [Google Scholar] [CrossRef]
- Fadiran, A.; Dlamini, S.; Mavuso, A. A comparative study of the phosphate levels in some surface and ground water bodiesof Swaziland. Bull. Chem. Soc. Ethiop. 2008, 22, 197–206. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Qiao, X.; Zheng, B.; Chang, S.; Fu, Q. Investigation of nitrogen and phosphorus contents in water in the tributaries of Danjiangkou Reservoir. R. Soc. Open Sci. 2018, 5, 170624. [Google Scholar] [CrossRef]
- Chambers, P.A.; McGoldrick, D.J.; Brua, R.B.; Vis, C.; Culp, J.M.; Benoy, G.A. Development of Environmental Thresholds for Nitrogen and Phosphorus in Streams. J. Environ. Qual. 2012, 41, 7–20. [Google Scholar] [CrossRef]
- He, M.; Wu, S.; Huang, B.; Kang, C.; Gui, F. Prediction of Total Nitrogen and Phosphorus in Surface Water by Deep Learning Methods Based on Multi-Scale Feature Extraction. Water 2022, 14, 1643. [Google Scholar] [CrossRef]
- Penn, R.M.; Pauer, J.J.; Mihelcic, R.J. Biochemical Oxygen Demand; 2017; Environmental and Ecological Chemistry—Volume 2. Edited by Aleksandar Sabljic. Available online: https://docplayer.net/21041474-Environmental-and-ecological-chemistry-vol-ii-biochemical-oxygen-demand-michael-r-penn-james-j-pauer-james-r-mihelcic.html (accessed on 26 December 2023).
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. The Significance of Microbial Transformation of Nitrogen Compounds in the Light of Integrated Crop Management. Agronomy 2021, 11, 1415. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Yu, S.; Rhew, D. Relationships between water quality parameters in rivers and lakes: BOD5, COD, NBOPs, and TOC. Environ. Monit. Assess. 2016, 188, 252. [Google Scholar] [CrossRef]
- Castresana, G.P.; Flores, V.T.; Reyes, L.L.; Aldana, F.H.; Vega, R.C.; Perales, J.L.M.; Suastegui, W.A.G.; Fonseca, A.D.; Silva, A.H. Atoyac River Pollution in the Metropolitan Area of Puebla, México. Water 2018, 10, 267. [Google Scholar] [CrossRef]
- Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Measurement of Total Dissolved Solids and Total Suspended Solids in Water Systems: A Review of the Issues, Conventional, and Remote Sensing Techniques. Remote Sens. 2023, 15, 3534. [Google Scholar] [CrossRef]
- Salcedo-Garduño, M.G.; Galaviz-Villa, I.; Pérez-Vazquez, A. Determining water quality of the lower basin of the Usumacinta River in Tabasco, Mexico. Agro Prod. 2022, 15, 23–31. [Google Scholar] [CrossRef]
- Akpan Emmanuel, F.; Akpan Veronica, M.; Inyang Udeme, U. Geoelectrical investigation of groundwater quality through estimates of total dissolved solids and electrical conductivity in parts of Akwa Ibom state, southern Nigeria. Malays. J. Geosci. 2020, 4, 32–37. [Google Scholar] [CrossRef]
- Weber-Scannell, P.K.; Duffy, L.K. Effects of Total Dissolved Solids on Aquatic Organisms: A Review of Literature and Recommendation for Salmonid Species. Am. J. Environ. Sci. 2007, 3, 1–6. [Google Scholar] [CrossRef]
- OMS (Organización Mundial de la Salusd). Guías Para la Calidad del Agua Potable; Cuarta edición; OMS: Ginebra, Switzerland, 2011. [Google Scholar]
- Seo, M.; Lee, H.; Kim, Y. Relationship between Coliform Bacteria and Water Quality Factors at Weir Stations in the Nakdong River, South Korea. Water 2019, 11, 1171. [Google Scholar] [CrossRef]
- Guentzel, M.N. Escherichia, Klebsiella, Enterobacter, Serratia, Citrobacter, and Proteus. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Mishra, M.; Arukha, A.P.; Patel, A.K.; Behera, N.; Mohanta, T.K.; Yadav, D. Multi-Drug Resistant Coliform: Water Sanitary Standards and Health Hazards. Front. Pharmacol. 2018, 9, 311. [Google Scholar] [CrossRef] [PubMed]
- Dillon, C.P. Process Industries: Corrosion. In Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2001; pp. 7856–7860. [Google Scholar] [CrossRef]
- Gad, S.E. Lye. In Encyclopedia of Toxicology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 997–1001. [Google Scholar] [CrossRef]
- Naylor, M.A.; Kaiser, H.; Jones, C.L.W. The effect of dosing with sodium hydroxide (NaOH−) on water pH and growth of Haliotis midae in an abalone serial-use raceway. Aquac. Int. 2012, 21, 467–479. [Google Scholar] [CrossRef]
- Tee, P.-F.; Abdullah, M.O.; Tan, I.A.; Amin, M.A.; Nolasco-Hipolito, C.; Bujang, K. Effects of temperature on wastewater treatment in an affordable microbial fuel cell-adsorption hybrid system. J. Environ. Chem. Eng. 2017, 5, 178–188. [Google Scholar] [CrossRef]
- MA. JoVE Science Education Database. Nutrients in Aquatic Ecosystems. Environmental Science. Cambridge. 2023. Available online: https://www.jove.com/es/v/10023/eutrophication-measuring-nitrate-and-phosphate-in-water (accessed on 28 November 2023).
- Jacobs, S.R.; Breuer, L.; Butterbach-Bahl, K.; Pelster, D.E.; Rufino, M.C. Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya. Sci. Total Environ. 2017, 603–604, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Elliott, H.A.; Navitsky, L.O. Relationship between total dissolved solids and electrical conductivity in Marcellus hydraulic fracturing fluids. Water Sci. Technol. 2018, 77, 1998–2004. [Google Scholar] [CrossRef]
- Rusydi, A.F. Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conf. Ser. Earth Environ. Sci. 2018, 118, 012019. [Google Scholar] [CrossRef]
- Evansa, C.; Daviesa, T.; Wigington, P.; Tranter, M.; Kretser, W. Use of factor analysis to investigate processes controlling the chemical composition of four streams in the Adirondack Mountains, New York. J. Hydrol. 1996, 185, 297–316. [Google Scholar] [CrossRef]
- Ouyang, Y. Evaluation of river water quality monitoring stations by principal component analysis. Water Res. 2005, 39, 2621–2635. [Google Scholar] [CrossRef]
- Janekovi, F.; Novak, T. PCA—A Powerful Method for Analyze Ecological Niches. In Principal Component Analysis—Multidisciplinary Applications; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Li, T.; Peng, X.; Jia, X. High-concentration COD wastewater treatment with simultaneous removal of nitrogen and phosphorus by a novel Candida tropicalis strain: Removal capability and mechanism. Environ. Res. 2022, 212, 113471. [Google Scholar] [CrossRef]
- Riđanović, L.; Riđanović, S.; Jurica, D.; Spasojević, P. Evaluation of Water Temperature and Dissolved Oxygen Regimes in River Neretva; BALWOIS: Ohrid, North Macedonia, 2010. [Google Scholar]
- Kim, C.; Nishimura, Y.; Nagata, T. Role of dissolved organic matter in hypolimnetic mineralization of carbon and nitrogen in a large, monomictic lake. Limnol. Oceanogr. 2006, 51, 70–78. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ismail, A.; Juahir, H.; Iliyasu, A.B.; Wailare, B.T.; Mukhtar, M.; Aminu, H. Water quality modelling using principal component analysis and artificial neural network. Mar. Pollut. Bull. 2023, 187, 114493. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.L.I. The Housing Problem in Veracruz: The Case of Martinez de la Torre; Centro de Estudios Económicos y Sociales del Instituto de Investigaciones y Estudios Superiores Económicos y Sociales de la Universidad Veracruzana: Xalapa, Veracruz, Mexico, 1995; pp. 281–306. [Google Scholar]
- INEGI. Martínez de la Torre. Available online: https://www.inegi.org.mx/app/ageeml/#datos_generales/30/30081 (accessed on 20 January 2024).
- Garza, A.V. Agricultural reuse of wastewater from Cd. Juarez, (Chih., Mexico). In The Juarez Valley and Its Impact on Public Health; 2020; p. 10. Available online: https://respyn.uanl.mx/index.php/respyn/article/view/49 (accessed on 21 December 2023).
- García-Salazar, E.M. Wastewater as a generator of agricultural activity space in the Mezquital Valley, Hidalgo, Mexico. J. Contemp. Food Reg. Dev. 2019, 29, 2–34. [Google Scholar]
- García-Salazar, E.M.; Fuentes-Carrasco, M.E. The wastewater dispute in Mexico as a paradoxical ecological-distributive conflicts. Reg. Cohes. 2021, 11, 54–79. [Google Scholar]
- SEMARNAT, “D3_R_AGUA05_01. Compendio de Información Ambiental. Available online: https://apps1.semarnat.gob.mx:8443/dgeia/compendio_2020/dgeiawf.semarnat.gob.mx_8080/approot/dgeia_mce/html/RECUADROS_INT_GLOS/D3_AGUA/D3_AGUA04/D3_R_AGUA05_01.htm (accessed on 2 February 2024).
- Cauich, I.C.; Fernández, V.G.P.; Ascencio, F.J.; Rodríguez, L.E.S.; García, J.G.R. Análisis de los costos de producción del limón persa en el municipio de Tlapacoyan, Veracruz. Rev. Biológico Agropecu. Tuxpan 2014, 2, 10–18. [Google Scholar] [CrossRef]
- Heraldo de México, Citrusper Genera Contaminación. Available online: https://elheraldodemartinez.com.mx/estado/martinez-de-la-torre/63638-citrusper-genera-contaminacion.html (accessed on 20 January 2024).
- Sarmiento, J. Mas Noticias. El Rio Bobos Sufre de Contaminación lo Que Genera Una Mortandad de Especies Acuaticas. Available online: https://www.masnoticias.mx/el-rio-bobos-sufre-de-contaminacion-lo-que-genera-mortandad-de-especies-acuaticas/ (accessed on 20 December 2023).
Parameter | Temperature (°C) | DO (mg L−1) |
---|---|---|
SW1 | 20.21 ± 0.28 | 0.15 ± 0.7 |
SW2 | 26.7 ± 0.14 | 0.25 ± 0.07 |
SW3 | 27.35 ± 0.07 | 3.80 ± 0.42 |
SW4 | 29.60.71 ± 0.12 | 6.45 ± 1.06 |
SW5 | 30.25 ± 0.64 | 0.30 ± 0.14 |
SW6 | 29.80 ± 0.4 | 2.64 ± 0.05 |
SE7 | 29.55 ± 0.07 | 0.70 ± 0.14 |
SW8 | 29.40 ± 0.42 | 0.25 ± 0.021 |
SW9 | 30.50 ± 0.57 | 0.15 ± 0.07 |
SW10 | 30.20 ± 0.14 | 0.25 ± 0.07 |
SW11 | 30.30 ± 0.14 | 0.35 ± 0.21 |
SW12 | 30.35 ± 0.21 | 0.60 ± 0.14 |
Sites | pH | Conductivity (mS cm−1) |
---|---|---|
SW1 | 7.85 ± 0.02 | 0.30 ± 0.14 |
SW2 | 8.60 ± 0.14 | 0.27 ± 0.01 |
SW3 | 8.55 ± 0.07 | 0.28 ± 0.01 |
SW4 | 8.65 ± 0.07 | 0.27 ± 0.01 |
SW5 | 7.50 ± 0.14 | 0.26 ± 0.03 |
SW6 | 6.40 ± 0.71 | 0.72 ± 0.03 |
SW7 | 7.75 ± 0.08 | 0.70 ± 0.01 |
SW8 | 8.25 ± 0.21 | 0.34 ± 0.04 |
SW9 | 7.75 ± 0.04 | 0.75 ± 0.02 |
SW10 | 7.77 ± 0.05 | 0.54 ± 0.04 |
SW11 | 7.78 ± 0.05 | 0.37 ± 0.02 |
SW12 | 7.87 ± 0.09 | 3.81 ± 0.04 |
Water Sample Point | FCs (UFC 100 mL−1) |
---|---|
SW1 | 0 × 100 ± 0 × 100 |
SW2 | 7.255 × 102 ± 1.0677 × 102 |
SW3 | 1.005 × 103 ± 5.657 × 101 |
SW4 | 1.215 × 103 ± 1.3435 × 102 |
SW5 | 8.16625 × 104 ± 7.425 × 101 |
SW6 | 8 × 104 ± 8.48528 × 103 |
SW7 | 1.175 × 105 ± 3.53553 × 103 |
SW8 | 1.91 × 105 ± 5.65685 × 103 |
SW9 | 2.2 × 105 ± 2.12132 × 104 |
SW10 | 2.322 × 105 ± 4525.48 × 103 |
SW11 | 2.385 × 105 ± 3.53553 × 103 |
SW12 | 3.2 × 105 ± 3.707107 × 104 |
Parameter | SW | Temp | pH | DO | Cond | DSs | TN | NO3 | TP | PO4 | COD | FCs |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SW | 1 | |||||||||||
Temp | 0.713 ** | 1 | ||||||||||
pH | −0.280 | −0.206 | 1 | |||||||||
DO | −0.334 | 0.086 | 0.253 | 1 | ||||||||
Cond | 0.558 | 0.250 | −0.135 | −0.151 | 1 | |||||||
DSs | 0.515 | 0.237 | −0.133 | −0.120 | 0.991 ** | 1 | ||||||
TN | 0.909 ** | 0.604 * | −0.451 | −0.383 | 0.460 | 0.424 | 1 | |||||
NO3 | 0.896 ** | 0.546 | −0.158 | −0.452 | 0.415 | 0.384 | 0.931 ** | 1 | ||||
TP | 0.949 ** | 0.591 * | −0.354 | −0.408 | 0.531 | 0.486 | 0.985 ** | 0.947 ** | 1 | |||
PO4 | 0.933 ** | 0.589 * | −0.353 | −0.412 | 0.481 | 0.439 | 0.992 ** | 0.960 ** | 0.996 ** | 1 | ||
COD | 0.952 ** | 0.588 * | −0.189 | −0.458 | 0.470 | 0.420 | 0.936 ** | 0.974 ** | 0.970 ** | 0.970 ** | 1 | |
FCs | 0.956 ** | 0.866 ** | −0.203 | −0.441 | 0.617 * | 0.561 | 0.911 ** | 0.927 ** | 0.967 ** | 0.950 ** | 0.968 ** | 1 |
Parameter | Component | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
TN | 0.931 | 0.250 | −0.108 |
NO3 | 0.919 | 0.185 | −0.232 |
TP | 0.921 | 0.326 | −0.146 |
PO4 | 0.936 | 0.272 | −0.152 |
COD | 0.922 | 0.257 | −0.203 |
SW | 0.909 | 0.371 | −0.005 |
FCs | 0.945 | 0.135 | 0.216 |
DO | −0.211 | −0.024 | 0.897 |
Cond | 0.281 | 0.957 | −0.024 |
SD | 0.245 | 0.966 | 0.001 |
Temp | 0.740 | 0.043 | 0.552 |
% of Variance | 61.230 | 21.350 | 11.890 |
Cumulative Variance (%) | 61.230 | 82.580 | 94.470 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval Herazo, L.C.; González-Moreno, H.R.; Carreto-Hernandez, L.G.; Zurita, F.; Nani, G.; Zamora, S.; Sandoval-Herazo, M.; Martínez-Reséndiz, G. Impact of the Citrus Industry on the Water Quality of the Filobobos River in Veracruz, Mexico. Sustainability 2024, 16, 1536. https://doi.org/10.3390/su16041536
Sandoval Herazo LC, González-Moreno HR, Carreto-Hernandez LG, Zurita F, Nani G, Zamora S, Sandoval-Herazo M, Martínez-Reséndiz G. Impact of the Citrus Industry on the Water Quality of the Filobobos River in Veracruz, Mexico. Sustainability. 2024; 16(4):1536. https://doi.org/10.3390/su16041536
Chicago/Turabian StyleSandoval Herazo, Luis Carlos, Humberto Raymundo González-Moreno, Luis Guillermo Carreto-Hernandez, Florentina Zurita, Graciela Nani, Sergio Zamora, Mayerlin Sandoval-Herazo, and Georgina Martínez-Reséndiz. 2024. "Impact of the Citrus Industry on the Water Quality of the Filobobos River in Veracruz, Mexico" Sustainability 16, no. 4: 1536. https://doi.org/10.3390/su16041536
APA StyleSandoval Herazo, L. C., González-Moreno, H. R., Carreto-Hernandez, L. G., Zurita, F., Nani, G., Zamora, S., Sandoval-Herazo, M., & Martínez-Reséndiz, G. (2024). Impact of the Citrus Industry on the Water Quality of the Filobobos River in Veracruz, Mexico. Sustainability, 16(4), 1536. https://doi.org/10.3390/su16041536