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Abstract: Photovoltaic-storage integrated systems, which combine distributed photovoltaics with
energy storage, play a crucial role in distributed energy systems. Evaluating the health status of
photovoltaic-storage integrated energy stations in a reasonable manner is essential for enhancing
their safety and stability. To achieve an accurate and continuous assessment of the health status of
photovoltaic-storage integrated energy stations, a dynamic evaluation method is proposed in this
study. This method integrates both subjective and objective characteristics. Initially, considering
the evaluation needs of low-carbon operation and health status for photovoltaic-storage integrated
energy stations, a comprehensive health status evaluation system is developed. The significance of
each indicator is subjectively analyzed, while also considering objective characteristics and sensitivity
of indicators. The integration of subjective and objective characteristics is achieved using principles
from game theory. Subsequently, through the establishment of the Grey-TOPSIS evaluation model,
both positive and negative correlations of the health status of photovoltaic-storage integrated energy
stations are determined, resulting in the derivation of a health status vector. Furthermore, the
introduction of time-weight vectors and the incorporation of a time dimension enable dynamic
evaluation and the comprehensive observation of health status. Finally, the scientific validity and
effectiveness of the proposed evaluation method are demonstrated through practical examples, with
comparisons made to traditional evaluation methods. The results clearly indicate that this method
offers higher sensitivity when evaluating the health of photovoltaic-storage integrated energy stations.

Keywords: photovoltaic-storage integrated energy stations; health state evaluation; integration of
subjective and objective characteristics; dynamic evaluation; state vector

1. Introduction

In today’s increasingly digitized world and growing energy demands, energy storage
technologies have become crucial. The limitations of traditional energy resources and their
adverse impact on the environment have prompted us to actively seek more sustainable and
efficient energy storage solutions. In this pursuit, as an emerging energy storage technology,
the photovoltaic-storage system combines the advantages of light energy conversion and
storage, presenting new possibilities to the energy industry. As a breakthrough energy
storage technology, it has garnered extensive attention and research worldwide [1,2].

Currently, scholars at home and abroad have achieved significant results in health
status evaluation. To address the challenge of assessing the health status of equipment
systems after a large number of new energy sources are connected, K. Ding et al. used GMM
and EMD algorithms to propose a performance evaluation model based on the concept
of health status for photovoltaic system performance issues [3]. Due to the complexity of
evaluating the health status of large-scale systems and equipment, the evaluation process
is relatively intricate. Chao Chen et al. have thoroughly considered the health status of
electromechanical systems under the influence of various uncertainties, such as monitoring
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and environmental factors in the field of electromechanical systems [4]. Zhang Y. et al. pro-
posed BiGRU and MMoE models for the health status assessment of aeroengines, effectively
evaluating their health status [5]. For the health status assessment of wind turbines, Peng,
J. et al. proposed an early warning mechanism and a status assessment model based on
MMD and CNN, quantifying the health status of wind turbines by measuring the similarity
between the real-time data of wind turbines and the distribution of benchmark data [6].
Some representative dynamic and comprehensive evaluation works are listed in Table 1,
including the evaluation index, weight calculation method, and assessment method.

Table 1. The research status of the health statue evaluation.

Ref. Evaluation Index Weight Calculation Assessment Method

[7] Hazard, exposure, vulnerability, disaster
prevention, and mitigation capacity Information axiom

A dynamic assessment model based on
fuzzy sets, information axioms and

comprehensive assessment

[8] Technology, environmental, economic AHP and Entropy-weight
Method

The fuzzy comprehensive evaluation
model modified by the center of gravity

method

[9]
Legal basis, organizational system,

disaster prevention and early warning,
disaster response capacity, post disposal

AHP and Coefficient of
Variation

Dynamic integrated evaluation method
based on time-weighted

average-temporal weighted geometric
average hybrid operator model

[10]
The coordination degree, power

generation, power consumption, power
supply, developing potential

Fuzzy expert evaluation and
weights non-dictatorship
condition with projection

pursuit model

Dynamic integrated evaluation method
based on time-series weight vectors

[11] Benefit-type indexes, cost-type indexes The standard deviation
weight method

An evaluation method based on
generalized regression neural network

and probabilistic neural network

[12]
Energy consumption index, energy

efficiency index, operation quality index
and pollution index

AHP and Entropy-weight
Method

Comprehensive evaluation based on
combination weighting method

[13] Economic, environmental, technical,
energy, service

IT2HF-DEMATEL method
and the entropy method

Credibility-based hesitant fuzzy
linguistic term set

[14]

Electricity supply and demand indexes,
renewable energy development indexes,

electricity transmission indexes,
electricity

Market indexes

AHP, entropy, and CRITIC
method

Combination weighting of game
theory-TOPSIS method

[15] Resource, economy, environment Hesitant fuzzy preference
relation

The coupling coordination degree
evaluation model

At present, research on dynamic evaluation methods is mainly divided into two
categories: one is to determine the weighting coefficients of evaluation indicators at dif-
ferent moments; the second category is the changing attributes of the object in the time
series, leading to adjustments in the evaluation indicators at different times. Therefore,
the various aspects of comprehensive evaluation are dynamically treated. Liu C et al.
proposed a dynamic assessment model for urban natural disaster risk by comprehensively
considering the state of change speed and the trend of change speed of risk evaluation indi-
cators [7]. Considering the dynamics of a coupled distribution network-heat pump-energy
storage system (DN-HP-ESS), Li M et al. established a dynamic empowerment model to
dynamically adjust the static empowerment results of the indicators to realize the dynamic
comprehensive evaluation of the DN-HP-ESS [8]. Wang D et al. divided the emergency
response capability assessment into four time periods, and established a time-weighted
average—time-weighted geometric mean hybrid operator model. Subsequently, a dynamic
global evaluation method from the static evaluation model coupled with the time series
was proposed to realize the dynamic comprehensive evaluation of power grid emergency
response capability [9]. Zhou Y et al. determined the time-sequence weighting vector by
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using the time-sequence information entropy, and integrated the static evaluation model of
each time section to establish the dynamic comprehensive evaluation model of the electric
power development level [10].

Currently, domestic and foreign research on health status assessment is mainly divided
into two categories: machine learning evaluation methods and index system evaluation
methods. The former is generally used when the health characteristics of the research objects
are obvious, and the results can be directly analyzed through a large amount of data. The
latter is generally used in more complex large-scale systems, considering comprehensive
evaluation under the influence of multiple dimensions. Solar energy storage stations
comprise numerous pieces of equipment and complex structures, and cover extensive
areas. Evaluating their health status should involve a multi-dimensional assessment to
comprehensively examine their overall health.

For theoretical research on the evaluation of distributed photovoltaic-storage energy
stations or integrated energy systems, the current research mainly focuses on comprehen-
sive efficiency and comprehensive benefits. In order to realize a comprehensive evaluation
of energy-saving efficiency, Leng Y et al. proposed an evaluation method based on GRNN
and PNN algorithms for the comprehensive energy system evaluation of incomplete data,
considering the prediction of missing data and the classification of new evaluation indi-
cators [11]. Zhu X et al. analyzed the mechanism of the circulating cooling water system
and used a combined weighting method to evaluate its comprehensive energy-saving
effect [12]. The uncertainty of the comprehensive energy system makes comprehensive
benefit evaluation complicated. Lu Z et al. conducted a comprehensive evaluation of
EMS-RIES, establishing an evaluation system with five dimensions and a hesitant fuzzy
language set to reduce the standards and standards of alternatives. This helps to address
the double uncertainty in the degree of influence between properties [13]. Simultaneously,
a large number of renewable energy sources will also have an impact on the evaluation
of comprehensive energy systems. Li W et al. evaluated the reliability of power supply
under the condition of high penetration of renewable energy. The index system is built
based on the influence of game theory, and the TOPSIS model is established based on the
combination weighting method of game theory. This allows the evaluation of power supply
reliability from three dimensions: space, index, and time [14]. Yao Zou et al. established
a coupling coordination degree evaluation model to evaluate and improve the coupling
effect of the power generation system for the power generation system coupled with re-
newable energy and thermal power. Existing studies have evaluated various aspects of
the integrated energy system, but for the key characteristics of the health status of solar
energy storage energy stations, no suitable evaluation method for the health status has
been proposed [15].

In summary, there are still the following problems that need urgent attention in
current research on the health status evaluation of energy stations: First, in the index
weighting method, only one or two characteristics of the index are considered, while other
characteristics of the index are ignored, which lacks a certain degree of objectivity [16]. For
example, Chai Dong et al. only considered the influence of the characteristic of indicator
sensitivity on different comprehensive assessment methods and discussed the stability
of each evaluation model [17]. Su Yi et al. analyzed the index contribution based on the
gray target theory to evaluate the technological innovation capability of Chinese high-
tech enterprises [18]. Additionally, in terms of subjective characteristics, the significant
uncertainty of the experts regarding the indicators is ignored. Second, without considering
the different characteristics of health status evaluation and the current reference values, only
linear transformation is used to convert the index value, which causes the evaluation results
to lack a realistic basis. Third, static evaluation cannot reflect the dynamic development
status of the entire process, which will cause difficulties in the overall observation of the
development of things.

In view of these challenges, this paper proposes a dynamic evaluation method for the
health status vector of photovoltaic-storage energy stations based on prospect theory and
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reference values. First of all, considering the multifaceted evaluation needs, a health status
evaluation index is constructed, including four dimensions: reliable energy supply, low-
carbon operation, equipment health, and system health. According to the characteristics
of the importance degree, contribution degree, difference degree, and sensitivity of the
index, the information fusion of the multi-characteristics of the index is carried out using
the principles of game theory. Second, based on prospect theory and different positional
relationships of the reference values, the index values are transformed after considering the
characteristics of the health status evaluation. These converted index values are then input
into the Grey-TOPSIS evaluation model to calculate the positive and negative correlation
degree, which is subsequently converted into the health status vector of the photovoltaic-
storage integrated energy stations. At the same time, the time-weight vector and time
dimension are introduced to address dynamic evaluation and global observation problems.
Finally, an example is used to verify the proposed method, and its effectiveness is analyzed
in comparison to other evaluation methods.

2. Health Status Evaluation Index System of Photovoltaic-Storage Integrated
Energy Stations

The health status of the photovoltaic-storage integrated energy station refers to the
degree of health concerning the operation of equipment and the reliability of the system.
Equipment health status and system health status are internally connected with the health
status of the photovoltaic-storage integrated energy station. The former is used to reflect
the health status of each piece of equipment and the pipe network, while the latter is used
to reflect the health status of each subsystem or specific characteristic parameters [19,20]. A
reliable energy supply is an external manifestation of the health status of the photovoltaic-
storage integrated energy station and is an essential component of health status evaluation.
In the current context of “Carbon Peaking and Carbon Neutrality”, the low-carbon op-
eration of solar energy storage energy stations is an inevitable requirement for future
policies and social development. The index system of the photovoltaic-storage integrated
energy stations, based on evaluation demand analysis, is illustrated in Figure 1. Due to
space constraints, this article only provides construction ideas, and the explanation of the
calculation formulas is presented in Appendix B.
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2.1. Energy Saving and Low Carbon

In terms of energy conservation and low carbon, it comprises three indicators: renew-
able energy utilization rate (A1), carbon emission reduction (A2), and energy conversion
efficiency (A3). The renewable energy utilization rate (A1) measures the extent to which the
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system utilizes renewable energy (solar energy) and evaluates the efficiency of converting
solar energy into electrical energy through the photovoltaic energy storage system and
supplying it to the traction substation. Carbon emission reduction (A2) directly reflects en-
ergy conservation and low carbon, including the cumulative reduction in carbon emissions
at each stage of the entire life cycle. Energy conversion efficiency (A3) reflects the energy
utilization efficiency of the distributed photovoltaic energy storage system, including the
power generation efficiency of photovoltaic modules and the energy storage efficiency of
energy storage equipment, among other factors.

2.2. Reliable Power Supply

In terms of power supply reliability, it includes three indicators: demand-side satisfac-
tion (B1), qualification rate of power supply quality (B2), and reliability of power supply
(B3). Providing high-quality electric energy services for traction substations is the primary
goal of photovoltaic-storage integrated energy stations. The demand-side satisfaction of
traction substations is an essential and significant indicator of reliable energy supply. The
definition of the demand-side satisfaction of traction substations (B1) index is used to
evaluate the comfort level of heating and cooling energy consumption. The bus voltage
qualification rate (B2) refers to the proportion of the bus voltage within the system that
remains within the specified range within a certain time frame. Maintaining the bus voltage
within the qualified range is a crucial indicator to ensure the safe and efficient operation of
the distributed photovoltaic energy storage system. The energy supply reliability rate (B3)
is the most direct indicator to describe the system’s energy supply reliability performance.
It has a strong correlation with the health status of the distributed photovoltaic energy
storage system. The higher the value, the higher the health level.

2.3. Device Health

Regarding device health, it includes four indicators: the average device overload rate
(C1), device failure rate (C2), coupling device conversion rate (C3), and device aging degree
(C4). Device overload can lead to damage, which is detrimental to the overall health of
the distributed photovoltaic energy storage system. The average device overload rate
(C1) is used as the evaluation index. The device failure rate (C2) is a crucial indicator of
device health, and the average device failure rate during operational hours simplifies the
assessment of the entire energy station’s situation. The coupling device, a key component
of the distributed photovoltaic energy storage system, should maintain its conversion
efficiency (C3) within a specific range. A significant deviation indicates a defect in the
crucial coupling device, reducing the overall health of the photovoltaic energy storage
energy station. The device aging degree (C4) significantly influences the health status of
the distributed photovoltaic energy storage system, but quantifying it can be challenging.
Therefore, it is defined as a qualitative indicator. Comprehensive judgment can be made
considering factors such as the device’s service life and operational status.

2.4. System Health

In terms of system health, it comprises five indicators: health indicators of each sub-
system, network loss, and operation and maintenance times. Subsystem health indicators
include the photovoltaic module health index (D1), energy storage system health index
(D2), and grid connection and operational health index (D3). System loss (D4) is a criti-
cal indicator of system health, with values ideally lower than a certain threshold under
normal conditions, potentially increasing when other issues occur. The number of main-
tenance actions (D5) indicates how often operation and maintenance personnel attend to
the distributed photovoltaic energy storage system within a specified time frame. More
maintenance actions can mitigate relevant risks and failures, making it an essential measure
to maintain the system’s health.
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3. A Variety of Index Characteristic Weighting Methods

The comprehensive evaluation data of photovoltaic-storage integrated energy stations
exhibit characteristics such as multidimensionality, multiple indicators, and multiple time
points. If only one characteristic of the index data, such as subjectivity or information
entropy, is considered, it may not fully account for the advantages of the index in other
characteristics. Weighting or screening indicators solely based on one characteristic can
lead to a lack of consideration for important information and indicators. Therefore, it is
essential to comprehensively consider the characteristics of various indicators.

3.1. Various Indicator Features

1. Based on the subjective properties of Pythagorean fuzzy sets

Based on the subjective properties of Pythagorean fuzzy sets, in the process of tradi-
tionally determining subjective characteristics, it is assumed that experts possess infinite
experience and can accurately rank each indicator’s importance. However, in practice,
determining the importance of some indicators can be challenging. To address this issue,
this paper proposes a subjective weight determination method based on Pythagorean fuzzy
sets [21]. Please refer to Appendix C for calculation steps.

2. Contribution characteristics

The contribution characteristic quantifies the degree of a specific indicator’s contri-
bution to the overall evaluation result of the evaluation object, expressing its impact on
the system’s overall evaluation. Gray theory can analyze the relationship between the
development of things and the degree of standardization, allowing for the evaluation of
the contribution attribute of quantitative indicators [16]. Please see Appendix C for the
calculation steps.

3. Differential properties

The difference degree characteristic primarily measures the amount of information
contained in the index data and represents the degree of differentiation in the index data.
The projection pursuit method can effectively handle high-dimensional data analysis prob-
lems while preserving the characteristics of the “small concentration and large divergence”
of data [22]. Please refer to Appendix C for the calculation steps.

4. Sensitivity characteristics

The sensitivity characteristic of an index describes the influence of changes in uncertain
factors on the expected results, quantifying each factor’s impact on the results. The principal
component analysis method maximizes the retention of data information, quantifies the
relationship between the comprehensive value and the index, and effectively analyzes
index sensitivity. Please see Appendix C for the calculation steps.

3.2. Feature Fusion Based on Game Theory

To address the poor stability of traditional methods, the characteristics of the indicators
are fused using the principles of game theory, aiming for the fusion weight to be as close as
possible to the characteristics of each indicator [23]. Assuming that the final fusion feature
weight W can be expressed as the following formula.

W =
D

∑
i=1

(aiwi) (1)

where D means that there are D types of index characteristics; ai represents the linear
combination coefficient of the i-th type of index characteristics; wi represents the weight of
the i-th type of index characteristics. According to the game theory, the objective function
is to minimize the deviation:
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min
D
∑

h=1
∥

D
∑

i=1
aiwi − wi∥2

s.t.


0 ≤ ai ≤ 1
D
∑

i=1
(aiwi) = 1

(2)

After obtaining the linear combination coefficient, normalize it:

W =
D

∑
k=1

(
ak

∑ (ai)
wk) (3)

In the problem of solving the optimal fusion weight and projection objective function,
there are numerous indicators and high dimensions. In this paper, the whale algorithm,
based on Cauchy mutation and adaptive weight, is employed to find the optimal solu-
tion. The traditional whale algorithm has issues with inaccurate convergence and slow
convergence speed [24]. In this paper, the iterative process of global optimization and local
optimization is enhanced by incorporating the concepts of Cauchy mutation and adaptive
weight.

During global optimization by a group of whales, a reference individual is randomly
selected, and other whales are chosen at random to approach it. The selection of the
reference individuals impacts the global search ability, and the Cauchy inverse cumulative
distribution is employed, as shown in Formula (4), to enhance the mutation process and
prevent blind mutation as in the original algorithm. The original iterative process is
modified as per Formula (5).

F−1(p; x0, γ) = x0 + γ · tan
(
π
(

p − 1/2

))
(4)

X(t + 1) = X(t) + A · tan
(
π
(
r − 1/2

))
(5)

where F−1 is the inverse cumulative distribution function of the Cauchy distribution; xij is
the location point of the whale before mutation; when γ = A, the uniform distribution of
r ∈ [0,1].

When the whale group conducts a local search, the optimization weight influences
the local optimization capability. Utilizing the concept of adaptive weight allows whales
to use a smaller weight when close to the target, thereby enhancing the algorithm’s local
optimization ability. The adaptive weight improvement formula is as follows:

w = sin(πt/2itmax + π) + 1 (6)

X(t + 1) = w · X(t)− A · D (7)

where itmax is the maximum number of iterations; t is the current number of iterations; A
and D are algorithm coefficient variables.

4. Comprehensive Evaluation of the Health Status of Photovoltaic-Storage Integrated
Energy Stations

The health status evaluation of photovoltaic-storage integrated energy stations has
different characteristics from other evaluations. Considering the mental state of decision-
makers’ bounded rationality, they are more sensitive to the results of the indicators when
faced with indicators of health values below the standard; when faced with indicators of
health values higher than the standard, the opposite is true. Therefore, in order to reflect the
different states between the index state value and the reference value, the prospect theory
is introduced to fully reflect the health state of photovoltaic-storage integrated energy
stations.
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4.1. Evaluative Transformations Considering Prospect Theory and Reference Values Idea

Prospect theory, proposed by Nobel economist Kahneman, explores the impact of
decision-makers’ bounded rationality and risk preferences [25]. Its value change curve
aligns more closely with the evaluation expectations of photovoltaic-storage integrated
energy stations. When applying prospect theory to evaluation theory, the comprehensive
prospect value is primarily obtained by constructing the prospect value function v+(−) and
the decision weight function z+(−).

Vij =


v+z+ =

(
sij
)α pθ[

pθ+(1−p)θ
]1/θ sij > 0

v−z− = −λ
(
−sij

)β pε

[pε+(1−p)ε]
1/ε sij ≤ 0

(8)

where α and β are the sensitivity of decision-makers to profit and loss, respectively, and
the larger the value, the higher the risk they are willing to bear. Generally, it is 0.88, and λ
is generally 2.25. θ and ε represent decision-makers’ attitudes towards gains and losses,
generally 0.61 and 0.69, and p is the index probability [25].

The decision weight function curve is shown in Figure 2, comparing the two decision
weight functions with the linear weight function. The decision weight function increases
weights in the front end and decreases weights in the back end. However, when evaluating
the health status of photovoltaic-storage integrated energy stations, there are no obvious
practical problems related to risk-return and index probability. Therefore, its decision
weight function is replaced by a linear weight. The prospect value function can reflect the
evaluation characteristics of the health status of photovoltaic-storage integrated energy
stations, which means that the sensitivity of the evaluation results varies for different health
degrees and reference value states. The improved comprehensive prospect value function
is then as follows:

Vij =

{
v+Wj =

(
sij
)αWj sij > 0

v−Wj = −λ
(
−sij

)βWj sij ≤ 0
(9)
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However, when the prospect value function is actually used, it is necessary to con-
vert the change in the index value into the interval [−1,1] based on the actual situation.
Traditional index transformation uses the average value as the reference point, resulting
in a fixed reference point that cannot be adjusted according to the actual development
of photovoltaic-storage integrated energy stations. This leads to significant deviations in
evaluation results when using the prospect value function. In response to this issue, this
paper proposes a method based on reference value index transformation, which can be
better applied to the prospect value function. Taking positive indicators as an example,
three situations where the reference point appears are illustrated:
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When the reference point is lower or higher than all evaluation values, the indicator
will be in [0,1] or [−1,0] after transformation, and its transformation formula is as follows:

sij =
xij − x0j

xjmax − x0j
, sij ∈ [1, 0] (10)

sij = −
x0j − xij

x0j − xjmin
, sij ∈ [0,−1] (11)

where x0,j is the reference value of the j-th indicator, and xij is the actual value of the j-th
indicator of the i-th energy station; xjmin and xjmax are the minimum and maximum values
of the j-th indicator. When the reference point is located between all the evaluated values,
its transformation formula is as follows:

sij =


xij−x0j

xjmax−x0,j
, | xjmax − x0,j| > |xjmin − x0,j|

xij−x0j
x0j−xjmin

, | xjmax − x0,j

∣∣∣<∣∣∣xjmin − x0,j

∣∣∣ (12)

After the indicator is transformed based on the reference value, the three situations in
which it is combined with the prospect value function are shown in Figure 2.

4.2. TOPSIS Evaluation Model

Following the transformation of the evaluation data in Section 3.1, the final evaluation
result is obtained by setting the positive and negative ideal sets and using the gray relational
degree model to calculate the gray relational prospect value. In this paper, the worst or best
prospect value is used as the ideal point, and the calculation steps of the gray relational
degree are detailed in Appendix B. Based on the gray correlation degree of each evaluation
object, calculate the fitting degree of each evaluation object.

di =
R+

i
R−

i + R+
i

(13)

The use of the gray relational degree can avoid the situation where, in traditional
TOPSIS, when the sum of positive and negative fitting degrees is 0, the fitting degree
becomes meaningless.

5. Photovoltaic-Storage Integrated Energy Stations Health State Vector
Dynamic Evaluation

The first three chapters focus on static evaluation measurement research, which is used
to reflect the current level of photovoltaic-storage integrated energy stations. However,
static evaluation measures can only reflect the cumulative effect of the object’s development
over a period of time and cannot capture the dynamic development of the entire process. To
comprehensively reflect the dynamic development state of photovoltaic-storage integrated
energy stations, this paper follows the basic principles of ecological niche theory and
proposes a dynamic evaluation method based on positive and negative correlation. We
use the negative and positive correlation degree as the horizontal and vertical coordinates,
resulting in a state vector diagram representing the health state of photovoltaic-storage
integrated energy stations, as shown in Figure 3.

Figure 3 contains state vectors from different time periods. To obtain the synthesized
vector of the developmental state over the entire period, we need to aggregate the state
information from discrete multiple time points. This aggregation is achieved through the
construction of a time-weight vector. The time-weight vector can be subjectively determined
according to the G1 method. The G1 method for time weight considers the actual situation
at each evaluation time point and the concept of “thick present and thin past” [26]. It ranks
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the time points based on their importance and compares the importance of neighboring
time points to establish the importance scale of the neighboring time points:

Rk = θk−1/θk(k = n, n − 1, . . . . . ., 2) (14)

where θk−1 is the weight of the k−1 time point in the importance ranking; θk is the weight
of the k indicator in the importance ranking; Rk is the importance degree between them; n
is a total of n time points. From the interrelationship of the weights of each time point, the
weights of each time point are obtained as:

θn =

[
1 +

n
∑

k=2

(
n
∏

k=2
Rk

)]−1

θk−1 =
n
∏
i=k

(Ri)θn, k = n, n − 1, . . . . . ., 2)
(15)

Then the synthesized vector X can be expressed as follows:

X = ∑
i
(θixi) (16)

where θi is the time weight of the i time point; xi represents the state vector of the i time
point.
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When the health state of photovoltaic-storage integrated energy stations progresses
from state vector x1 to state vector x2, a displacement vector ∆x is defined from the end of
state vector x1 to the tail end of state vector x2 to describe its development and change. The
displacement vector effectively portrays the development process of entities and has two
directions: one points to the second quadrant, signifying positive change, while the other
points to the fourth quadrant, indicating negative change. However, while the displacement
vector can represent state changes over time, its development process diagram can become
overly complex from a global observation perspective. This can make it challenging for
decision-makers to grasp the development direction of the evaluation object, ultimately
impacting their specific judgments and decisions. In this paper, the introduction of the
time vector dimension effectively addresses the global observation issue by converting
the one-dimensional state vector into multiple time dimensions. This approach provides
a more comprehensive view of the development process of the evaluation object’s health.
Each state vector under different time periods can be expressed as follows:

x′i =
√

ixi (17)

where i is the ith year. The dynamic state vector evaluation diagram is shown in Figure 4.
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6. Calculus Analysis

To validate the practicality and scientific rigor of the health state evaluation system
and evaluation model proposed in this paper, four photovoltaic-storage integrated energy
stations (Station A, Station B, Station C, Station D) were selected for empirical validation.
The data for each index derived from simulations and the reference values of the indexes
are provided in Table A1 in the Appendix A.

6.1. Calculation of Weighting Factors

Subjective characteristics are determined using a method based on Pythagorean
fuzzy sets. Five experts were invited to make empirical judgments based on the im-
portance, uncertainty, and insignificance of the indicators, resulting in the Pythagorean
fuzzy set of subjective characteristics, as shown in Figure 5. The subjective characteristics
of each index, based on their importance, insignificance, and hesitation, are as follows:
w1 = [0.067,0.051,0.076,0.067,0.067,0.08,0.067,0.08,0.051,0.067,0.076,0.067,0.067,0.067,0.051].
The analysis reveals that indicators with higher importance are assigned greater weight. In
cases of equal importance, indicators with lower insignificance are assigned higher weights.
The results indicate that experts directly place greater emphasis on indicators reflecting
the health of photovoltaic-storage integrated energy stations, such as reliability of power
supply (B3) and device failure rate (C2).
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The contribution degree characteristic is calculated using the gray relational degree,
quantifying the contribution of each indicator to the overall evaluation result. The gray
relational heat map of the contribution degree is obtained, as shown in Figure 6.
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Based on the quantitative results of each indicator’s contribution, the contribution
weight is determined as w2 = [0.062,0.082,0.067,0.062,0.044,0.061,0.07,0.068,0.07,0.073,0.076,
0.078,0.052,0.077,0.059].

The variability characteristics of the indicators are calculated using the projection
tracing method, reflecting the informativeness of the indicator data. The optimization
of the projection tracing method with the improved whale algorithm yields the opti-
mal projection vector w3 = [0.042,0.115,0.095,0.022,0.048,0.021,0.056,0.08,0.048,0.054,0.065,
0.109,0.075,0.1,0.069].

The sensitivity properties of the indicators are calculated using principal component
analysis, describing the impact of changes in uncertainty factors on expected results. The
principal components are determined by selecting the direction of the contribution of
variance greater than 90% and are calculated as follows.

X = 0.491F1 + 0.303F2 + 0.205F3 (18)

Finally, the sensitivity characteristics are w4 = [0.064,0.057,0.073,0.068,0.064,0.068,0.069,
0.059,0.064,0.074,0.065,0.074,0.061,0.069,0.071].

The characteristics of each indicator are taken as the main component of the game,
and optimization is performed using the improved whale algorithm to maximize bal-
anced combinations and achieve common interests. The optimal weight is determined as
w = [0.063,0.072,0.073,0.064,0.056,0.065,0.068,0.072,0.058,0.071,0.072,0.077,0.062,0.072,0.065].

6.2. Comprehensive Evaluation and Dynamic Evaluation

Due to the unique characteristics of health status evaluation for photovoltaic-storage
integrated energy stations, it is necessary to convert the evaluation values to meet the
specific requirements of health assessment. Please refer to Appendix F for reference values
of each index. Each evaluation object index is transformed according to the theory presented
in Section 4.1, resulting in a circular heat map as shown in Figure 7.

After obtaining the various evaluation values of the photovoltaic-storage integrated
system, the evaluation model in Section 4.2 is applied to obtain the positive and negative
correlations of each energy station. From Figure 8b, it can be seen that the state vector of
station D, with the highest positive correlation of 0.764 and the lowest negative correlation
of 0.646, is located at the leftmost end of the spectrum, indicating a better state of health in
this evaluation. Conversely, the state vector of station A, with the lowest positive correlation
of 0.703 and the highest negative correlation of 0.712, is located at the rightmost end of the
spectrum, indicating a worse state of health in this evaluation. The state vectors of energy
stations B and C are closer to each other, and their health states are also closer to each other,
falling between the two extremes of stations A and D.
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Analyzing Figure 8a, it can be seen that energy station A is penalized due to its poor
performance in low-carbon operation and system health dimensions, with health indicators
C4, C2, B3, and A2 lower than the reference values, resulting in the lowest health status
among the four energy stations. Energy station B is penalized for indicators D2, D1, C2,
and B2, but its performance in low-carbon operation and equipment health dimensions is
better, resulting in overall performance that is not too poor. Energy station C performs well
in both energy supply reliability and system health dimensions, but deviations in A1, C1,
and C2 from the reference values impact its overall performance. Energy station D, while
not outstanding in individual dimensions, maintains a balance across all dimensions, with
better performance in the weighted indexes, resulting in the highest health degree.

To further verify the convenience of global observation based on state vectors, the
health state vectors of station D at four time points are synthesized. The dynamic state
vector evaluation map of energy station D is obtained, as shown in Figure 9. After time
point 1, the displacement vector continuously shifts upward, with increasing positive
correlation and decreasing negative correlation, indicating continuous improvement. This
graphical representation allows for a more intuitive observation of the global development
process of station D.
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6.3. Comparative Analysis of Evaluation Results

To validate the validity and scientific nature of the comprehensive multi-indicator
characteristic assignment method proposed in this paper, the assignment results obtained
from it are compared with those obtained from the objective assignment methods Coef-
ficient of Variation (CV) method and Sequential Relationship Analysis (G1 method), as
shown in Figure 10.
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As seen in Figure 10, the multi-indicator characteristic assignment method proposed
in this paper, compared to the other two assignment methods, takes into account the impor-
tance, contribution, difference, and sensitivity of multiple characteristics. Consequently, the
assignment results not only emphasize key indicators but also avoid excessive bias toward
specific indicators. Conversely, the CV method focuses on highlighting the characteristics
of the indicator data, resulting in significant assignment fluctuations and excessively high
weights for some indicators, leading to biased results. The subjective weighting method G1
method solely relies on the subjective weight of experts and disregards the characteristics
of the indicator data. This leads to a substantial difference between the weights of the most
and least important indicators. Given these observations, both single assignment methods
introduce bias into the results, which can lead to analyses that do not align with reality.

The evaluation transformation method proposed in this paper, which integrates the
transformation of reference values and the degree of health sensitivity, proves to be practical.
When compared to the traditional linear evaluation value transformation, the evaluation
results are presented in Table 2.
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Table 2. Results of different evaluation methods.

Evaluation Methodology
Sequencing of Energy Stations

A B C D

Method of this paper 4 3 2 1
Linear transformation + linear evaluation [27] 4 2 3 1

Linear transformation + Grey-TOPSIS [25] 4 2 3 1
Linear transformation + TOPSIS [21] 4 2 3 1

The main difference between the model proposed in this paper and the other three
traditional methods revolves around the health rankings of energy stations B and C. This
discrepancy arises because the method in this paper is more sensitive to evaluation val-
ues below the health value, resulting in larger penalties. Additionally, since traditional
evaluation methods solely rely on the average value as the reference point, values below
the reference point are linearly calculated without considering actual health requirements,
which does not align with practical evaluation needs. Conversely, the method proposed in
this paper aligns with the ranking of energy stations A and D in all four methods, indicating
its effectiveness in assessing the health levels of photovoltaic-storage integrated energy
stations. When all index values are lower than the reference value, the proposed method,
integrating the prospect theory, exhibits higher sensitivity compared to traditional methods,
aiding in the analysis of each energy station’s health level. Moreover, when the reference
value exceeds the evaluation value, the proposed method demonstrates greater sensitivity
than traditional methods. Further detailed analysis is available in Appendix D.

The dynamic evaluation method proposed in this paper incorporates the concept
of “thick today but thin in the past.” It uses the time weight G1 method to obtain the
time-weight vector [0.3811, 0.2932, 0.1954, 0.1303]. Comparing this obtained time-weight
vector with the averaged time-weight vector yields the vector map of different health states,
as shown in Figure 11.
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When compared to the average time-weight method, the time weight G1 method
introduced in this paper considers recent performance more significantly, resulting in a
better composite vector, especially when there is a notable difference between recent and
past performance. The average time-weight method assigns equal importance to each time
point, which may not adequately reward better recent performance, leading to weaker
results compared to the time weight G1 method and increasing deviation. Consequently,
the method proposed in this paper is more practical and reliable.

7. Conclusions

This paper introduces a vector dynamic evaluation approach for assessing the health
state of photovoltaic-storage integrated energy stations, based on prospect theory and refer-
ence value transformation. This method enables a scientific evaluation of the actual health
status of photovoltaic-storage integrated energy stations and carries practical significance
for their safe and efficient operation. The conclusions are as follows:
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(1). The health state evaluation system for photovoltaic-storage integrated energy stations
proposed in this paper considers the needs of both low carbon and healthy operation.
It constructs health evaluation indices at both system and equipment levels, effectively
covering health assessment at all levels of photovoltaic-storage integrated energy
stations.

(2). The multi-indicator characteristic assignment method introduced in this paper ad-
dresses the limitations of traditional assignment methods that solely focus on in-
dividual indicator characteristics. It synthesizes multiple characteristics, including
subjective importance, contribution, difference, and sensitivity, employing game
theory to integrate these features.

(3). The index transformation method based on prospect theory and reference values
proposed in this paper adapts index values according to actual reference values,
enhancing the adaptability and practicality of health assessment.

(4). The dynamic evaluation based on state vectors, incorporating the concept of “thick
today but thin in the past,” utilizes the time-weight vector to consider the development
state over multiple time periods. It effectively addresses global and trend observation
issues by incorporating the time dimension.

(5). This paper provides a comprehensive evaluation of photovoltaic-storage energy
stations from the perspective of key indicators, but it does not consider the relationship
between key parameters at the mechanistic level and operational health status. Future
research could focus on analyzing the health status of photovoltaic-storage integrated
energy stations from a mechanistic perspective.
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Appendix A

Table A1. Description of variables in the text.

Symbol Meaning Symbol Meaning

A1 the renewable energy utilization
rate A2 the carbon emission reduction

A3 the energy conversion efficiency B1 the demand-side satisfaction

B2 the qualification rate of power
supply quality B3 the reliability of power supply

C1 the average device overload rate C2 the device failure rate

C3 the coupling device conversion
rate C4 the device aging degree

D1 the photovoltaic module health
index D2 the energy storage system health

index

D3 the grid connection and
operational health index D4 the system loss
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Table A1. Cont.

Symbol Meaning Symbol Meaning

W the final fusion feature weight D D types of index

ai

the linear combination coefficient
of the i-th type of index

characteristics
wi

the weight of the i-th type of
index characteristics

F−1
the inverse cumulative

distribution function of the
Cauchy distribution

xij
the location point of the whale

before mutation

itmax
the maximum number of

iterations t the current number of iterations

Vij
the comprehensive prospect

value function α
the sensitivity of

decision-makers to profit

β
the sensitivity of

decision-makers to loss θ
the decision-makers’ attitudes

towards gains

ε
the decision-makers’ attitudes

towards losses p the index probability

v+(−) the prospect value function z+(−) the decision weight function

x0,j
the reference value of the j-th

indicator xij

the actual value of the j-th
indicator of the i-th energy

station

xjmin
the minimum values of the

j-th indicator xjmax
the maximum values of the j-th

indicator

Sij the transformation formula di
the fitting degree of each

evaluation object

Ri
+(−)

the correlation degree of each
evaluation object with the

positive and negative ideal sets
θk−1

the weight of the k−1 time point
in the importance ranking

θk
the weight of the k indicator in

the importance ranking Rk the importance degree

X the synthesized vector θi
the time weight of the i time

point

xi the state vector of the i time point T1
the actual power consumption of

the photovoltaic system

T0 the total electricity consumption C1
the carbon emissions during the

construction stage

C2

the carbon emissions during the
project’s operation and

maintenance stage
C3

the carbon emissions during
maintenance stage and the
equipment recycling stage

ET
the electricity input to the

traction substation hT the peak sunshine

Pe
the output power of photovoltaic

arrays Pmax
the peak value of the original
load curve of the substation

PPV.max the peak load curve PPV
the active power obtained by the
substation from the power grid

P the original active power before
connection I(t) indicator function

SAIDI
the average failure time of the

photovoltaic-storage integrated
energy station

fi
whether the i-th device is

overloaded

N total number of equipment in the
optical storage energy station Ti

the outage time of the i-th
equipment due to failure

T0 the planned operation time ti the current service life
µA(x) the degree of importance vA(x) the degree of unimportance

πA(x) the degree of uncertainty or
hesitancy dPFD(a1,a2)

the difference in importance of
each indicator relative to the

origin of the measure

w1,j
the subjective characteristic

weights φj
the convergence degree of each

indicator
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Table A1. Cont.

Symbol Meaning Symbol Meaning

w2,i the contribution of each indicator Sz
the standard deviation of the

projection value

Zi the projection value Dz
the local density of the projection

value
Z the projected mean value of Zi R the radius of the local density

rij
the distance separating the ith

sample from the jth sample u(R-rij) the sign step function

w3,i the indicator variance weights Si
the composite rating value of the

energy station

Γ′ the principal component
variance contributions Y the each principal component

rzj

the linear weighting coefficient
of the jth indicator in the z

principal component
w4,i

the sensitivity characteristic
weights

s+
0,j the best value of the jth indicator s−0,j the worst value of the j indicator

r+
ij

the correlation coefficient
between the jth indicator of the

ith evaluation object and the
positive ideal set

r− ij

the correlation coefficient
between the jth indicator of the

ith evaluation object and the
negative ideal set

Appendix B

a. Energy saving and low carbon

(1). Renewable energy utilization rate

A1 =
T1

T0
× 100% (A1)

where A1 represents the renewable energy utilization rate, with T1 denoting
the actual power consumption of the photovoltaic system in the traction power
supply system and T0 representing the total electricity consumption in the
traction power supply system.

(2). Carbon emission reduction

A2 =C1 + C2 + C3 (A2)

C1, C2, and C3 respectively represent the carbon emissions during the construc-
tion stage of the photovoltaic-storage integrated system project, the project’s
operation and maintenance stage, and the equipment recycling stage.

(3). Energy conversation efficiency
The photovoltaic system energy efficiency ratio is defined as the ratio of the
system’s input energy under ideal conditions to the net output energy of the
photovoltaic array under actual operating conditions.

A3 =
ET

Pe × hT
(A3)

A3 is the average system efficiency of the energy station over time period T; ET
represents the electricity input to the traction substation by the energy station
during time period T (kWh); hT is the peak sunshine duration irradiating the
photovoltaic array during time period T (hours);Pe is the output power of
photovoltaic arrays.
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b. Reliable power supply

1. Demand-side satisfaction
This paper takes into account the demand-side satisfaction of the traction
power supply station with the photovoltaic-storage integrated energy sta-
tion, defining demand-side satisfaction (B1) and quantifying it through active
power relief and peak clipping rates resulting from the photovoltaic-storage
integrated energy station’s connection

B1 =
1
2
× (

PPV·max

Pmax
+

P − PPV

P
)× 100% (A4)

where Pmax is the peak value of the original load curve of the substation,
PPV·max is the peak load curve after the photovoltaic-storage integrated energy
stations is connected, PPV is the active power obtained by the substation from
the power grid after the photovoltaic-storage integrated energy stations is
connected, and P is original active power before connection.

2. Qualification rate of energy supply quality
The bus voltage qualification rate of the photovoltaic energy storage system
is defined as the proportion of time that the bus voltage falls within the set
qualification range.

B2 =

T∫
0

I(t)dt

T
× 100% (A5)

T represents the total monitoring time, and I(t) is an indicator function deter-
mining whether the bus voltage at time t falls within the qualified range (1 if
within, 0 if not).

3. Reliability of energy supply

B3 = 1 − SAIDI
8760

× 100% (A6)

B3 represents the energy supply reliability rate of the photovoltaic-storage
integrated energy stations, and SAIDI denotes the average failure time of the
photovoltaic-storage integrated energy station.

c. Device health

1. Average device overload rate

r =
1
T

n

∑
i=1

( fi) (A7)

T is the time used to calculate the overload rate of the photovoltaic-storage
integrated energy stations; fi indicates whether the i-th device is overloaded,
and n is the average overload rate of the photovoltaic-storage integrated energy
stations equipment.

2. Device failure rate
Device failure rate is an indicator that cannot be ignored for equipment health.
The average equipment failure rate during working hours (C2) is a crucial
indicator for equipment health. Its formula is

C2 =

∑
i
(Ti)

NT0
(A8)
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where N is the total number of equipment in the photovoltaic-storage inte-
grated energy stations, Ti represents the outage time of the i-th equipment due
to failure; T0 represents the planned operation time.

d. System health

1. Subsystem health index

sj
r = 10

1
n

n

∑
i=1

(
Ti − ti

Ti
) (A9)

Ti represents the specified service life of the i-th equipment in the power supply
system, ti is the current service life of the i-th equipment in the power supply
system, and n is the total number of equipment in the power supply system.
When j takes p, b, or e, they respectively represent photovoltaic modules,
energy storage systems, and grid connection equipment.

Appendix C

a. Subjective properties based on Pythagorean fuzzy sets

First, we invite a panel of c experienced experts to assess the importance of the
indicators in the health status evaluation system of photovoltaic-storage integrated energy
stations. Pythagorean fuzzy sets are constructed for each indicator in three situations:
important, unimportant, and uncertain. Each indicator’s importance is represented as a
Pythagorean fuzzy set

A = {⟨x, µA(x), vA(x)⟩|x ∈ X} (A10)

where µA(x) represents the degree of importance, vA(x) represents the degree of unimpor-
tance, and 0 ≤ µ2

A(x) +v2
A(x) ≤ 1. Additionally, the degree of uncertainty or hesitancy,

πA(x), can be expressed as

πA(x) =
√

1 − µ2
A(x)− v2

A(x), ∀x ∈ X (A11)

For representation, a = (µa, va) is a Pythagorean fuzzy number (PFN), and the subjective
importance of each indicator can be represented by one PFN.

Second, using the PFN algorithm, we calculate the difference in importance measure
dPFD(a1,a2) between two different PFNs, a1 = (µa1, va1) and a2 = (µa2, va2)

dPFD(a1, a2) =
1
2 (
∣∣(µa1)

2 − (µa2)
2∣∣+ ∣∣(va1)

2 − (va2)
2∣∣

+|(πa1)
2 − (πa2)

2∣∣) (A12)

According to the theory of hesitancy, we establish that the most important indicator
PFN = (1, 0), the least important indicator PFN = (0, 1), and the least important indicator is
set as the origin of the importance measurement a0 = (0, 1). The difference in importance of
each indicator relative to the origin of the measure can then be determined.

dPFD(ai, a0) =
1
2
((µai)

2 +
∣∣(va1)

2 − 1
∣∣+(πa1)

2) (A13)

Finally, we obtain the subjective characteristic weights w1,j for each indicator from the
importance measure of each indicator, which is calculated as follows:

w1,j =
dPFD(aj, a0)

n
∑

j=1
[dPFD(aj, a0)]

(A14)

b. Contribution characterization
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First, the reference sequence must be determined. The data for each energy station
evaluation index are standardized within the range of [0,1] for each evaluation value.
The reference sequence assumes the maximum value [1,1,. . .,1]T

n×1, and the gray-scale
correlation for each indicator can be calculated:

∆ij =
∣∣xio − xij

∣∣ (A15)

φij =

min
i

min
j

∆ij + λmax
i

max
j

∆ij

∆ij + λmax
i

max
j

∆ij
(A16)

where λ is the resolution coefficient, usually set to 0.5. After obtaining the correlation
degree of each indicator value, we calculate the convergence degree of each indicator.

φj =
1
n

n

∑
i=1

(φij) (A17)

where n indicates the total number of energy station evaluation objects. It is normalized to
obtain the characteristic weights w2,i for the contribution of each indicator:

w2,j =
φj

m
∑

j=1
(φj)

(A18)

where m represents the total number of evaluation indicators.

c. Difference degree characterization

Assuming the projection direction vector b, the projected value of sample i projected
in the b direction is Zi = ∑b(j)xij. With the idea of “small concentration, big divergence,”
the target projection function can be constructed:

Q(b) = SzDz (A19)

where Sz denotes the standard deviation of the projection value Z, reflecting the projection
characteristics of large dispersion, while Dz denotes the local density of the projection value
Z, reflecting the projection characteristics of small concentration. The specific calculation
formula is:

Sz =

√√√√√ n
∑

i=1

(
Zi − Z

)
n − 1

(A20)

Dz =
n

∑
i=1

m

∑
j=1

[(
R − rij

)
u
(

R − rij
)]

(A21)

where Zi denotes the projected value of the ith sample, Z denotes the projected mean value
of Zi, R denotes the radius of the local density, typically set to 0.1Sz, rij represents the
distance separating the ith sample from the jth sample, and u(R − rij) represents the sign
step function. The objective function and constraint constraints can then be obtained as
follows: 

maxQ(b) = SzDz

s.t.
m
∑

j=1
[b2(j)] = 1 (A22)
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The optimal projection vector can be normalized to obtain the indicator variance
weights w3,i:

w3,j =
b(j)

m
∑

j=1
[b(j)]

(A23)

d. Sensitivity characterization

The principal components are first obtained through the variance contribution ratio,
then the composite rating value of the energy station can be obtained from the linear
weighting of each principal component.

Si = Γ′Y =
k

∑
z
(λzYz), i = 1, 2, · · · , n (A24)

where Γ′ = (λ1, λ2,. . ., λk) represents the principal component variance contributions, and
Y = (Y1,Y2,. . .,Yk) represents each principal component. The composite value can also be
expressed as

Si = (λ1, λ2, · · · , λk)


R1Xi
R2Xi

...
RkXi

 =
k

∑
z=1

[λz

m

∑
j=1

(rzjxij)] (A25)

where rzj represents the linear weighting coefficient of the jth indicator in the z principal
component. Equation (A24) reflects the linear weighting relationship between the com-
prehensive evaluation value and the indicators. According to the principle of sensitivity
calculation, the sensitivity of the jth indicator can be obtained:

sj =

∣∣∣∣∣ ∂Si
∂xij

∣∣∣∣∣ = k

∑
z=1

(λz

∣∣∣∣∣ ∂Yz

∂xij

∣∣∣∣∣) = k

∑
z=1

(λz
∣∣rzj

∣∣) (A26)

After normalization, we obtain the sensitivity characteristic weights w4,i.

w4,j =
sj

m
∑

j=1
(sj)

(A27)

e. Grey-TOPSIS model calculation steps

The worst or best foreground value is used as the ideal point in the text.{
S+

0 = [s+0,1, s+0,2, . . . , s+0,j, .., s+0,m]

S−
0 = [s−0,1, s−0,2, . . . , s−0,j, . . . , s−0,m]

(A28)

where s+
0,j denotes the best value of the jth indicator, and s−0,j denotes the worst value of

the j indicator. After defining the positive and negative ideal sets, we calculate the positive
and negative correlation coefficients based on Equation (A29).

r+(−)
ij =

min
n

min
m

∣∣∣S+(−)
0,j−Sij

∣∣∣∣∣∣S+(−)
0,j−Sij

∣∣∣+ρmax
n

max
m

∣∣∣S+(−)
0,j−Sij

∣∣∣
+

ρmax
n

max
m

∣∣∣S+(−)
0,j−Sij

∣∣∣∣∣∣S+(−)
0,j−Sij

∣∣∣+ρmax
n

max
m

∣∣∣S+(−)
0,j−Sij

∣∣∣
(A29)

where r+
ij denotes the correlation coefficient between the jth indicator of the ith evaluation

object and the positive ideal set, while r−ij denotes the correlation coefficient between the
jth indicator of the ith evaluation object and the negative ideal set. The discrimination
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coefficient, ρ, which is generally set to 0.5, is used. Subsequently, the correlation degree of
each evaluation object with the positive and negative ideal sets is obtained.

R+
i = 1

m

m
∑

j=1
(r+ij )

R−
i = 1

m

m
∑

j=1
(r−ij )

(A30)

Appendix D

When the reference value is higher than the evaluation value, take index C2 as an
example. The comparison results after conversion are shown in Figure A1.

Table A2. Results of the conversion of indicator values.

Conversion Method
Energy Stations

A B C D

Raw data 0.85 1.03 1.73 0.52
Method in this paper −0.502 −0.855 −2.25 0.0975
Linear transformation 0.725 0.579 0 1

Define indicator sensitivity as

Si =
|di − dmax|

100%
(A31)

where Si is the evaluation sensitivity of sort i; di denotes the conversion value of the index
of sort i; and dmax the maximum value of the index after standardization, then the result of
the sensitivity of each sorted object is shown in Figure A1.
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Figure A2. Flowchart of dynamic assessment.

Appendix F

Table A3. Mean failure frequency of critical equipment.

Evaluation Index A B C D

Renewable energy utilization rate (A1/%) 90.67 99.82 81.42 88.62
Carbon emission reduction (A2/t) 2076.38 2231.43 2240.91 2251.19

Energy conversation efficiency (A3/%) 64.90 73.00 62.47 75.66
Demand-side satisfaction (B1/%) 99.27 98.11 96.75 97.57

Qualification rate of power supply quality (B2/%) 88.12 84.60 84.39 90.12
Reliability of power supply (B3/%) 96.85 95.56 98.90 96.95

Average device overload rate (C1/%) 20.93 23.64 37.84 38.12
Device failure rate (C2/%) 0.75 1.13 1.63 0.62

Coupling device conversion rate (C3/%) 72.98 74.63 72.95 69.02
Device aging degree (C4) 2.32 1.48 2.23 1.48

Photovoltaic module health indicators (D1) 8.67 7.12 8.49 8.86
Energy storage system health indicators (D2) 7.67 7.46 7.76 7.77

Grid connection and operation health indicators (D3) 7.87 7.67 8.32 7.90
System loss (D4) 3.78 3.15 3.28 3.13

Number of maintenance (D5) 5 4 6 4
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