Evaluation of the Environmental Impact and Energy Utilization Efficiency of Wastewater Treatment Plants in Tumen River Basin Based on a Life Cycle Assessment + Data Envelopment Analysis Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Power Scheme Selection
2.2. Scenario Settings for Different Power Structures
2.3. Life-Cycle Assessment of the WWTP
2.3.1. Goal and Scope Definitions
2.3.2. Life Cycle Inventory
2.3.3. Life Cycle Impact Assessment
2.4. Data Envelopment Analysis
2.5. Three-Step LCA+DEA Methodological Framework
3. Results
3.1. LCA Characterized Results for the WWTP
3.2. LCA Analysis of the Five Power Schemes
3.3. Normalization Results
3.4. Sensitivity Analysis
3.5. DEA Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Zheng, Y.; Zhou, K.; Cheng, R.; Zheng, X.; Ma, Z.; Shi, L. Carbon emission efficiency evaluation of wastewater treatment plants: Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 76606–76616. [Google Scholar] [CrossRef] [PubMed]
- Gong, L. Study on Upgrading Process Plan of the First Sewage Treatment Plant in Gaoming District, Foshan; South China University of Technology: Guangzhou, China, 2021. [Google Scholar]
- Lu, J. Carbon Footprint and Emission Reduction Potential Analysis of China’s Wastewater Treatment Industry. Master’s Thesis, University of Science and Technology of China, Hefei, China, 2019. [Google Scholar]
- Kong, Z.; Xue, Y.; Zhang, Y.; Hao, T.; Chen, H.; Sun, J.; Pan, Y.; Li, D.; Li, Y.; Huang, Y. Insights into the carbon neutrality for the treatment process engineering of municipal wastewater by anaerobic membrane bioreactor integrated with partial nitritation-anammox: CO2 reduction and energy recovery. J. Water Process. Eng. 2022, 49, 102996. [Google Scholar] [CrossRef]
- Hou, H.; Zhang, S.; Guo, D.; Su, L.; Xu, H. Synergetic benefits of pollution and carbon reduction from fly ash resource utilization—Based on the life cycle perspective. Sci. Total Environ. 2023, 903, 166197. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Deng, S.H.; You, N.; Bai, Y.; Jin, P.; Han, J. Pathways of wastewater treatment for resource recovery and energy minimization towards carbon neutrality and circular economy: Technological opinions. Front. Environ. Chem. 2023, 4, 1255092. [Google Scholar] [CrossRef]
- Rui, Q.; Ye, Q.; Li, J.; Wang, Y.; Yu, A. Investigation on energy-saving extractive distillation for recovering ethanol and 1,4-dioxane from wastewater. Process Saf. Environ. Prot. 2023, 170, 498–512. [Google Scholar] [CrossRef]
- Zhu, X.; Lei, C.; Qi, J.; Zhen, G.; Lu, X.; Xu, S.; Zhang, J.; Liu, H.; Zhang, X.; Wu, Z. The role of microbiome in carbon sequestration and environment security during wastewater treatment. Sci. Total Environ. 2022, 837, 155793. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, Y.; Yin, T.-M.; Zhao, L.; Xu, X.-J.; Xing, D.-F.; Zhang, R.-C.; Lee, D.-J.; Ren, N.-Q.; Chen, C. Prospect of denitrifying anaerobic methane oxidation (DAMO) application on wastewater treatment and biogas recycling utilization. Sci. Total Environ. 2023, 905, 167142. [Google Scholar] [CrossRef] [PubMed]
- Sheikholeslami, Z.; Ehteshami, M.; Nazif, S.; Semiarian, A. The environmental assessment of tertiary treatment technologies for wastewater reuse by considering LCA uncertainty. Process. Saf. Environ. Prot. 2022, 168, 928–941. [Google Scholar] [CrossRef]
- Donald, R.; Boulaire, F.; Love, J.G. Contribution to net zero emissions of integrating hydrogen production in wastewater treatment plants. J. Environ. Manag. 2023, 344, 118485. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, Y.; Zou, R.; Xu, M.; Su, Y.; Angelidaki, I.; Zhang, Y. Green electricity-driven simultaneous ammonia recovery and in-situ upcycling for microbial protein production. Chem. Eng. J. 2022, 430, 132890. [Google Scholar] [CrossRef]
- Oyebanji, M.O.; Kirikkaleli, D. Green technology, green electricity, and environmental sustainability in Western European countries. Environ. Sci. Pollut. Res. 2022, 30, 38525–38534. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Ren, W. Release of China Renewable Energy Development Report 2022 and Pumped Storage Industry Development Report. Hydropower 2023, 49, 128. [Google Scholar]
- National Bureau of Statistics. Energy Supply Guarantees Strong Consumption Structure Continues to Optimize. China Information News, 001. 2022. Available online: http://www.ce.cn/xwzx/gnsz/gdxw/202207/15/t20220715_37873554.shtml (accessed on 28 November 2023).
- Wu, C. Research on Optimal Operation of Integrated Energy System Including Static Safety Analysis. Master’s Thesis, Jilin University, Changchun, China, 2022. [Google Scholar] [CrossRef]
- Alfonsín, C.; Lebrero, R.; Estrada, J.M.; Muñoz, R.; Kraakman, N.; Feijoo, G.; Moreira, M.T. Selection of odour removal technologies in wastewater treatment plants: A guideline based on Life Cycle Assessment. J. Environ. Manag. 2015, 149, 77–84. [Google Scholar] [CrossRef]
- Hao, X.; Li, J.; van Loosdrecht, M.C.M.; Jiang, H.; Liu, R. Energy recovery from wastewater: Heat over organics. Water Res. 2019, 161, 74–77. [Google Scholar] [CrossRef]
- Lorenzo-Toja, Y.; Vázquez-Rowe, I.; Chenel, S.; Marín-Navarro, D.; Moreira, M.T.; Feijoo, G. Eco-efficiency analysis of Spanish WWTPs using the LCA + DEA method. Water Res. 2015, 68, 651–666. [Google Scholar] [CrossRef]
- Behjat, M.; Svanström, M.; Peters, G. A meta-analysis of LCAs for environmental assessment of a conceptual system: Phosphorus recovery from dairy wastewater. J. Clean. Prod. 2022, 369, 133307. [Google Scholar] [CrossRef]
- Khaki, E.; Boleydei, H.; Abyar, H.; Nowrouzi, M. Integrating eco-environmental assessment with energy recovery for petrochemical wastewater treatment technologies: A transition towards green and sustainable management. J. Water Process. Eng. 2023, 55, 104103. [Google Scholar] [CrossRef]
- Pintilie, L.; Torres, C.M.; Teodosiu, C.; Castells, F. Urban wastewater reclamation for industrial reuse: An LCA case study. J. Clean. Prod. 2016, 139, 1–14. [Google Scholar] [CrossRef]
- Manoukian, L.; Metson, G.; Hernández, E.M.; Vaneeckhaute, C.; Frigon, D.; Omelon, S. Forging a cohesive path: Integrating life cycle assessments of primary-origin phosphorus fertilizer production and secondary-origin recovery from municipal wastewater. Resour. Conserv. Recycl. 2023, 199, 107260. [Google Scholar] [CrossRef]
- Rashid, S.S.; Liu, Y.-Q.; Zhang, C. Upgrading a large and centralised municipal wastewater treatment plant with sequencing batch reactor technology for integrated nutrient removal and phosphorus recovery: Environmental and economic life cycle performance. Sci. Total Environ. 2020, 749, 141465. [Google Scholar] [CrossRef]
- Parravicini, V.; Nielsen, P.H.; Thornberg, D.; Pistocchi, A. Evaluation of greenhouse gas emissions from the European urban wastewater sector, and options for their reduction. Sci. Total Environ. 2022, 838, 156322. [Google Scholar] [CrossRef]
- Polruang, S.; Sirivithayapakorn, S.; Na Talang, R.P. A comparative life cycle assessment of municipal wastewater treatment plants in Thailand under variable power schemes and effluent management programs. J. Clean. Prod. 2018, 172, 635–648. [Google Scholar] [CrossRef]
- Liu, C.; Lv, J.; Zhao, W.; Xu, Q.; Jin, Y. Development scenario and environmental benefit analysis of China’s future power generation industry under two models. Environ. Sci. 2022, 43, 3375–3385. [Google Scholar] [CrossRef]
- Chai, C.; Zhang, D.; Yu, Y.; Feng, Y.; Wong, M.S. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China. Water 2015, 7, 918–938. [Google Scholar] [CrossRef]
- Sun, X. Study on Environmental Impact Assessment and Energy Recovery Optimization of Wastewater Treatment Plants Based on LCA; Yanbian University: Yanbian, China, 2021. [Google Scholar] [CrossRef]
- Jaiswal, K.K.; Chowdhury, C.R.; Yadav, D.; Verma, R.; Dutta, S.; Jaiswal, K.S.; Sangmesh, B.; Karuppasamy, K.S.K. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus 2022, 7, 100118. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Huang, Z.M.; Sun, D.B. Relations between half-space and finitely generated cones in polyhedral cone-ratio DEA models. Int. J. Syst. Sci. 2007, 22, 2057–2077. [Google Scholar] [CrossRef]
- Tapia, J.A.; Salvador, B.; Rodriguez, J.M. Data envelopment analysis with estimated output data: Confidence intervals efficiency. Measurement 2020, 152, 107364. [Google Scholar] [CrossRef]
- Tan, Z.; Ji, A. Life cycle assessment of biogas power generation from livestock and poultry manure in Tangshan City. Energy Conserv. 2022, 9, 61–63. [Google Scholar]
- Li, K. Regional Suitability Evaluation and Empirical Study on Energy Environmental Economic Benefits of Biomass Power Generation Industry; Jilin University: Changchun, China, 2019. [Google Scholar]
- Cai, X. Current situation and application prospect of biomass power generation in China. Sci. Technol. Innov. 2019, 28, 195–196. [Google Scholar]
- Dong, S.; Li, Y.; Chi, C.; Liu, Z. Research progress on uncertainty analysis of wastewater treatment system based on Activated sludge mathematical model (ASM_s). Prog. Chem. Ind. 2017, 36, 4651–4657. [Google Scholar] [CrossRef]
- Baş, G.O.; Köksal, M.A. Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants. Renew. Energy 2022, 196, 579–597. [Google Scholar] [CrossRef]
- Silalertruksa, T.; Gheewala, S.H.; Pongpat, P.; Kaenchan, P.; Permpool, N.; Lecksiwilai, N.; Mungkung, R. Environmental sustainability of oil palm cultivation in different regions of Thailand: Greenhouse gases and water use impact. J. Clean. Prod. 2017, 167, 1009–1019. [Google Scholar] [CrossRef]
Unit | Value | ||
---|---|---|---|
Input | Electricity consumption | kWh/d | 233.64 |
Chemical-PAC | kg/d | 46.60 | |
Chemical-PAM | kg/d | 0.24 | |
Chemical-FeCl3 | kg/d | 52.25 | |
Output | Sludge | kg/d | 174.81 |
COD | kg/d | 18.90 | |
BOD | kg/d | 3.75 | |
TN | kg/d | 5.38 | |
TP | kg/d | 0.22 | |
NH3-N | kg/d | 0.84 | |
Methane | kg/d | 3.85 | |
N2O | kg/d | 0.48 |
Total Value | Wastewater Treatment Process | Electricity Consumption | Chemical Consumption | |
---|---|---|---|---|
GWP (kg CO2 eq.) | 324.51 | 108 | 153 | 63.51 |
EP (kg Phosphate eq.) | 4.3098 | 4.16 | 0.0499 | 0.0999 |
AP (kg SO2 eq.) | 1.43 | 0.24 | 0.64 | 0.55 |
HTP (kg DCB * eq.) | 64.65 | 0.58 | 52.74 | 11.33 |
POCP (kg Ethene eq.) | 0.1479 | 0.0365 | 0.0625 | 0.0489 |
Environmental Impact | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|
GWP (kg CO2 eq.) | 153 | 113 | 73.00 | 45.40 | 25.60 |
EP (kg Phosphate eq.) | 0.0499 | 0.0384 | 0.0284 | 0.0222 | 0.0161 |
AP (kg SO2 eq.) | 0.64 | 0.46 | 0.30 | 0.18 | 0.08 |
HTP (kg DCB eq.) | 52.74 | 38.3 | 23.1 | 12.2 | 3.51 |
POCP (kg Ethene eq.) | 0.0625 | 0.0457 | 0.0259 | 0.0137 | 0.00439 |
SE | Coal Power | Photovoltaic Power | Wind Power | Hydro Power | Nuclear Power | Biomass Power | Gas Power | |
---|---|---|---|---|---|---|---|---|
GWP | NSE | −8.76% | −0.03% | −0.02% | −0.02% | −0.00% | −0.70% | −0.48% |
PSE | 8.76% | 0.03% | 0.02% | 0.02% | 0.00% | 0.70% | 0.48% | |
AP | NSE | −9.39% | −0.02% | −0.01% | −0.00% | −0.00% | −0.47% | −0.11% |
PSE | 9.39% | 0.02% | 0.01% | 0.00% | 0.00% | 0.47% | 0.11% | |
EP | NSE | −8.25% | −0.05% | −0.01% | −0.00% | −0.00% | −1.37% | −0.30% |
PSE | 8.25% | 0.05% | 0.01% | 0.00% | 0.00% | 1.37% | 0.30% | |
HTP | NSE | −9.64% | −0.04% | −0.08% | −0.04% | −0.01% | −0.17% | −0.02% |
PSE | 9.64% | 0.04% | 0.08% | 0.04% | 0.01% | 0.17% | 0.02% | |
POCP | NSE | −9.17% | −0.01% | −0.00% | −0.00% | −0.00% | −0.64% | −0.17% |
PSE | 9.17% | 0.01% | 0.00% | 0.00% | 0.00% | 0.64% | 0.17% |
DMU | Technical Efficiency | Pure Technical Efficiency | Scale Efficiency |
---|---|---|---|
Scenario 1 | 1.0000 | 1.0000 | 1.0000 |
Scenario 2 | 0.7386 | 0.9984 | 0.9984 |
Scenario 3 | 0.4771 | 0.9954 | 0.9983 |
Scenario 4 | 0.2967 | 0.9936 | 0.9967 |
Scenario 5 | 0.1673 | 0.9921 | 0.9952 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Sun, B.; Piao, W.; Jin, M. Evaluation of the Environmental Impact and Energy Utilization Efficiency of Wastewater Treatment Plants in Tumen River Basin Based on a Life Cycle Assessment + Data Envelopment Analysis Model. Sustainability 2024, 16, 1690. https://doi.org/10.3390/su16041690
Liu J, Sun B, Piao W, Jin M. Evaluation of the Environmental Impact and Energy Utilization Efficiency of Wastewater Treatment Plants in Tumen River Basin Based on a Life Cycle Assessment + Data Envelopment Analysis Model. Sustainability. 2024; 16(4):1690. https://doi.org/10.3390/su16041690
Chicago/Turabian StyleLiu, Jiaxin, Bo Sun, Wenhua Piao, and Mingji Jin. 2024. "Evaluation of the Environmental Impact and Energy Utilization Efficiency of Wastewater Treatment Plants in Tumen River Basin Based on a Life Cycle Assessment + Data Envelopment Analysis Model" Sustainability 16, no. 4: 1690. https://doi.org/10.3390/su16041690
APA StyleLiu, J., Sun, B., Piao, W., & Jin, M. (2024). Evaluation of the Environmental Impact and Energy Utilization Efficiency of Wastewater Treatment Plants in Tumen River Basin Based on a Life Cycle Assessment + Data Envelopment Analysis Model. Sustainability, 16(4), 1690. https://doi.org/10.3390/su16041690