Integration of Land Use Potential in Energy System Optimization Models at Regional Scale: The Pantelleria Island Case Study
Abstract
:1. Introduction
- (1)
- Is it possible/easy to integrate spatially explicit considerations in ESOMs, and how much do the available open source packages help in this practice?
- (2)
- Does explicitly spatial energy planning provide added value when performed at a small spatial scale?
- (3)
- How is it possible to quantify the added value introduced by an explicitly spatial planning approach?
2. Literature Review
2.1. Benefits and Challenges of Spatially Explicit ESOMs
2.2. Land Availability and Potential Assessment
2.3. The Problem of Optimal Siting
2.4. Land–Energy Nexus
3. Materials and Method
3.1. Modelling Framework
- Open source: TEMOA is open source, providing the transparency and customization needed for research. TEMOA’s code is written in Python and optimized in Pyomo, a Python library for optimization, so it has no accessibility constraints.
- Similarity to other models: The TEMOA model formulation is like the model generators MARKAL/TIMES [11,51], MESSAGE [52,53], and OSeMOSYS [54]. Such tools, already commonly used in energy planning (e.g., MESSAGE in Syria [53], OSeMOSYS in Colombia [55], TEMOA-US [16]. Moreover, TEMOA is a validated tool whose convergence with the well-established TIMES framework has already been demonstrated in an Italian modelling instance [56].
3.2. Case Study: The Pantelleria Island
- Consistency with research objectives: As stated in Section 1, the focus of the analysis is to test the effectiveness of a spatially explicit model on a small scale. This defines the size of the area to be studied. In addition, it was specified that the suitability phase of the land can be an important factor in reducing soil availability. Therefore, the selection of a critical context from this point of view is necessary.
- Territorial and technological diversity: According to Stolten et al. [28], the benefit of spatially explicit planning is higher if the territory under analysis presents geographical differences from the point of view of the distribution of energy resources and possible land uses. For this reason, the choice of a small area with characteristics of diversity is a fundamental element.
- Data availability: The analysis is more significant if the data (both for the phase of the suitability of the land and for the estimation of the energy potential) are present and at high resolution.
- Availability of modelling instances: The presence of existing and validated models on the chosen platform represents a strong added value in terms of the reproducibility of the study.
3.3. Geospatial Data and Tools for Land Eligibility and Energy Potential Analysis
3.4. Land Eligibility Analysis
3.5. Potential Assessment
- Reanalysis: The reanalysis methodology integrates numerical weather prediction models with observed datasets, yielding comprehensive datasets encompassing various meteorological parameters [71]. Examples include ERA5 [84] and MERRA2 [85], which serve as reputable sources for historical climate data assessment in wind resource studies, while similar data sources exist for solar energy assessments [86].
- Climate models: Climate models from initiatives like the Climate Model Intercomparison Project (CMIP) and CORDEX simulate future climate conditions, facilitating the assessment of wind and solar resource variability in response to long-term climate changes [87,88]. These models are instrumental in understanding the potential impacts of climate change on renewable energy resources.
- Atlas: Wind and solar atlases, exemplified by the New European Wind Atlas (NEWA) and the Global Wind Atlas (GWA), offer high-resolution spatial information regarding energy potentials in specified regions [89,90]. These atlases play a crucial role in renewable energy planning and development by providing detailed assessments of wind and solar resources.
Technology | Data Typology | Database Names | Coverage | Resolution | ||
---|---|---|---|---|---|---|
Spatial | Temporal | Spatial | Temporal | |||
General | Observation | HadISD [83], Tall Tower Database [82] | Global | Historical, 20–50 years | Site-specific | 5 min–1 h |
Reanalysis | MERRA-2 [85], ERA5 [84] | Global | Historical, 40–70 years | 30–60 km | 1–6 h | |
Climate models | CMIP5 [87], EUROCORDEX [88] | Global | Historical and future, 80–250 years | 10–300 km | Hourly–monthly | |
Solar | Atlas | GSA [91], SolarGIS [92] | Global | Historical | 90 m | 0.5–1 h |
Reanalysis | HelioClim-3 [86] | Global | Historical and real-time | 3 km | 15 min–1 h | |
Wind | Reanalysis | NEWA [89], DOWA [93], RSE [61] | Regional (EU) | Historical, 11–30 years | 1.5–3 km | 0.5–1 h |
Atlas | GWA [90] | Global | Historical average | 50–200 m | N/A | |
Reanalysis | WINDographer [94], Mesonet [95] | USA | Historical | 3 km | Hourly |
3.5.1. Photovoltaic Potential Assessment
- GHIi represents the average global horizontal irradiation (kWh/m2/time).
- APV,i indicates the area within grid cell “i” suitable for PV implementation (km2).
- ηPV represents the efficiency of the PV module in converting sunlight to electricity, with an assumed value of 21% [81].
- PR denotes the performance ratio for the solar module, set at 0.85 [81]. This ratio accounts for the disparity between performance under standard test conditions and the actual system output, factoring in losses due to conduction and thermal effects.
- T signifies the total number of hours in a year, equivalent to 8760.
- PPV,rated represents the power density or of the solar PV system. For this study, we employed a value of 32 MW/km2 for a fixed-tilt utility-scale solar system using mono-crystalline silicon cells, which is the most common in the actual market [104].
3.5.2. Wind Potential Assessment
3.5.3. Cost Assessment
3.6. Data Aggregation
3.7. Model Integration
- (1)
- Insert in TEMOA a new set that describes the land resource. Traditional ESOM elements (mainly process and commodities) do not allow for proper land representation. Indeed, it would be wrong to model the land consumed by plant installation as a commodity or a technology, for two main reasons. First, a commodity is something that is exchanged between processes as input or output. Here, the role of land is to host its associated technology (at certain conditions of capacity factor and cost) for its lifetime. Second, commodity consumption is related to the activity of a plant, passing through its efficiency (e.g., natural gas consumption proportional to combined cycle plant activity). In this case, land is consumed when new capacity is installed and becomes available as soon as the installed technology on that land dies. As depicted in Equations (17) and (18), the new TEMOA set is called , for which a value is associated, describing the available area for the land cluster “c”.
- (2)
- Insert in the model a new parameter and new constraint, linking the capacity installation to land consumption. Indeed, as shown in Equation (19), the land use intensity (LUI) parameter acts as a critical bridge linking the land clusters “” with the applicable technologies “j”. It quantifies the amount of land required for the installation of a unit of technology (e.g., a megawatt of wind or solar power). The LUI parameter ensures that the model’s solutions are not just economically optimized but also spatially feasible. If an LUI is not defined for a specific technology within a given land cluster, it implies that the technology cannot be installed in that cluster, thereby introducing a direct spatial constraint into the optimization process.
4. Results
4.1. Technological Clustering Results
4.2. Energy Scenario Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acronym | Meaning |
AEP | annual energy production |
AHP | analytical hierarchy process |
CF | capacity factor |
CLC | Corine land cover |
DBSCAN | density-based spatial clustering of applications with noise |
DEM | digital elevation model |
ESOMs | energy system optimization models |
GHI | global horizontal irradiation |
GISs | geographical information systems |
GWA | Global Wind Atlas |
HDBSCAN | hierarchical density-based spatial clustering of applications with noise |
IAMs | integrated assessment models |
IQR | interquartile range |
Kmeans | K-means clustering algorithm |
LCOE | levelized cost of electricity |
LE | land eligibility |
LUI | land use intensity |
MILP | mixed integer linear programming |
MADM | multi-attribute decision making |
O&M | operations and maintenance |
PV | photovoltaic |
PR | performance ratio |
TEMOA | tool for energy model optimization and analysis |
VRESs | variable renewable energy sources |
WDPA | World Database of Protected Areas |
WT | wind turbines |
WTG | wind turbine generator |
References
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- VijayaVenkataRaman, S.; Iniyan, S.; Goic, R. A review of climate change, mitigation and adaptation. Renew. Sustain. Energy Rev. 2012, 16, 878–897. [Google Scholar] [CrossRef]
- Gabrielli, P.; Rosa, L.; Gazzani, M.; Meys, R.; Bardow, A.; Mazzotti, M.; Sansavini, G. Net-zero emissions chemical industry in a world of limited resources. One Earth 2023, 6, 682–704. [Google Scholar] [CrossRef]
- Martins, F.; Moura, P.; de Almeida, A.T. The Role of Electrification in the Decarbonization of the Energy Sector in Portugal. Energies 2022, 15, 1759. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Electricity Storage and Renewables: Costs and Markets to 2030. 2017. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf (accessed on 26 June 2023).
- Lovering, J.; Swain, M.; Blomqvist, L.; Hernandez, R.R. Land-use intensity of electricity production and tomorrow’s energy landscape. PLoS ONE 2022, 17, e0270155. [Google Scholar] [CrossRef]
- Merfort, L.; Bauer, N.; Humpenöder, F.; Klein, D.; Strefler, J.; Popp, A.; Luderer, G.; Kriegler, E. State of global land regulation inadequate to control biofuel land-use-Chang. emissions. Nat. Clim. Chang. 2023, 13, 610–612. [Google Scholar] [CrossRef]
- Van de Ven, D.-J.; Capellan-Peréz, I.; Arto, I.; Cazcarro, I.; de Castro, C.; Patel, P.; Gonzalez-Eguino, M. The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 2021, 11, 2907. [Google Scholar] [CrossRef]
- Chang, M.; Thellufsen, J.Z.; Zakeri, B.; Pickering, B.; Pfenninger, S.; Lund, H.; Østergaard, P.A. Trends in tools and approaches for modelling the energy transition. Appl. Energy 2021, 290, 116731. [Google Scholar] [CrossRef]
- Prina, M.G.; Manzolini, G.; Moser, D.; Nastasi, B.; Sparber, W. Classification and challenges of bottom-up energy system models—A review. Renew. Sustain. Energy Rev. 2020, 129, 109917. [Google Scholar] [CrossRef]
- Loulou, R.; Goldstein, G.; Kanudia, A.; Lettila, A.; Remme, U. Documentation for the TIMES Model: Part I. 2016. Available online: https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-Part-I_July-2016.pdf (accessed on 17 October 2022).
- Lerede, D.; Bustreo, C.; Gracceva, F.; Lechón, Y.; Savoldi, L. Analysis of the Effects of Electrification of the Road Transport Sector on the Possible Penetration of Nuclear Fusion in the Long-Term European Energy Mix. Energies 2020, 13, 3634. [Google Scholar] [CrossRef]
- Lerede, D.; Bustreo, C.; Gracceva, F.; Saccone, M.; Savoldi, L. Techno-economic and environmental characterization of industrial technologies for transparent bottom-up energy modeling. Renew. Sustain. Energy Rev. 2021, 140, 110742. [Google Scholar] [CrossRef]
- Balbo, A.; Colucci, G.; Nicoli, M.; Savoldi, L. Exploring the Role of Hydrogen to Achieve the Italian Decarbonization Targets Using an Open-Source Energy System Optimization Model. 2023, pp. 89–100. Available online: https://publications.waset.org/10013040/exploring-the-role-of-hydrogen-to-achieve-the-italian-decarbonization-targets-using-an-open-source-energy-system-optimization-model (accessed on 25 April 2023).
- Limpens, G.; Jeanmart, H.; Maréchal, F. Belgian Energy Transition: What Are the Options? Energies 2020, 13, 261. [Google Scholar] [CrossRef]
- Eshraghi, H.; de Queiroz, A.R.; DeCarolis, J.F. US Energy-Related Greenhouse Gas Emissions in the Absence of Federal Climate Policy. Environ. Sci. Technol. 2018, 52, 9595–9604. [Google Scholar] [CrossRef] [PubMed]
- Barnes, T.; Shivakumar, A.; Brinkerink, M.; Niet, T. OSeMOSYS Global, an open-source, open data global electricity system model generator. Sci. Data 2022, 9, 1–13. [Google Scholar] [CrossRef]
- Gago Da Camara Simoes, S.; Nijs, W.; Ruiz Castello, P.; Sgobbi, A.; Radu, D.; Bolat, P.; Thiel, C.; Peteves, E. The JRC-EU-TIMES Model—Assessing the Long-Term Role of the SET Plan Energy Technologies; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar] [CrossRef]
- Lerede, D.; Nicoli, M.; Savoldi, L.; Trotta, A. Analysis of the possible contribution of different nuclear fusion technologies to the global energy transition. Energy Strat. Rev. 2023, 49, 101144. [Google Scholar] [CrossRef]
- Aryanpur, V.; O’Gallachoir, B.; Dai, H.; Chen, W.; Glynn, J. A review of spatial resolution and regionalisation in national-scale energy systems optimisation models. Energy Strat. Rev. 2021, 37, 100702. [Google Scholar] [CrossRef]
- Ryberg, D.S.; Robinius, M.; Stolten, D. Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe. Energies 2018, 11, 1246. [Google Scholar] [CrossRef]
- Risch, S.; Maier, R.; Du, J.; Pflugradt, N.; Stenzel, P.; Kotzur, L.; Stolten, D. Potentials of Renewable Energy Sources in Germany and the Influence of Land Use Datasets. Energies 2022, 15, 5536. [Google Scholar] [CrossRef]
- Ramos, E.P.; Sridharan, V.; Alfstad, T.; Niet, T.; Shivakumar, A.; Howells, M.I.; Rogner, H.; Gardumi, F. Climate, Land, Energy and Water systems interactions—From key concepts to model implementation with OSeMOSYS. Environ. Sci. Policy 2022, 136, 696–716. [Google Scholar] [CrossRef]
- Lamhamedi, B.E.H.; de Vries, W.T. An Exploration of the Land–(Renewable) Energy Nexus. Land 2022, 11, 767. [Google Scholar] [CrossRef]
- Chen, Y.-K.; Kirkerud, J.G.; Bolkesjø, T.F. Balancing GHG mitigation and land-use conflicts: Alternative Northern European energy system scenarios. Appl. Energy 2022, 310, 118557. [Google Scholar] [CrossRef]
- Bacca, E.J.M.; Stevanović, M.; Bodirsky, B.L.; Karstens, K.; Chen, D.M.-C.; Leip, D.; Müller, C.; Minoli, S.; Heinke, J.; Jägermeyr, J.; et al. Uncertainty in land-use adaptation persists despite crop model projections showing lower impacts under high warming. Commun. Earth Environ. 2023, 4, 284. [Google Scholar] [CrossRef]
- Moksnes, N.; Howells, M.; Usher, W. Increasing spatial and temporal resolution in energy system optimisation model—The case of Kenya. Energy Strat. Rev. 2024, 51, 101263. [Google Scholar] [CrossRef]
- Patil, S.; Kotzur, L.; Stolten, D. Advanced Spatial and Technological Aggregation Scheme for Energy System Models. Energies 2022, 15, 9517. [Google Scholar] [CrossRef]
- Resch, B.; Sagl, G.; Törnros, T.; Bachmaier, A.; Eggers, J.-B.; Herkel, S.; Narmsara, S.; Gündra, H. GIS-Based Planning and Modeling for Renewable Energy: Challenges and Future Research Avenues. ISPRS Int. J. Geo-Inf. 2014, 3, 662–692. [Google Scholar] [CrossRef]
- Maclaurin, G.; Grue, N.; Lopez, A.; Heimiller, D.; Rossol, M.; Buster, G.; Williams, T. The Renewable Energy Potential (reV) Model: A Geospatial Platform for Technical Potential and Supply Curve Modeling. 2021. Available online: https://www.nrel.gov/gis/renewable-energy-potential.html (accessed on 1 February 2023).
- Wang, N.; Verzijlbergh, R.A.; Heijnen, P.W.; Herder, P.M. A spatially explicit planning approach for power systems with a high share of renewable energy sources. Appl. Energy 2019, 260, 114233. [Google Scholar] [CrossRef]
- Martínez-Gordón, R.; Morales-España, G.; Sijm, J.; Faaij, A. A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region. Renew. Sustain. Energy Rev. 2021, 141, 110857. [Google Scholar] [CrossRef]
- Yliruka, M.I.; Moret, S.; Jalil-Vega, F.; Hawkes, A.D.; Shah, N. The Trade-Off between Spatial Resolution and Uncertainty in Energy System Modelling. Comput. Aided Chem. Eng. 2022, 49, 2035–2040. [Google Scholar] [CrossRef]
- Archer, C.L.; Jacobson, M.Z. Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms. J. Appl. Meteorol. Clim. 2007, 46, 1701–1717. [Google Scholar] [CrossRef]
- Frysztacki, M.M.; Hörsch, J.; Hagenmeyer, V.; Brown, T. The strong effect of network resolution on electricity system models with high shares of wind and solar. Appl. Energy 2021, 291, 116726. [Google Scholar] [CrossRef]
- Frysztacki, M.M.; Hagenmeyer, V.; Brown, T. Inverse methods: How feasible are spatially low-resolved capacity expansion modelling results when disaggregated at high spatial resolution? Energy 2023, 281, 128133. [Google Scholar] [CrossRef]
- McKinsey. Land: A Crucial Resource for Europe’s Energy Transition. Available online: https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/land-a-crucial-resource-for-the-energy-transition (accessed on 8 November 2023).
- Stucchi, L.; Aiello, M.; Gargiulo, A.; Brovelli, M.A. Copernicus and the energy challenge. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2021, XLVI-4/W2, 189–196. [Google Scholar] [CrossRef]
- Hofmann, F.; Hampp, J.; Neumann, F.; Brown, T.; Hörsch, J. atlite: A Lightweight Python Package for Calculating Renewable Power Potentials and Time Series. J. Open Source Softw. 2021, 6, 3294. [Google Scholar] [CrossRef]
- Dominguez, O.D.M.; Kasmaei, M.P.; Lavorato, M.; Mantovani, J.R.S. Optimal siting and sizing of renewable energy sources, storage devices, and reactive support devices to obtain a sustainable electrical distribution systems. Energy Syst. 2018, 9, 529–550. [Google Scholar] [CrossRef]
- Attaullah; Ashraf, S.; Rehman, N.; Khan, A.; Naeem, M.; Park, C. A wind power plant site selection algorithm based on q-rung orthopair hesitant fuzzy rough Einstein aggregation information. Sci. Rep. 2022, 12, 5443. [Google Scholar] [CrossRef]
- Zanakis, S.H.; Solomon, A.; Wishart, N.; Dublish, S. Multi-attribute decision making: A simulation comparison of select methods. Eur. J. Oper. Res. 1998, 7, 507–529. [Google Scholar] [CrossRef]
- Türk, S.; Koç, A.; Şahin, G. Multi-criteria of PV solar site selection problem using GIS-intuitionistic fuzzy based approach in Erzurum province/Turkey. Sci. Rep. 2021, 11, 5034. [Google Scholar] [CrossRef] [PubMed]
- Topuz, M.; Deniz, M. Application of GIS and AHP for land use suitability analysis: Case of Demirci district (Turkey). Humanit. Soc. Sci. Commun. 2023, 10, 115. [Google Scholar] [CrossRef]
- Jones, S.M.; Smith, A.C.; Leach, N.; Henrys, P.; Atkinson, P.M.; Harrison, P.A. Pathways to achieving nature-positive and carbon–neutral land use and food systems in Wales. Reg. Environ. Chang. 2023, 23, 37. [Google Scholar] [CrossRef]
- Caldera, U.; Breyer, C. Afforesting arid land with renewable electricity and desalination to mitigate climate change. Nat. Sustain. 2023, 6, 526–538. [Google Scholar] [CrossRef]
- Adeh, E.H.; Good, S.P.; Calaf, M.; Higgins, C.W. Solar PV Power Potential is Greatest Over Croplands. Sci. Rep. 2019, 9, 11442. [Google Scholar] [CrossRef] [PubMed]
- Niet, T.; Fraser, S.; Arianpoo, N.; Kuling, K.; Wright, A.; Wright, A.S. Embedding the United Nations Sustainable Development Goals into Systems Analysis—Expanding the Food-Energy-Water Nexus. 2020. Available online: https://assets.researchsquare.com/files/rs-52249/v1_stamped.pdf?c=1597093325 (accessed on 30 December 2023).
- Zhou, J.; Ding, Q.; Zou, Z.; Deng, J.; Xu, C.; Yang, W. Land suitability evaluation of large-scale photovoltaic plants using structural equation models. Resour. Conserv. Recycl. 2023, 198, 107179. [Google Scholar] [CrossRef]
- Temoa Project. Temoa Project Documentation. Available online: https://temoacloud.com/temoaproject/index.html (accessed on 12 July 2023).
- Loulou, R.; Lehtilä, A.; Kanudia, A.; Remme, U.; Goldstein, G. Documentation for the TIMES Model: Part II. 2016. Available online: https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-Part-II_July-2016.pdf (accessed on 30 December 2023).
- MESSAGEix-GLOBIOM Documentation—Message_Doc 2020 Documentation. Available online: https://docs.messageix.org/projects/global/en/latest/ (accessed on 6 November 2023).
- Hainoun, A.; Aldin, M.S.; Almoustafa, S. Formulating an optimal long-term energy supply strategy for Syria using MESSAGE model. Energy Policy 2010, 38, 1701–1714. [Google Scholar] [CrossRef]
- Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, M.; et al. OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development. Energy Policy 2011, 39, 5850–5870. [Google Scholar] [CrossRef]
- Plazas-Niño, F.; Yeganyan, R.; Cannone, C.; Howells, M.; Quirós-Tortós, J. Informing sustainable energy policy in developing countries: An assessment of decarbonization pathways in Colombia using open energy system optimization modelling. Energy Strat. Rev. 2023, 50, 2211–2467. [Google Scholar] [CrossRef]
- Nicoli, M.; Gracceva, F.; Lerede, D.; Savoldi, L. Can We Rely on Open-Source Energy System Optimization Models? The TEMOA-Italy Case Study. Energies 2022, 15, 6505. [Google Scholar] [CrossRef]
- GitHub. TemoaProject GitHub—TemoaProject/Temoa. Available online: https://github.com/TemoaProject/temoa (accessed on 11 February 2023).
- Nicoli, M. A TIMES-like Open-Source Model for the Italian Energy System; Politecnico di Torino: Turin, Italy, 2021; Available online: https://webthesis.biblio.polito.it/18850/ (accessed on 5 July 2022).
- Pantelleria—Clean Energy for EU Islands. Available online: https://energy.ec.europa.eu/topics/markets-and-consumers/clean-energy-eu-islands_en (accessed on 14 June 2023).
- Comune di Pantelleria. Available online: https://www.comunepantelleria.it/ (accessed on 1 February 2023).
- Aeolian. Available online: https://atlanteeolico.rse-web.it/ (accessed on 8 November 2023).
- Moscoloni, C.; Zarra, F.; Novo, R.; Giglio, E.; Vargiu, A.; Mutani, G.; Bracco, G.; Mattiazzo, G. Wind Turbines and Rooftop Photovoltaic Technical Potential Assessment: Application to Sicilian Minor Islands. Energies 2022, 15, 5548. [Google Scholar] [CrossRef]
- Novo, R.; Minuto, F.D.; Bracco, G.; Mattiazzo, G.; Borchiellini, R.; Lanzini, A. Supporting Decarbonization Strategies of Local Energy Systems by De-Risking Investments in Renewables: A Case Study on Pantelleria Island. Energies 2022, 15, 1103. [Google Scholar] [CrossRef]
- Alfano, M.E. Modeling the Energy and the Water Systems in an Open-Access Energy System Optimization Model: The Pantelleria Case Study; Politecnico di Torino: Turin, Italy, 2022; Available online: https://webthesis.biblio.polito.it/24982/ (accessed on 19 January 2023).
- Isola di Pantelleria Verso 100% Rinnovabile—Scenari per Nuovi Paesaggi Dell’energia. Available online: https://it.readkong.com/page/isola-di-pantelleria-verso-100-rinnovabile-scenari-per-5867995 (accessed on 18 November 2023).
- Ansari, M.Y.; Ahmad, A.; Khan, S.S.; Bhushan, G. Mainuddin Spatiotemporal clustering: A review. Artif. Intell. Rev. 2020, 53, 2381–2423. [Google Scholar] [CrossRef]
- Balkovič, J.; van der Velde, M.; Schmid, E.; Skalský, R.; Khabarov, N.; Obersteiner, M.; Stürmer, B.; Xiong, W. Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation. Agric. Syst. 2013, 120, 61–75. [Google Scholar] [CrossRef]
- Joint Research Centre. European Meteorological Derived High Resolution RES Generation Time Series for Present and Future Scenarios (EMHIRES). 2021. Available online: https://data.jrc.ec.europa.eu/collection/id-0055#:~:text=EMHIRES (accessed on 12 July 2023).
- McKenna, R.; Hollnaicher, S.; Fichtner, W. Cost-potential curves for onshore wind energy: A high-resolution analysis for Germany. Appl. Energy 2013, 115, 103–115. [Google Scholar] [CrossRef]
- Ryberg, D.S.; Tulemat, Z.; Stolten, D.; Robinius, M. Uniformly constrained land eligibility for onshore European wind power. Renew. Energy 2020, 146, 921–931. [Google Scholar] [CrossRef]
- McKenna, R.; Pfenninger, S.; Heinrichs, H.; Schmidt, J.; Staffell, I.; Bauer, C.; Gruber, K.; Hahmann, A.N.; Jansen, M.; Klingler, M.; et al. High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs. Renew. Energy 2021, 182, 659–684. [Google Scholar] [CrossRef]
- Klok, C.; Kirkels, A.; Alkemade, F. Impacts, procedural processes, and local context: Rethinking the social acceptance of wind energy projects in the Netherlands. Energy Res. Soc. Sci. 2023, 99, 2214–6296. [Google Scholar] [CrossRef]
- Rete Natura 2000—S.I.T.R—Sistema Informativo Territoriale Regionale. Available online: https://www.sitr.regione.sicilia.it/download/tematismi/rete-natura-2000/ (accessed on 1 February 2023).
- Explore the World’s Protected Areas. Available online: https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA (accessed on 9 November 2023).
- OpenStreetMap. Available online: https://www.openstreetmap.org/#map=7/42.727/12.371 (accessed on 9 November 2023).
- Sousa, A. The Thematic Accuracy of Corine Land cover 2000 Assessment Using LUCAS (Land Use/Cover Area Frame Statistical Survey). Available online: https://www.eea.europa.eu/publications/technical_report_2006_7 (accessed on 9 February 2024).
- Comune di Pantelleria Piano D’azione Per L’energia Sostenibile. 2015. Available online: www.ambienteitalia.it (accessed on 30 October 2023).
- Lindberg, F.; Grimmond, C.; Gabey, A.; Huang, B.; Kent, C.W.; Sun, T.; Theeuwes, N.E.; Järvi, L.; Ward, H.C.; Capel-Timms, I.; et al. Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environ. Model. Softw. 2018, 99, 70–87. [Google Scholar] [CrossRef]
- Tarquini, S.; Vinci, S.; Favalli, M.; Doumaz, F.; Fornaciai, A.; Nannipieri, L. Release of a 10-m-resolution DEM for the Italian territory: Comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput. Geosci. 2012, 38, 168–170. [Google Scholar] [CrossRef]
- Rete Natura 2000—Ministero dell’Ambiente e della Sicurezza Energetica. Available online: https://www.mase.gov.it/pagina/rete-natura-2000 (accessed on 9 November 2023).
- Elkadeem, M.R.; Younes, A.; Mazzeo, D.; Jurasz, J.; Campana, P.E.; Sharshir, S.W.; Alaam, M.A. Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment. Appl. Energy 2022, 322, 119532. [Google Scholar] [CrossRef]
- Ramon, J.; Lledó, L.; Pérez-Zanón, N.; Soret, A.; Doblas-Reyes, F.J. The Tall Tower Dataset: A unique initiative to boost wind energy research. Earth Syst. Sci. Data 2020, 12, 429–439. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Willett, K.M.; Thorne, P.W.; Woolley, E.V.; Durre, I.; Dai, A.; Parker, D.E.; Vose, R.S. HadISD: A quality-controlled global synoptic report database for selected variables at long-term stations from 1973–2011. Clim. Past 2012, 8, 1649–1679. [Google Scholar] [CrossRef]
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
- MERRA-2. Available online: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (accessed on 9 November 2023).
- HelioClim-3 Monthly Irradiation GHI—Data Europa EU. Available online: https://data.europa.eu/data/datasets/7237e78b-b12b-4fdb-85fb-33e9fe0c6994?locale=it (accessed on 9 November 2023).
- CMIP5—Home—ESGF-CoG. Available online: https://esgf-node.llnl.gov/projects/cmip5/ (accessed on 9 November 2023).
- EURO-CORDEX. Available online: https://www.euro-cordex.net/ (accessed on 9 November 2023).
- New European Wind Atlas. Available online: https://www.neweuropeanwindatlas.eu/ (accessed on 9 November 2023).
- Global Wind Atlas. Available online: https://globalwindatlas.info/en (accessed on 9 November 2023).
- Global Solar Atlas. Available online: https://globalsolaratlas.info/map (accessed on 9 November 2023).
- Solargis. Solar Irradiance Data. Available online: https://solargis.com/ (accessed on 9 November 2023).
- Home—Dutch Offshore Wind Atlas. Available online: https://www.dutchoffshorewindatlas.nl/ (accessed on 9 November 2023).
- UL Solutions. Windographer—Wind Data Analytics and Visualization Solution. Available online: https://www.ul.com/software/windographer-wind-data-analytics-and-visualization-solution (accessed on 9 November 2023).
- Mesonet—Home. Available online: https://mesonet.org/ (accessed on 9 November 2023).
- McCutchan, M.H.; Fox, D.G.; McCutchan, M.H.; Fox, D.G. Effect of Elevation and Aspect on Wind, Temperatme and Humidity. J. Appl. Meteorol. Climatol. 1986, 25, 1996–2013. [Google Scholar] [CrossRef]
- Chen, N. Scale problem: Influence of grid spacing of digital elevation model on computed slope and shielded extra-terrestrial solar radiation. Front. Earth Sci. 2019, 14, 171–187. [Google Scholar] [CrossRef]
- Šúri, M.; Hofierka, J. A New GIS-based Solar Radiation Model and Its Application to Photovoltaic Assessments. Trans. GIS 2004, 8, 175–190. [Google Scholar] [CrossRef]
- ArcGIS. Accesso di Accesso. Available online: https://www.arcgis.com/index.html (accessed on 9 November 2023).
- ArcGIS Pro. An overview of the Solar Radiation toolset—Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-solar-radiation-tools.htm (accessed on 9 November 2023).
- Kausika, B.B.; van Sark, W.G.J.H.M. Calibration and Validation of ArcGIS Solar Radiation Tool for Photovoltaic Potential Determination in the Netherlands. Energies 2021, 14, 1865. [Google Scholar] [CrossRef]
- Pintor, B.H.; Sola, E.F.; Teves, J.; Inocencio, L.C.; Ang, M.R.C. Solar Energy Resource Assessment Using R.SUN In GRASS GIS And Site Suitability Analysis Using AHP For Groundmounted Solar Photovoltaic (PV) Farm in The Central Luzon Region (Region 3), Philippines. Free. Open Source Softw. Geospat. FOSS4G Conf. Proc. 2018, 15, 3. [Google Scholar] [CrossRef]
- Gašparović, I.; Gašparović, M.; Medak, D. Determining and analysing solar irradiation based on freely available data: A case study from Croatia. Environ. Dev. 2018, 26, 55–67. [Google Scholar] [CrossRef]
- El Chaar, L.; Lamont, L.A.; El Zein, N. Review of photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 2165–2175. [Google Scholar] [CrossRef]
- Analysis of Utility Scale Wind and Solar Plant Performance in South Africa Relative to Daily Electricity Demand. Available online: https://www.researchgate.net/publication/321192910_Analysis_of_utility_scale_wind_and_solar_plant_performance_in_South_Africa_relative_to_daily_electricity_demand (accessed on 9 November 2023).
- Benvenuti a Wind-Turbine-Models. Available online: https://it.wind-turbine-models.com/ (accessed on 10 November 2023).
- Peterson, E.W.; Hennessey, J., Jr. On the Use of Power Laws for Estimates of Wind Power Potential. J. Appl. Meteorol. Climatol. 1978, 17, 390–394. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2021, International Renewable Energy Agency, Abu Dhabi; International Renewable Energy Agency: Masdar City, United Arab Emirates, 2022; ISBN 978-92-9260-452-3. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf (accessed on 10 November 2023).
- Eurostat Data Browser Yearly Land Rent Price for a Year. Available online: https://ec.europa.eu/eurostat/databrowser/view/APRI_LRNT__custom_5264437/bookmark/table?lang=en&bookmarkId=0e5713d6-6cad-4033-b9ac-e09b5270c489 (accessed on 10 November 2023).
- Austin, K.G.; Baker, J.S.; Sohngen, B.L.; Wade, C.M.; Daigneault, A.; Ohrel, S.B.; Ragnauth, S.; Bean, A. The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change. Nat. Commun. 2020, 11, 5946. [Google Scholar] [CrossRef] [PubMed]
- Terna Spa. Econnextion: La Mappa Delle Connessioni Rinnovabili. Available online: https://www.terna.it/it/sistema-elettrico/rete/econnextion (accessed on 10 November 2023).
- Temoa Project. Temoa Project Documentation—Objective Function. Available online: https://temoacloud.com/temoaproject/Documentation.html#objective-function (accessed on 22 March 2023).
- Wind Costs. Available online: https://www.irena.org/Data/View-data-by-topic/Costs/Wind-Costs (accessed on 10 November 2023).
- Hughes, M.; Kelbaugh, M.; Campbell, V.; Reilly, E.; Agarwala, S.; Wilt, M.; Badger, A.; Fuller, E.; Ponzo, D.; Arevalo, X.C.; et al. System Integration with Multiscale Networks (Simon): A Modular Framework for Resource Management Models. In Proceedings of the 2020 Winter Simulation Conference (WSC), Orlando, FL, USA, 14–18 December 2020; pp. 656–667. [Google Scholar] [CrossRef]
- Campello, R.J.G.B.; Moulavi, D.; Sander, J. Density-based clustering based on hierarchical density estimates. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2003; Volume 7819, LNAI, No. PART 2; pp. 160–172. [Google Scholar]
- Mannor, S.; Jin, X.; Han, J.; Zhang, X. K-Means Clustering. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2011; pp. 563–564. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. 1996. Available online: www.aaai.org (accessed on 13 November 2023).
- Wang, J.-F.; Stein, A.; Gao, B.-B.; Ge, Y. A review of spatial sampling. Spat. Stat. 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN model-based approach in classification. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2003; Volume 2888, pp. 986–996. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
Administrative | Technical | Economic | Social | Year | Source |
---|---|---|---|---|---|
v | v | 2014 | [69] | ||
v | v | v | v | 2018 | [21] |
v | v | v | 2020 | [31] | |
v | v | v | v | 2020 | [70] |
v | v | v | v | 2021 | [39] |
v | v | 2022 | [62] | ||
v | v | v | v | 2022 | [71] |
v | v | v | v | 2023 | [72] |
Area | Constraint | Exclusion Rule | Source |
---|---|---|---|
Environmental/technical | Wind speed | Below 4.5 m/s | RSE [61] |
Irradiance | Below 3.0 kWh/m2 day | UMEP ERA 5 [78] | |
Slope | ≥15% | TinItaly [79] | |
Permanent crops | Inside | CLC [76] | |
Water bodies | Inside | - | |
Rocks | Inside | - | |
Coast | Inside | - | |
Administrative/habitat | Natural habitats | Inside | Natura 2000 [80] |
Bird areas | Inside | - | |
Biospheres | Inside | WDPA [74] | |
Protected landscape | 1000 m | - | |
Reserves | Inside | - | |
Parks | Inside | - | |
Monuments | 1000 m | - | |
Hydrological risk | Inside | - | |
Anthropic | Road distance | 100 m | OpenStreetMap [75] |
Urban settlement | 200 m | - | |
Industrial sites | 200 m | - | |
Airport | 1500 m (wind only) | - | |
Recreational areas | 200 m | - |
Reference Height [m] | WTG Model | Nominal Power [MW] | Rotor Diameter [m] | Hub Height [m] |
---|---|---|---|---|
50 m | Riva Calzoni 500.54 | 0.5 | 54 | 50 |
75 m | Leitwind LTW90-950 | 0.95 | 90 | 80 |
100 m | Vestas V117 3450 | 3.45 | 117 | 91 |
125 m | NREL_6MW_RTW | 6 | 128 | 119 |
Method | Silhouette Score | Time (Seconds) | Memory (MB) |
---|---|---|---|
HDBSCAN | 0.527 | 1729 | 2246 |
K-means | 0.827 | 0.369 | 0.224 |
DBSCAN | 0.807 | 2940 | 0.810 |
Land Cluster | Available Area [km2] | Installable Technologies |
---|---|---|
LC_1 | 2850 | PV2_N |
LC_2 | 0.457 | WIN1_N, PV_1 |
LC_3 | 4909 | PV_1 |
LC_4 | 1947 | PV_ 3, WIN2_N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosso, D.; Rajteri, L.; Savoldi, L. Integration of Land Use Potential in Energy System Optimization Models at Regional Scale: The Pantelleria Island Case Study. Sustainability 2024, 16, 1644. https://doi.org/10.3390/su16041644
Mosso D, Rajteri L, Savoldi L. Integration of Land Use Potential in Energy System Optimization Models at Regional Scale: The Pantelleria Island Case Study. Sustainability. 2024; 16(4):1644. https://doi.org/10.3390/su16041644
Chicago/Turabian StyleMosso, Daniele, Luca Rajteri, and Laura Savoldi. 2024. "Integration of Land Use Potential in Energy System Optimization Models at Regional Scale: The Pantelleria Island Case Study" Sustainability 16, no. 4: 1644. https://doi.org/10.3390/su16041644
APA StyleMosso, D., Rajteri, L., & Savoldi, L. (2024). Integration of Land Use Potential in Energy System Optimization Models at Regional Scale: The Pantelleria Island Case Study. Sustainability, 16(4), 1644. https://doi.org/10.3390/su16041644