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Abstract: In recent times, there has been a significant shift from centralized energy systems to
decentralized ones. These systems aim to satisfy local energy needs using renewable resources within
the community. This approach leads to decreased complexity and costs, improved efficiency, and
enhanced local resilience and supports energy independence, thereby advancing the transition toward
zero carbon emissions. Community energy plays a pivotal role globally, particularly in European
countries, driven by citizen engagement in generating power from renewable sources. The European
Union, known for its focus on social innovation and citizen participation, recognizes the essential role
of energy communities in its latest energy strategy. The concept for creating local energy communities
or community-based energy projects has gained worldwide attention, demonstrating the economic,
environmental, and efficiency benefits for using renewable energy sources. However, there is a
noticeable gap in research covering all the updated aspects of renewable energy communities. This
article provides an in-depth review of energy communities, especially renewable energy communities,
exploring their concepts, scope, benefits, and key activities. It also sheds light on their progress by
presenting results and analyses. Some countries have shown significant advancement, others are in
the initial stages, and a few have partially adopted REC implementation according to the Renewable
Energy Directive II. Additionally, it discusses the main challenges and potential recommendations to
enhance the growth of renewable energy communities. This work is a valuable resource, emphasizing
the importance of citizen involvement and offering insights into various aspects of community
energy for sustainable energy transition. It also provides practical insights and valuable information
for policymakers, researchers, industry professionals, and community members who are keen on
promoting sustainable, community-driven energy systems.

Keywords: energy community; renewable energy community; RED II directive; shared renewable
energy

1. Introduction

Environmental issues are becoming worse and soaring everywhere, which calls for
the restructuring of society. Among these, one of the most insistent is the transformation
of the energy paradigm, replacing non-renewable energy and pollution-creating sources
with renewable energy sources (RESs), which are cleaner, more sustainable, and less re-
source intensive. Additionally, these advanced technologies have already been considered
as reliable and economical [1,2]. RESs tackle pressing issues, such as promoting energy
security, enhancing public health, fostering economic opportunities, and driving techno-
logical innovation. By shifting to renewable energy, societies can decrease their negative
impact on the environment [3], promote sustainable development, and pave the way for a
resilient and fair energy future [4]. The EU seeks to reach climate neutrality by 2050 as a
means for mitigating climate change [5]. In recognizing the crucial part of the energy sector
considering the climate crisis, the European Union’s Clean Energy Package emphasizes that
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the energy mix ought to be from RESs and that the energy market ought to be rationalized,
taking into consideration flexibility [6].

Over the past century, electricity industries around the globe have endured a revo-
lution, moving toward predominantly large-scale centralized energy systems. This cen-
tralized structure has presented challenges in terms for accessing capital and efficiently
operating interconnected power systems [7,8]. Conversely, there has been a paradigm shift,
in recent years, in the power system because of the integration and management of growing
RESs. This shift has resulted in a greater presence of decentralized energy resources within
the grid. Decentralized energy systems provide local control, facilitating community-based
energy generation and distribution at the local level [9]. These systems seek to satisfy
the local energy demand utilizing distributed energy resources available within the com-
munity [10]. Local decentralized energy resources transport energy generation nearer to
consumers, resulting in reduced cost, inefficiencies, and complexity; bolstering local re-
silience; promoting energy independence; and transitioning toward zero carbon emissions
as compared to centralized energy systems [11]. Decentralized systems have the potential
to drive innovation, empower individuals, and encourage community engagement. As
a result, energy communities have emerged as cooperative strategies that facilitate the
sharing of renewable energy within decentralized energy systems. These communities
align with the goals for minimizing energy consumption and promoting flexible energy
utilization by active consumers, thereby alleviating the high energy loads on the power
grid [12]. Integrating local DERs and engaging local communities appears to be a promising
initiative to address the transition of the local energy landscape effectively [13,14].

Apart from this, the energy community has made significant progress in Europe and
is poised to be a foundational element in creating a further decentralized and adaptable
energy union, where citizens gradually become more influential. The Renewable Energy
Directive, also known as Directive (EU) 2018/2001, or RED II, commences the GHG emis-
sion criteria and sustainability goals in the European Union. It has also established a legally
binding goal of 32% for the total percentage of energy from renewable sources in the EU’s
gross final energy consumption by 2030. This regulation created a standard framework
for promoting the use of renewable energy sources [15]. With its annexation in the Clean
Energy Package, Directive 2018/2001 RED II introduced the renewable energy community
(REC) concept and its establishment, concentrating on the use of RESs, whereas 2019/944
ED directives presented the citizen energy community (CEC) concept, focusing on electric-
ity, with the combined primary aim for delivering social, environmental, and economic
advantages to their members [15,16]. These communities play a vital role in supporting
individuals worldwide during the shift toward sustainable development and the utilization
of RESs. Renewable energy communities offer a wide range of options to inspire the active
involvement of community members, including the decision-making process, investment
opportunities, ownership models, local energy conversation platforms, and economic
inducements [17]. Individual households serve as the fundamental units within local com-
munities. Local communities are well positioned to recognize local energy requirements
and unite individuals toward shared objectives, such as self-sufficiency [18], resilience,
autonomy [19,20], and sustainability [21]. Moreover, as local communities transition, their
roles evolve from being mere consumers to becoming prosumers who actively engage
in local generation, energy sharing, demand-response strategies, and energy efficiency
measures [22].

In recent times, a global discourse has emerged surrounding energy autonomy, energy
security, and energy poverty improvement policies in both developed and developing
nations. Energy communities have appeared as substantial contributors to this discussion,
as they facilitate the integration of DGs, particularly inside local energy systems. Many
researchers are involved in and keen to work on and promote topics such as REC-like
concepts [23,24], distributed energy technologies and their integration [25,26], design
and modeling [27,28], energy sharing [29,30], economic and feasibility analyses [31,32],
policies and policymakers [33,34], challenges [34,35], comparison between countries [36,37],
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business models [38,39], community and social acceptance [28], prosumer and consumer
roles [40,41], self-consumption [42], and many others. All these topics are discussed
individually in different articles. However, the authors have not covered all the core topics
of RECs. Moreover, the review papers that were published in 2019–2023 are presented with
titles in Table 1.

Table 1. Review articles published on RECs, as per the European Directive (2019–2023).

S No. Reference Year Papers with EC and REC Titles

1 [43] 2023 A review and mapping exercise of energy community regulatory challenges in European member
states based on a survey of collective energy actors

2 [44] 2021 The challenges of engaging island communities: Lessons on renewable energy from a review of 17
case studies

3 [45] 2023 A typology of business models for energy communities: Current and emerging design options

4 [46] 2021 Towards data-driven energy communities: A review of open-source datasets, models, and tools

5 [47] 2023 The Emerging Trends of Renewable Energy Communities’ Development in Italy

6 [48] 2020 Renewable energy communities as ‘socio-legal institutions’: A normative frame for energy
decentralization?

7 [49] 2021 Social arrangements, technical designs, and impacts of energy communities: A review

8 [50] 2020 Regulatory challenges and opportunities for collective renewable energy prosumers in the EU

9 [51] 2021 A transition perspective on Energy Communities: A systematic literature review and research agenda

10 [52] 2021 Business models for energy communities: A review of key issues and trends

11 [33] 2021 Implementing a just renewable energy transition: Policy advice for transposing the new European
rules for renewable energy communities

12 [53] 2019 Social innovation in community energy in Europe: A review of the evidence

13 [54] 2021 Do renewable energy communities deliver energy justice? Exploring insights from 71 European cases

It should be noted here that there are very few review articles relevant to the renewable
energy community according to the RED II Directive and a lack of articles on the main topics
to be discussed, like the progress of REC implementation in different countries of Europe,
general and technical challenges associated with this slow progress, policies, policymakers,
awareness, and future recommendations to boost this progress across Europe to involve the
community to create and own RE projects for sustainable transition. Keeping in view this
scenario and the emerging topic of renewable energy communities, this research work aims
to fill this gap by covering all the parts of RECs, including the concepts, scope, benefits,
activities, progress, challenges, and recommendations. Moreover, this article provides
an updated, complete review of energy communities, serving as a valuable resource for
researchers, policymakers, communities, and practitioners seeking to understand the
concepts, progress, challenges, and potential solutions in this field. The motivation behind
this emerging topic is to provide a comprehensive analysis of this emerging concept and
its potential to drive the transition toward sustainable and community-driven energy
systems. Motivations should be as diverse as the communities’ actions, such as social
and environmental values that support their dedication to sustainability, worries about
climate change, the shift to renewable energy sources, legislative incentives, and financial
considerations, like solving social equity and poverty problems in some areas. This paper
covers all the parts of RECs, investigating and discussing several aspects, from concepts
to future recommendations, filling the gap on important topics relevant to RECs. The rest
of this paper is organized into seven sections as follows: Section 1 discusses motivations,
related works, and contributions; Section 2 highlights the role of the energy community,
the concept of the energy community, and the renewable energy community as per the
RED II Directive; Section 3 discusses the scope and benefits in accordance with RECs;
Section 4 describes the participants and activities carried out, including technological
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components, like energy generation, energy consumption, ESSs, energy sharing, energy-
monitoring and efficiency measures, and virtual power plants. Moreover, an illustration
of an REC is also included for further clarification. This part plays an important role for
all the researchers, participants, and other stakeholders to become familiar with these
components, resulting in awareness regarding the economic, environmental, and social
benefits. Section 5 elaborates on the progress and challenges along with some barriers
associated with the energy community; Section 6 concludes the overall work, and Section 7
gives the future recommendations to be considered for successful RECs.

2. Concept of Renewable Energy Communities

Energy communities are pivotal in Europe’s energy transition, attracting private
investment, gaining public support for energy projects, and facilitating long-term renewable
resource utilization. This leads to reduced electricity costs, decreased pollution, and a
boost in local economies through job creation, ultimately empowering citizens to actively
drive the energy transition [55,56]. Simultaneously, redirecting profits back into society
enhances the social acceptance of sustainable development and the expansion of renewable
energy. Linguistically, the term “community” refers to a social unit illustrated by shared
customs, values, and a collective sense of place [57]. From an energy perspective, an “SEC”
or “sustainable energy community” refers to a group of energy utilities, either publicly,
privately, or jointly owned and operated within a specified geographical area. In this
setup, end-users (citizens, companies, and public administrations) come together to fulfill
their energy requirements through a collaborative approach. A variety of definitions and
terms exist in the literature for RE initiatives led by citizens and localities, as shown in
Figure 1 [8,21,22,37,58–61].
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The terms given in the figure appear to cover a range of programs or activities per-
taining to community-based initiatives focused on developing low-carbon and renewable
energy projects. Even though the initiatives’ objectives could occasionally overlap, each
word may have distinct meanings or concentrate on various facets of community involve-
ment in sustainable energy practices. Although encouraging clean energy and sustainable
behaviors at the community level is the same goal of all the types, there are some dis-
tinctions among them in terms of particular areas of emphasis, such as project execution,
governance frameworks, or the overall reach of sustainability programs. The terminology
used may also represent contextual or regional differences in language and policy emphasis.
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As local communities progressively engage in the ownership, decision-making, and
organization of energy generation plants [62,63], a new socio-energy system centered on
DGs from RESs is evolving. The shift toward establishing renewable-powered communities
has been thrusted owing to various economic and environmental concerns related to
conventional energy consumption. The EC is divided as centralized, decentralized, and
distributed, classifying the associates’ identities and aim [8]. Bruno Canizes et al. [64]
discussed ECs and classified them as homogenous energy communities (HECs), mixed
energy communities (MECs), and self-sufficient energy communities (SECs). Herein,
the main term, ‘net energy’, differentiates all the parts. The ENet value is the difference
between Eg and Ec within a specified timeframe. In the following subsections, a more
detailed description is reported. A negative value indicates a negative net energy (Ec > Eg).
Conversely, a positive value indicates a positive net energy (Ec < Eg).

2.1. HECs

HECs are characterized by a group of members whose ENet is consistently either
positive or negative during the defined time, i.e., ENet < 0 or ENet > 0. ENet is the difference
between Eg and Ec within a specified timeframe. Two variables are required to identify
the various HECs in the electrical network: the geographical distance among the members
(D) and ENet. The problem for recognizing the EC may be viewed as a grouping problem
according to D, and the HEC’s net energy can be aggregated. The relevant equation for the
HEC is given as follows [64]:

∑N
i=1 ENet = ENet1(t) + ENet2(t) + ENet3(t)......... + ENetN (t) (1)

2.2. MECs

MECs consist of members with mixed net energies, including both positive (ENet > 0)
and negative values (ENet < 0). The members within the community have surplus energy
(ENet > 0) that they can share or store, while others have a deficit (ENet < 0) and require
energy from the grid. This creates an opportunity for these members to come together and
form an MEC. In an MEC, the surplus energy from some members can be shared with those
in deficit. This arrangement benefits both parties; members with negative ENet(t) can access
cheaper energy, while members with positive ENet(t) can enhance the profitability of their
production units by selling their extra energy [64].

2.3. SECs

SECs comprise members whose total net energy is positive, regardless of the individual
ENet of each member. In SECs, the collective generation surpasses the overall consump-
tion, leading to self-sufficiency in the energy supply. The SEC falls within the category
of MECs but with a significant distinction: Like MECs, SECs consist of members with
both positive and negative E(t) values. Nevertheless, the key difference lies in the SEC’s
ability to fully balance their energy demand with locally generated energy from their own
generation units, primarily utilized for self-consumption. This unique characteristic of
SECs, where ENet > 0, makes them particularly intriguing for study. These communities
are highly interesting because they rely less on the electricity grid, ensuring greater en-
ergy independence and resilience. SEC members enjoy several advantages, such as being
unaffected by contingencies in the main grid. Their self-sufficiency in the energy supply
makes them more secure during emergencies or disruptions in the larger power network.
As a result, studying SECs offers valuable insights into sustainable and resilient energy
community models.

Figure 2 compares the energy communities according to their net energy. HECs are
comprised solely of members with either ENet > 0 or ENet < 0. The first part of the HEC
shows the positive value, and the other part of the figure presents the negative value after
the addition, which is mentioned as resulting in ENet > 0 and ENet < 0. As per the constraints
set by the authors, if ENet is positive, it cannot exceed a positive upper value, and if ENet
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is negative, it cannot be less than a negative lower value. In contrast, MECs consist of
members with both negative and positive net energies. Lastly, special energy communities
(SECs) are formed by members whose total net energy (Σ ENet(t)) is greater than zero [64].

Sustainability 2024, 16, x FOR PEER REVIEW 6 of 34 
 

by the authors, if ENet is positive, it cannot exceed a positive upper value, and if ENet is 
negative, it cannot be less than a negative lower value. In contrast, MECs consist of mem-
bers with both negative and positive net energies. Lastly, special energy communities 
(SECs) are formed by members whose total net energy (Σ ENet(t)) is greater than zero [64]. 

 
Figure 2. Types of energy communities. 

Continuing with this aspect, more recently, these energy communities’ innovative 
concepts have received explicit attention in the various standards and directives encom-
passed by the Clean Energy for All Europeans Package. Consequently, two distinct cate-
gories of ECs [65,66] can be identified: CECs represented by Directive 2019/944 [16] and 
RECs presented by Directive 2018/2001 [15]. To contribute to the attainment of energy and 
climate objectives actively and effectively, the creation of both CECs and RECs can play a 
vital role. The ultimate goal is to attain advantages in terms of cost efficiency, sustainabil-
ity, and safety [67]. RECs are poised to play a critical role in driving the transformation of 
the whole energy system and market. Simultaneously, these initiatives directly benefit 
citizens by enhancing energy efficiency, leading to reduced electricity costs and creating 
local job opportunities and economic growth [68,69]. RECs are identified as a pivotal fac-
tor in promoting the wider implementation of onsite RESs. Diverse RETs, like solar PVs, 
wind, and biomass, have been actively encouraged in recent years to pave the path toward 
a sustainable energy future [70,71]. Within RECs, consumers will be able to produce, store, 
use, sell, and share energy. RECs have emerged as an innovative and cooperative strategy 
to facilitate the sharing of renewable energy among participants [72,73], resulting in re-
duced energy costs and lower economic costs for infrastructure and services, contributing 
to climate change mitigation efforts, and fostering a sense of community spirit [55,74]. 
Also, RECs aim to reduce individual energy consumption, optimize grid loading, and lev-
erage the energy flexibility of active consumers [75]. 

3. Scope and Benefits of RECs 
3.1. Scope 

Recently, there has been a notable swell in interest in the concept of local ECs gener-
ating as well as supplying energy, accompanied by parallel developments in smart grid 
technology. This growing fascination has captivated the attention of individuals inter-
ested in implementing local energy systems [76]. As a result, communities in both devel-
oped and developing countries are undergoing a transformation, stimulating their con-
ventional status as passive consumers and embracing a new role as active “prosumers”—
individuals who generate energy as well as consume it [77]. The definition and scope of 
energy communities are centered on the idea of citizens engaging in local production and 
governance of renewable energy [78]. The public’s acceptance of RE projects and the pro-
motion of the clean energy transition in local communities are greatly aided by citizen-
driven energy and collective actions that put residents at the forefront [79,80]. The scope 

Figure 2. Types of energy communities.

Continuing with this aspect, more recently, these energy communities’ innovative con-
cepts have received explicit attention in the various standards and directives encompassed
by the Clean Energy for All Europeans Package. Consequently, two distinct categories
of ECs [65,66] can be identified: CECs represented by Directive 2019/944 [16] and RECs
presented by Directive 2018/2001 [15]. To contribute to the attainment of energy and
climate objectives actively and effectively, the creation of both CECs and RECs can play a
vital role. The ultimate goal is to attain advantages in terms of cost efficiency, sustainability,
and safety [67]. RECs are poised to play a critical role in driving the transformation of
the whole energy system and market. Simultaneously, these initiatives directly benefit
citizens by enhancing energy efficiency, leading to reduced electricity costs and creating
local job opportunities and economic growth [68,69]. RECs are identified as a pivotal factor
in promoting the wider implementation of onsite RESs. Diverse RETs, like solar PVs, wind,
and biomass, have been actively encouraged in recent years to pave the path toward a
sustainable energy future [70,71]. Within RECs, consumers will be able to produce, store,
use, sell, and share energy. RECs have emerged as an innovative and cooperative strategy to
facilitate the sharing of renewable energy among participants [72,73], resulting in reduced
energy costs and lower economic costs for infrastructure and services, contributing to
climate change mitigation efforts, and fostering a sense of community spirit [55,74]. Also,
RECs aim to reduce individual energy consumption, optimize grid loading, and leverage
the energy flexibility of active consumers [75].

3. Scope and Benefits of RECs
3.1. Scope

Recently, there has been a notable swell in interest in the concept of local ECs gener-
ating as well as supplying energy, accompanied by parallel developments in smart grid
technology. This growing fascination has captivated the attention of individuals interested
in implementing local energy systems [76]. As a result, communities in both developed
and developing countries are undergoing a transformation, stimulating their conventional
status as passive consumers and embracing a new role as active “prosumers”—individuals
who generate energy as well as consume it [77]. The definition and scope of energy com-
munities are centered on the idea of citizens engaging in local production and governance
of renewable energy [78]. The public’s acceptance of RE projects and the promotion of the
clean energy transition in local communities are greatly aided by citizen-driven energy
and collective actions that put residents at the forefront [79,80]. The scope of ECs extends
beyond energy generation, encompassing social, economic, and policy dimensions that



Sustainability 2024, 16, 1749 7 of 34

foster community empowerment and contribute to the transition to a sustainable and
cleaner energy source in the future [81,82]. Apart from this, community energy represents a
distinct subset of ECs distinguished by the active participation of local communities, which
may take on roles as investors or contributors in these projects [83]. Moreover, the scope of
ECs can be classified based on various other factors, such as their organizational structure,
geographical scope, municipal bodies, households, rural and agricultural communities,
private businesses, public institutions, cooperatives, and even farms [84], as presented in
Figure 3.
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Energy cooperatives enable communities to collectively invest in renewable energy
installations and share in the generated benefits [85]. Cooperatives primarily aim to pro-
vide goods or services to their members, and they differ from investor-owned businesses
as their objective is not centered on distributing profits in accordance with the level of
investment [86]. Cooperatives have emerged as a significant driving force in advancing the
adoption of REs in many countries. Neighborhood-scale communities focus on a specific
neighborhood or district within a larger community that has to localize renewable energy
generation and consumption within a limited geographical area [87]. The concept of a
neighborhood is presented at a scale that brings together individuals and their surround-
ings [88]. By harnessing local resources and engaging residents, neighborhood-scale RECs
can create a sense of community ownership and promote sustainable energy practices,
resulting in a significant impact on the realization of zero-energy objectives [89,90].

Municipal communities involve local governments taking the lead in developing and
implementing renewable energy initiatives within their jurisdictions, and indeed, this
aspect often receives the most focus [91]. These communities prioritize local renewable
energy generation and energy efficiency measures and often integrate sustainable trans-
portation and infrastructure planning. The researcher introduces a methodology to identify
key urban regions where the municipal urban project could promote the establishment of
RECs, minimize the restrictions on their formation, and maximize their social and energy
benefits [92]. In rural and agricultural communities [93], RESs, like wind, solar, or biomass,
can be utilized. They focus on promoting renewable energy installations on farmlands,
rural properties, or agricultural facilities. Rural and agricultural RECs can contribute to
income diversification for farmers, energy self-sufficiency, and sustainable rural develop-
ment [94,95]. Indigenous communities have shown a growing interest in developing RECs
that align with their cultural values, traditions, and land stewardship principles. These
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RECs prioritize indigenous ownership, control, and benefit sharing in renewable energy
projects. Indigenous RECs often focus on promoting renewable energy solutions that are
culturally appropriate, address energy poverty, and contribute to community resilience [96].

Island communities, particularly those reliant on imported fossil fuels, are increasingly
establishing RECs to transition to local renewable energy sources. Island RECs aim to
enhance energy security, reduce reliance on imported fuels, and promote environmental
sustainability [97]. These communities often combine RE generation with ESS and smart
grid technologies to establish resilient and self-sufficient energy systems. Energy planning
for islands is complicated by their restricted resource availability, which hinders efforts to
establish self-sufficiency and sustainability in their energy systems [98]. Researchers focus
on the primary emphasis of this article, which lies in addressing the difficulties associated
with deploying RESs within the context of a small island scenario [99,100]. Hrvoje Dorotić
et al. [101] introduced an innovative strategy to outline the energy framework of a carbon-
neutral island. These above classifications highlight the diversity and adaptability of energy
communities, showcasing how they can tailor their approach based on local characteristics,
goals, and resources. Regardless of the type, all the RECs share a common vision for
promoting renewable energy, community participation, and sustainable development.

3.2. Benefits

The primary goal is to contribute to the establishment of a green energy system to give
social, environmental, and economic benefits to its stakeholders or participants [61]. ECs, as
a gross route of innovation [102], encompass the localized production of renewable energy,
citizen engagement and governance, and the pursuit of a sustainable energy system [103].
Ceglia et al. [104] highlight the key benefits as energy vectors, procurement cost reductions,
quality supply improvement and reliability, and the citizens’ active involvement and use
of local resources. Moreover, a comprehensive categorization of EC benefits has been
established and is represented in Figure 4 [105,106].

Renewable 
Energy 

Communities

Citizen 
Governance

Policy 
Governance 

considerations

Innovation & 
Technological 
Assessments

Socio- 
economic & 

environmental 
benefit

Sustainable 
energy 

transition

Local 
Production1

2

3

4

5

6

Figure 4. Representation of REC benefits [104,105].

3.2.1. Local Production

RECs focus on generating RESs at the local level. They involve the installation and
management of citizen-owned production units, which can range from solar panels on
individual homes to larger-scale community projects, like wind farms or biomass plants.
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3.2.2. Socioeconomic and Environmental Benefits

RECs offer socioeconomic advantages, including decreased energy costs, opportunities
for job creation, enhanced local resilience, better energy security, and stronger social
cohesion [107,108]. They also provide socioenvironmental benefits [109,110] by reducing
air pollution and improving local air quality through displacing fossil-fuel-based energy
generation. This emphasizes the shared objectives of sustainable energy production and
consumption.

3.2.3. Sustainable Energy Transition

ECs play a vital role in advancing the shift to a green energy system. By promoting
generation from RESs and reducing reliance on fossil fuels, they contribute to decarboniza-
tion efforts, energy independence, and the overall mitigation of climate change [111,112].
In this way, energy communities contribute to achieving renewable energy targets.

3.2.4. Citizen Governance

Energy communities empower citizens by enabling their active involvement in the en-
ergy sector. Citizens can become prosumers, generating their own energy and participating
in local energy production and consumption decisions. This collaborative method fosters
engagement, a sense of ownership, and obligation among citizens, aligning with the EU’s
objectives for citizen-centered and inclusive energy policies.

3.2.5. Policy Governance and Considerations

Energy communities are influenced by policies and regulations at various levels, in-
cluding national, regional, and local. Governments play an essential role in creating an
enabling context that supports establishing and operating ECs. Governance structures
within energy communities can vary, ranging from informal grassroots initiatives to for-
malized legal entities.

3.2.6. Innovation and Technological Assessments

Energy communities deploy new and innovative technologies in the energy sector.
They offer a testing ground for emerging technologies, for instance, energy storage, smart
grids [113], and demand-response systems. This supports the EU’s objectives for promoting
clean energy innovation and fostering technological advancements.

4. Main Activities of RECs

This section discusses the main stakeholders and participants who can jointly work
together to form an REC. The activities of these participants include energy generation, ESSs,
energy consumption, energy selling, and energy sharing. Moreover, an REC example is
illustrated for further discussion. Forming an REC is not convenient for a person or a family.
Many stakeholders play vital roles in forming an REC. A diverse range of actors from
both the private and public sectors may participate to varying degrees, contributing to or
forming a cohesive community [114,115]. Citizen engagement in decision-making and RE
projects can potentially enhance the acceptance and adoption of renewable energy sources.
However, RECs consist of citizens as volunteers, investors, or participants; an energy-
community’s local citizens [116], social entrepreneurs, community organizations, and
public authorities [117] come together, jointly participating in the energy transition [118,119].
Moreover, these endeavors play a major role in facilitating the shift to a decreased-GHG-
emission energy system, enhancing consumer engagement and trust, offering valuable
flexibility in the market, decision-making, and local trading [120]. Active participation, local
involvement, and co-ownership play crucial roles in bolstering energy communities [121].
The roles of these participants may vary, but collectively, they are contributing to the
development, management, and success of the REC. It is important to mention, here, the
role of all the participants, so Table 2 is added, which highlights the main participants and
their roles in the REC.
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Table 2. REC participants and their roles.

Participant Participant’s Role

Citizens [68]

• They actively participate in decision-making activities of energy-related projects, including the
planning, development, and management of RE projects. Also, they can contribute by investing
in and utilizing RESs within the community.

• It should be mentioned that not every citizen may choose to take part in the REC; those who do
not actively engage take on the role of consumers within the community.

Local Businesses
• Local businesses within the community play a vital role in the REC by investing in RE projects,

providing goods and services related to clean energy technologies, and contributing to
sustainable economic growth.

Local Government
• The local government is crucial to supporting and regulating the REC. It can facilitate permits

and regulations for renewable energy projects, provide incentives and policies to encourage RE
adoption, and collaborate with other stakeholders to achieve sustainable energy goals.

Investors [68]

• This group of actors plays a significant role in establishing the REC by providing investments.
However, they do not consume any energy generated within the REC. As non-prosumer
co-owners, they actively contribute to the REC’s development and can include financial
institutions, strategic investors (e.g., banks), as well as individuals, like citizens and landlords.

Prosumers (Energy
Producers and Consumers)

• This group of actors within the community becomes a part of the REC, assuming roles as
prosumers. Energy producers and consumers in the REC are responsible for generating REs
through various technologies (PVs, wind, biomass, etc.) and utilizing the energy generated by
the above technologies. Some passive consumers can take supply from the grid.

Energy System Actors [68]

• These actors are responsible for ensuring the stability and equilibrium of the local energy
system while overseeing the movement of energy into and out of the REC. Moreover, they could
encompass energy suppliers, which can be private sectors, commercial or public utility
companies, as well as the DSO. Their roles are essential in maintaining smooth operation and
efficient energy distribution within the REC.

Energy Cooperatives/
Community Organizations

• Energy cooperatives or community organizations may be formed to facilitate collective
decision-making, the pooling of resources, and collaboration among community members to
implement and maintain RE projects.

Considering the roles of the main participants, the diverse range of the collective
energy in an energy community includes energy generation, electricity distribution, energy
supply, aggregation, energy consumption, energy sharing, energy storage, the provision of
energy-related services, and other technologies, as represented in Figure 5 [68].
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4.1. Energy Generation through Renewable Energy Sources

Incorporating distributed generation from renewable sources yields societal advan-
tages and holds the capability to enhance the functioning of distribution networks [122,123].
These systems, including from small-generation units to multi-energy centers, incorporate
elements like RESs and other hybrid systems like PVs and thermoelectric systems [124].
Nonetheless, research concerning the integration of these systems within community
settings is limited, especially in relation to the involvement of local stakeholders, like com-
munity energy utilities, ownership aspects, and the spatial extent of the implementation.
This gap hinders the acceleration of DES adoption [125]. Energy communities incorporate
various RETs, like wind, solar PV systems, hydro, biomass, or geothermal systems. These
installations produce clean energy locally, decreasing dependency on non-renewable energy
sources and raising economic benefits [126]. The primary driving factor for the increasing
preference for technologies like RES-based DGs is attributed to the environmental advan-
tages they offer [127]. The pursuit of expanding renewable energy shares in the system,
with a specific focus on the deployment of PVs, while sustaining increasing rates and
transitioning away from FiT schemes, along with prioritizing prosumers, highlights the
promising potential of energy communities [128,129]. PV systems have become dominant
owing to their availability and ease of use on roofs for producing electricity. The equation
for the instant power output for a PV system, as described in reference [130], is as follows:

P = A·G·nc·ni (2)

Moreover, diverse forms of community energy exist, including initiatives where
local individuals come together to invest in renewable energy, such as wind farms or
cooperatives [37,131]. Researchers emphasize the need to move beyond feed-in tariff
schemes and, as an alternative, focus on expanding prosumer-intensive business models.
Prosumers, who both consume and generate electricity, are at the core of these models,
which are essential for sustaining the growth of PV energy generation rates [132]. Table 3
shows the characteristics of distributed renewable generation sources [133–135].

Table 3. Characteristics of DREs.

RET Fuel Used Size (kW) Availability O/P Carbon Emissions

PVs Sun 0.02–1000+ Location based DC Nil

Solar Thermal Sun and Water 1000–30,000 Location based DC Low

Biomass Gasification Biomass 100–20,000 - - Low

Geothermal Hot Water 5000–100,000 Location based Both Low

Hydro (Small) Water 5–100,000 Location based AC Nil

Wind Wind 0.2–3000 Location based AC Nil

Ocean Energy Ocean Waves 100–1000 Location based AC Low

4.2. Energy Consumption and Prosumer Role

Energy consumption is herein considered for the active consumer, the passive con-
sumer, and the grid. One who generates electricity and consumes it from a self-generated
plant via self-consumption is also known as a prosumer. The concept of the prosumer has
become important in the new era after the development of smart grids, microgrids, and
renewable energy communities. Alvin Toffler originally devised the term ‘prosumer’ in the
1980s by combining the words ‘producer’ and ‘consumer’ [136]. In the beginning, this term
was employed to describe the fusion of producers and consumers facilitated by the digital
revolution, but now it could have a variety of applications. L. Brand et al. [137] define the
term as customers that both produce and consume direct heat. Energy communities foster
the concept of “prosumers”, who both consume as well as produce energy. P.G. Da Silva
et al. [138] define it as a consumer having its own production capacity. P. Kästel et al. [139]
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highlighted it as entities or houses that function as both energy producers and consumers
simultaneously. Currently, RECs have encouraged consumers to become prosumers owing
to various advantages in growth, including cost savings and energy independence. Com-
munity members are encouraged to become active participants in energy generation by
installing renewable energy systems on their properties and contributing to the overall
energy production of the community [140]. ECs and consumer co-ownership are essen-
tial keystones in REs, leading to a successful energy shift [141]. When consumers own
RECs, they can be converted to prosumers, generating and consuming the energy [142].
PV producers utilize a portion of the electricity they generate, essentially serving as both
consumers and producers of their own electricity [143]. This not only allows them to
reduce their expenditure for energy but also obtains another income from selling the excess
production [144]. Owing to these benefits, prosumership is attracting energy communities
and is expected to be increasingly embedded, entailing a broad range of actors [145,146].
The relevant equations for REC energy consumption, production, and self-consumption
are respectively given as follows [68]:

EL = PL.t (3)

Epv = Ppv·t (4)

Esel f−consumption = min
[
Eload(t, n), Epv(t, n)

]
(5)

4.3. Energy Storage Systems

The primary idea behind an energy storage system is to create a buffer for energy,
serving as a storage intermediary between generation and consumption. An energy storage
system refers to a device that is able to convert electrical energy into a storable form and
subsequently transform it back to electricity as required [147]. ESSs, such as batteries,
are essential components of energy communities. They allow the effective storage of
extra energy produced during periods of peak production, which can then be used in
periods of high demand or in the absence of active power generation from RESs [148]. ESS
technologies are categorized into the foremost groups as mechanical, thermal, chemical,
electrochemical, electrical, and others, like hybrid energy storage [149,150]. According to
their response characteristics, ESSs can be characterized into three main groups: short term
(ranging from seconds to minutes), employed for power quality enhancements; medium
term (from minutes to hours), utilized for managing grid congestion and offering frequency
responses; and extended long term (spanning from hours to days), applied for aligning
supply and demand over extended timeframes [151]. The further subclassification of energy
storage systems is given in Figure 6 [149,150,152].

A fundamental aspect of ECs is the inclusion of energy storage units. These units play
a critical role in retaining a balance between supply and demand when DGs are operational.
Owing to the intermittent nature of the majority of RESs, a significant challenge arises in
maintaining a balance between energy generation and load for ensuring the stability and
dependability of power networks. Extensive endeavors have been dedicated to exploring
feasible remedies, encompassing EES, load adjustment through demand management, and
integration with external grids. Of all the potential resolutions, electrical energy storage
stands out as a particularly promising avenue [153]. In the current economic landscape,
batteries emerge as a cost-effective option, despite having a relatively higher negative
environmental impact compared to other storage technologies [154].
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4.4. Energy Sharing

The sharing of energy in renewable energy communities involves the collaborative
distribution and utilization of locally generated DREs. The participants share the produced
energy among themselves in cases of excess, fostering a decentralized and sustainable
approach [155]. Energy sharing within communities transforms individual consumers into
prosumers, allowing them to share surplus energy with other participants of the commu-
nity. Community-level energy plans offer a superior prospect to tailor developed energy
systems according to local states and specific constraints. This approach facilitates increased
efficiency and the sustainable utilization of these RESs within the community [156]. Sharing
could occur through many mechanisms, like community microgrids, peer-to-peer energy
exchanges [157,158], or collective energy storage initiatives, by aiming to optimize the
usage of RESs, promote a sense of community engagement, enhance energy resilience, and
promote self-sufficiency in sustainable energy practices. The amount of shared energy
within the community at time interval t can be computed as follows [68]:

Eshared(t) = min (E surplus(t), Ede f icit(t)) (6)

Esurplus(t) = Epv(t)− Esel f−consumption(t) (7)

Ede f icit(t) = Eload(t)− Esel f−consumption(t) (8)

Figure 7 shows the REC concept diagram and results from MATLAB software (R2021a)
for two days for an REC located in a southern city in Italy, showing the load on the cabin,
net power, and energy sharing. In the simulation, Np = 2 prosumers and Nc = 2 consumers
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have been considered, evaluating the producibility using the PVGIS database [159] and
load data from a daily load profile (residential) on an hourly basis.
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Many researchers are involved in working on this advanced topic and have proposed
sharing models and concepts [160,161]. G. Di Lorenzo et al. [162] proposed an innovative
model for sharing the power produced by common generators and energy services. This
model is appropriate for both multi-tenant structures and clusters of multiple buildings and
is pertinent to both current as well as newly constructed buildings, having the advantages
of scalability to larger systems and easy energy-storage integration. L. Martirano et al. [163]
proposed a model for sharing power, named PSM, designed for energy communities to
share energy and other services that are suitable at the building level and in larger commu-
nities. B. Fina et al. [164] examined the optimal installation capacities as well as economic
feasibility of ECs compared with individual buildings, resulting in increased profitability
in implementing a PV system with the optimum size as compared to the buildings.

4.5. Energy Efficiency Measures

Recently, there has been a notable surge in interest in the development of RECs,
driven not only by the scientific community but also by their documentation of actual
and simulated case studies showcasing various energy-sharing system setups owing to
their many advantages [165]. Specifically, the expansion of ECs has the potential to result
in energy conservation, enhance energy efficiency, and contribute to the alleviation of
“energy poverty” [166]. ECs emphasize energy efficiency and encourage the installation
and operation of energy-efficient technologies and practices among community members
because the energy shift rests on two fundamental pillars: energy efficiency and the
adoption of RESs [167]. This not only necessitates a change from fossil fuels to RESs but
also involves preventing energy wastage and elevating levels of energy efficiency [168,169].
The technologies include energy-efficient appliances, building design, and insulation,
and behavior changes are aimed at reducing the overall energy consumption [170]. F.
Coonan et al. [171] offer deeper insights into evaluating strategies and steps for guiding
homeowners to attain energy savings and reduce carbon emissions. Also, they highlight the
potential of RECs as a fresh approach for addressing energy efficiency in existing housing,
along with potential enhancements in their energy performance. C. Chen et al. [172]
have presented an artificial-intelligence-driven evaluation model called AIEM, aimed at
predicting the economic effects of REs and energy efficiency. This innovative model has the
potential to boost energy efficiency and optimize the utilization of RESs.
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4.6. Data Monitoring and Analytics

Energy communities utilize data monitoring and analytics tools to track energy pro-
duction, consumption patterns, and the overall system performance [173]. This data-driven
approach helps to identify optimization opportunities, make updated decisions, and ensure
the efficient operation of the EC. L. Gagliardelli et al. [174] proposed the energy community
data platform (ECDP), a middleware platform specifically crafted for gathering and ana-
lyzing extensive data on energy consumption within local ECs, with the primary goals for
promoting greater awareness and conscientious energy usage among users. Online infor-
mation sources play a crucial role in engaging people and raising awareness concerning the
advantages of energy communities. Researchers examine online news data to gauge public
awareness and the media’s significance regarding this subject and employ an innovative
measure called the semantic brand score (SBS), which links text mining techniques and so-
cial network analysis [175]. Z.D. Grève et al. [42] proposed data analytics modules to assist
community members in optimizing their resource usage (generation and consumption) to
reduce their electricity costs. M. Sănduleac et al. [176] recommend the integration of data
collected at significantly varying reporting frequencies to enhance the system’s situational
awareness and improve the monitoring accuracy because distribution power grids face
partial observability issues, primarily stemming from inadequate metering infrastructure,
particularly in areas downstream from medium-voltage substations. S.M. Patil et al. [177]
discussed their proposed system involving the real-time presentation of solar energy utiliza-
tion, facilitated by a Raspberry Pi and Flask framework. This smart monitoring platform
offers daily insights into renewable energy consumption, aiding users in analyzing their
energy usage and its impacts on renewable energy utilization and electricity concerns.

4.7. Virtual Power Plants

Virtual communities, or power plants, leverage digital platforms and technologies
to enable energy sharing and trading across a wider geographical area. They connect
renewable energy producers with consumers who may be located remotely but share
a common interest in supporting renewable energy. Virtual RECs facilitate P2P energy
transactions, allowing individuals to buy and sell renewable energy credits or join in
community solar projects. Kalle Pesonen et al. [178] examine the notion of a decentralized
virtual energy community comprising six rural Finnish farms. This is achieved through
an exploration of their current and projected electricity generation, as well as demand-
responsive resources created through electrical equipment. Kwang Y. Lee et al. [179]
introduce a P2P energy-trading model that optimizes green energy transactions, considering
the preferences of prosumers and consumers, focusing on the cost-effective operation of
the virtual energy community, reducing storage depreciation, and enhancing social welfare
by promoting energy trading.

All the above components are considered as one of the major parts of RECs to know
about RES technologies. In the literature, most of the research articles cover RES technolo-
gies, ESSs, and energy consumption, like those in microgrids. However, in the case of
RECs, other terms are added, such as self-consumption, prosumership, and energy-sharing
concepts. In addition, the other parts that must be considered are energy monitoring, data
analytics, and VPPs, as these parts are important in tracking and monitoring the data of
energy consumption, energy sharing, self-consumption, and PV production and to check
the economic benefits. All the data are analyzed on an hourly basis. Furthermore, an
illustration is also given in the next section to clarify the concept, different consumers
(active and passive), prosumers, grid connection, and flow of energy in cases of energy
excess and deficit within RECs.

4.8. Illustration of Activities in an REC

Furthermore, an illustration of the activities in an REC is shown in Figure 8 for
clarification. The REC consists of many parts, including (a) the grid/traditional energy
system; (b) the supply to passive consumers from the grid; (c) apartments having their own
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generation and sharing their energy with the community and grid in the case of excess
feed; (d) sharing of energy with houses H1, H2, H3, and H4 and the other buildings, school,
and grid in the case of excess power; (e) the school generating electricity from wind and
solar PV systems with battery sources and treated as a prosumer sharing the generated
electricity with the community and grid in the case of excess power; and (f) the supply
from the grid to consumers who will not generate their own electricity and may not be
interested in taking part in the community.
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Energy generation is the main part of the REC. The generation could be from wind,
solar, biomass, etc. Most of the participants jointly invest in PV system plants used to
produce electricity owing to their availability and excess potential in many countries.
In Figure 8, the generation is from a solar PV system and wind power. House-01 (H1),
considered as a prosumer, produces electricity from a solar PV system, and a battery bank
is also connected for charging to use at night. House-02 (H2) is considered as a prosumer
because it produces electricity from a wind system. House-03 (H3) is also considered as
a prosumer that produces electricity from a solar PV system without any battery backup.
In part (c), there is a large building, including apartments, that produces electricity from
a solar PV system, including a battery backup, and has an EV-charging station. Part (e)
contains the building of the school, including energy production from a wind plant and
a solar PV system with a battery bank, and part (a) is the grid/traditional energy system.
This can generate electricity from non-renewable energy resources or fossil fuels.

Considering the energy consumption, it could be from the consumer side, the pro-
sumer side (self-consumption), or grid consumption. The consumer side means those con-
sumers who either consume energy from the grid or via the community. Self-consumption
means that the actors within a building directly utilize the electricity that is generated
onsite. Lastly, when the generated PV energy is not enough to meet the demand within
the REC, the REC can supplement its energy needs by procuring electricity from the grid.
Consumers who choose not to participate in the REC can still receive their energy supply
from the grid.

According to the energy-sharing concept, actors share extra energy after consuming
their load (self-consumption) to meet the demand inside the community. In Figure 8, the
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green line shows the REC, and the line outside the boundary shows the sharing of energy
from one to another, and in cases of excess, the energy will feed into the grid. Energy
storage could be a major part of the REC because it helps to store energy that can be utilized
at night or in the case of any disturbance. In the figure, House-01, House-02, and the
building/apartments and school contain energy storage systems. When energy is in excess
or exceeds the demand of the REC, the excess energy could be supplied to the public grid,
introducing the grid feed-in concept. Referring to the figure, H1, H2, H3, and the school
and building/apartment are power producers and considered as a part of the REC. In cases
when the generation is higher than the demand, the energy from these prosumers will
feed into the grid. In fact, it is a considerable advantage to the prosumers for obtaining
an amount of money from the energy sold to the grid. Moreover, other services, like
flexibility, could be applied by the EC, like shifting loads when the onsite PV production is
high, resulting in high self-consumption. This will allow the community to offer implicit
flexibility [68,180].

The above concept can be further extended to simulations using software, like MAT-
LAB/Simulink, and a real-time REC to analyze the results in detail. E. Cutore et al. [181]
focused on the design phase of an REC, considering the performance and economic benefits
by presenting the optimization model for the regulations in Italy. A. Hussain et al. [182]
considered various cases of residential communities to increase the consumption from
RESs. They also considered three cases for their study: community ESSs, local ESSs, and
internal trading. However, our future work will continue on the same topic, using MAT-
LAB/Simulink and considering the optimal design of the REC with different consumers
and prosumers, proper monitoring, and analytics to check the technical parameters on an
hourly basis and the economic benefits at the specified time in the REC. An example of a
time-dependent simulation is provided in Figure 7.

5. Progress and Challenges
5.1. Progress

The notion of an energy community has gained momentum as a grassroots movement
over the past decade in various countries, particularly in Europe and North America, in-
cluding the United Kingdom, the Netherlands, and Ontario, Canada [20,55,183,184]. As per
reference [84], there are more than 420 energy communities in Great Britain. In Brooklyn,
New York, citizens, and shopkeepers that take part in the local EC can purchase and sell
renewable energy on an app. In Australia, where around 100 ECs now operate, the first to
be established was at Hepburn Wind, which began to generate energy in 2011. In Japan, the
ECs are widespread, exploiting mainly solar energy. In achieving the EU’s energy transition
goals, energy communities are emerging as a key element. Half of European citizens could
produce half of the EU’s REs, as per the European Commission, by 2050. Within the EU
countries, there are 9252 ECs, but notable disparities exist among the member countries.
Germany leads with 4848 energy communities, surpassing the other EU states. In contrast,
Bulgaria, Malta, Romania, and Hungary have a very low number of energy communities.
Germany has a high share of energy communities, as shown in Figure 9 [185], and has
achieved one of the highest counts of ECs in Europe [186], boasting around 900 renewable
energy cooperatives [187]. Germany has not completely incorporated the EU regulations
for energy communities into its national legislation. The country has a substantial history of
citizen-financed projects, broadly categorized as energy communities. Cooperatives, with a
deeply rooted tradition in Germany, oversee approximately 1000 operations of renewable
energy plants [188]. Italy currently has approximately twenty active or in-progress renew-
able energy communities scattered throughout the country, with an additional seven in the
planning stages, as per the report titled Renewables Communities 2021 made by the Italian
association Legambiente [189]. In the report it has been shown that the self-production
facilities are predominantly in the range from 20 to 60 kW.



Sustainability 2024, 16, 1749 18 of 34

Sustainability 2024, 16, x FOR PEER REVIEW 18 of 34 
 

consumers and prosumers, proper monitoring, and analytics to check the technical 
parameters on an hourly basis and the economic benefits at the specified time in the REC. 
An example of a time-dependent simulation is provided in Figure 7. 

5. Progress and Challenges 
5.1. Progress 

The notion of an energy community has gained momentum as a grassroots 
movement over the past decade in various countries, particularly in Europe and North 
America, including the United Kingdom, the Netherlands, and Ontario, Canada 
[20,55,183,184]. As per reference [84], there are more than 420 energy communities in 
Great Britain. In Brooklyn, New York, citizens, and shopkeepers that take part in the local 
EC can purchase and sell renewable energy on an app. In Australia, where around 100 
ECs now operate, the first to be established was at Hepburn Wind, which began to 
generate energy in 2011. In Japan, the ECs are widespread, exploiting mainly solar energy. 
In achieving the EU’s energy transition goals, energy communities are emerging as a key 
element. Half of European citizens could produce half of the EU’s REs, as per the 
European Commission, by 2050. Within the EU countries, there are 9252 ECs, but notable 
disparities exist among the member countries. Germany leads with 4848 energy 
communities, surpassing the other EU states. In contrast, Bulgaria, Malta, Romania, and 
Hungary have a very low number of energy communities. Germany has a high share of 
energy communities, as shown in Figure 9 [185], and has achieved one of the highest 
counts of ECs in Europe [186], boasting around 900 renewable energy cooperatives [187]. 
Germany has not completely incorporated the EU regulations for energy communities 
into its national legislation. The country has a substantial history of citizen-financed 
projects, broadly categorized as energy communities. Cooperatives, with a deeply rooted 
tradition in Germany, oversee approximately 1000 operations of renewable energy plants 
[188]. Italy currently has approximately twenty active or in-progress renewable energy 
communities scattered throughout the country, with an additional seven in the planning 
stages, as per the report titled Renewables Communities 2021 made by the Italian association 
Legambiente [189]. In the report it has been shown that the self-production facilities are 
predominantly in the range from 20 to 60 kW. 

 
Figure 9. European countries’ energy community statuses. 

As per the European Union’s Joint Research Center, in 2020, the highest numbers of 
energy communities were in Germany, Denmark, and the Netherlands, with 1750, 700, 

Figure 9. European countries’ energy community statuses.

As per the European Union’s Joint Research Center, in 2020, the highest numbers of
energy communities were in Germany, Denmark, and the Netherlands, with 1750, 700, and
500 energy communities, respectively [84]. As per the report of 2021 in reference [190],
the data relevant to the REC transposition, as per RED II in European states, are given
in the first part of Table 4 which is updated from the report. Among the nine countries
analyzed, some have shown good progress, some partial, and some are at the bottom line.
Italy has shown good progress in transposing and implementing the RED II provision for
RECs. However, Germany, standing as one of the countries leading the way in the field of
community energy, has shown little progress so far. Belgium and Italy have either partly
or fully addressed the RED II provision, as per their obligations. Spain, Portugal, and the
Netherlands have also shown good progress; nevertheless, all the other countries have
yet to transpose and implement the RED II provision. F.D. Minuto et al. [191] have also
provided the details of EU countries where the EC support mechanism exists, as presented
in the second part of Table 4. It can be seen that incentive mechanisms are different in
different countries. The authors in reference [192] documented the latest advancements
in global P2P pilot initiatives. Concurrently, numerous countries have achieved a high
level of maturity in the development of virtual energy-metering policies [193], which are
not spreading in EU countries [120]. Moreover, as per the NREL, the implementation
of diverse legislation and incentive mechanisms across several U.S. states to support the
virtual metering framework facilitates EC projects [194].
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Table 4. Characteristics of DREs.

Transposition Status of RECs in 9 EU/EEA Member States [190]

Description/Progress
Countries

IT ES PT NL BE DE LV PL NO
RECs have a legal definition.

Definition of RECs follow-up as per the RED II guidelines.
Renewable energy communities are legally allowed to generate, store, and

sell REs as well as share that energy within the REC. (Here RE is considered
as energy generated by the REC.)

Final customers (especially residential customers) are allowed to take part
in RECs.

The government (national or regional) conducts an evaluation of the
potential for REC development as well as the current obstacles.

The government considers the requirements of RECs when creating support
programs to compete equally with other market players for support.

The government gives any framework that makes it possible to promote and
support the creation of RECs.

EU Member States’ EC Support Mechanism [195–198]

Beneficiary of support scheme

EC management
√

-
√

- - -

Members (net billing)
√ √

-
√

- - -

Incentivized energy quota

Shared energy
√ √ √

-
√ √

- - -

Energy supplied to the grid
√ √ √

- -
√

- - -

Network charges
√

-
√

- -
√

- - -

Time considered for shared energy

1 h
√ √

- - -
√

- - -

1/4 h - -
√

-
√

- - - -

Incentive mechanism type

Virtual self-consumption
√

- - - -
√

- - -

Virtual net metering -
√ √

-
√ √

- - -

FiT - - - -
√

- - -

Exemption - -
√

- -
√

- - -

Bilateral contract - -
√

- - - - - -

Net purchase and sale
√ √

- - - - - -

FIP
√

- - - - - -

Grants
√

- - - - - -

[Flanders; □ = No/Insufficient transposition; □ = sufficiently transposed; □ = partly trans-
posed/transposition ongoing; IT = Italy; DE = Germany; BE = Belgium; ES = Spain; LV = Latvia; PT = Portugal;
NL = the Netherlands; PL = Poland; NO = Norway.]

Furthermore, the research progress relevant to RECs at these sites was checked for
three years, from 2021 to 2023, as mentioned in Table 5 in the annexure to the last part of
this paper. From a research point of view, very slow progress has been made since the
REC policy was highlighted in 2019. Research has mostly been carried out on economic
analysis, optimization techniques for designs and modeling, energy management systems,
energy-sharing models, benefit distribution among members, the environmental side,
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the optimal sizes of communities, RES technologies, distributed generation, comparisons
among countries, sensitivity analyses, and so on. Researchers have highlighted the positive
impacts of, and benefits associated with RECs, like decreased CO2 emissions and increased
economic benefits. From the table, it is observed that most of the research has been
carried out for the country of Italy and is growing as per their regulations and framework.
Moreover, from the papers that in the literature, simulation work has been conducted
using assumed data or real-time data on loads and PV production, and the results were
then used for economic assessments. However, the research lacks the monitoring part to
check the profiles of consumption, self-consumption, and energy sharing on an hourly
basis and a half-hourly basis so that consumers and prosumers may be familiar with and
know their energy utilization and the associated benefits. Another main concern is that real
cases, which are not discussed in the literature for the references cited in Table 5, should
be considered as a priority for policymakers to show the REC prototype and enable the
market to further clarify the concept of RECs and the benefits for its participants, resulting
in the increased public acceptance and growth of RECs in Europe. Apart from this, to the
best of our knowledge, comprehensive and specific reports on RECs in the EU are limited,
which is attributed to the continuous development of legislation among EU member states.
However, from the existing literature, energy communities have shown relevant progress in
many countries, and some are working to adopt the EU framework. Many researchers and
countries are involved in boosting progress by increasing the number of RECs in European
countries, as per RED II directives. This work is continued by researchers, and there are
challenges and barriers that could be the result of the slow progress of RECs, as considered
in the next section.

5.2. Challenges

The literature shows many advantages of RECs, like the involvement of citizens and
economic and environmental benefits. However, there are still many challenges [43,199],
like policy challenges, regulatory and legal barriers, financing and funding issues, technical
limitations and grid integration issues, social acceptance, community participation, capacity
building, unequal distribution of costs and benefits, and knowledge sharing, that should be
mitigated. Many authors have focused on these topics to address the challenges associated
with RECs, including policy and regulatory [34,200,201], energy market regulations, grid
connection and interconnection rules, the potential effects of ECs on MV distribution
networks, financial policies, ownership, collective RE prosumers in the EU [50], business
models [52], and governance models. These authors have reviewed energy communities
governed by European-level regulations extending to the national legislation of selected
European countries. Regulatory developments have been compared to European legislation,
and a survey has been conducted. The reports suggest that the participation in energy-
based activities and achievement of renewable targets are the preliminary motivations
rather than the economic benefits [43]. L. De Almeida et al. [202] contributed by providing
scenarios for different issues relevant to P2P trading and found that the trading market
design and implementation are difficult challenges for ECs. In [203], the authors focused on
the social acceptance of the RE project implementation and proved that it was a significant
barrier in Europe. M. Krug et al. [56] examined the transposition of RECs in accordance
with the RED II directive in Italy and Germany, highlighting the severe challenges relevant
to administrative bottlenecks in planning and authorization processes to mainstream the
CE and RECs and suggesting the necessity to increase the coordination between national
and regional governments. As per the research article that considered nine countries in
Europe [50], the author suggested that the laws pertaining to collective self-consumption
are insufficient to give RECs a strong legal foundation. RECs need a specialized legal
framework owing to the complexity of their requirements (such as DSM schemes and
organizational structures) and obstacles (such as equipment costs and grid charges). A.
Dimovski et al. [204] considered the Italian case study focusing on the impacts of ECs on
the grid using simulations and found unequivocally that ECs had a significant impact on
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the grid. Specifically, the grid may have more losses, a deteriorated voltage profile, and
higher line loads. In [57], the authors pointed out that the absence of social data in the EC
database increases the difficulty and risk associated with implementing CESP. In [205], the
authors addressed several challenges that must be considered to increase P2P sharing for
linked communities in electricity markets. These challenges are the coexistence of diverse
parties, limitations, losses, and management inside the network, uncertainty following the
settlement, and affordable privacy and security. In [43], the authors emphasized that the
main challenge and driving forces behind energy community efforts are not economic gains
but rather reaching renewable targets and engaging in energy-based social activities, like
increasing energy efficiency. All the above literature highlights the challenges related to ECs,
which must be considered in future work by researchers and could be a supportive resource.

In addition to these challenges, there are many barriers that also cause slower progress.
Another report, [206], highlighted the barriers in different countries to the implementation
of the REC legislation, including smart meter operation and the obtained data, grid con-
nection barriers, like the need for network operators to expedite processes, the addition
of new systems to the existing grid, IT and communication technology installations in the
grid, no possibility of an REC connection for all the distribution networks, time-consuming
activities, administrative issues, economic and social issues, regulatory and legal issues,
and the complexity at the initial stage of the REC, as shown in Figure 10. C. Sebi et al. [207]
also discussed the barriers for France as institutional, market, organizational, and behav-
ioral. They also highlighted the grid connection barriers pertaining to community REs
in France. Moreover, other barriers include customers’ unwillingness to alter their con-
sumption habits, particularly if they are not involved in the changing process of the energy
system [208]; the complexity in monitoring and controlling the new energy system [209];
and cost issues due to new technological components [210].

Table 5. Published articles relevant to RECs (2021–2023).

Ref. Focus/Highlights Software/Simulation/Other Country Benefits/Recommendations

[30]
Optimization for supporting REC investment,
electricity-sharing management, and sensitivity

analysis
Simulation - Deployment of RESs; generation and

decarbonization of energy systems

[181]
Optimization model (size and flow

management of RECs); energy performance
assessment

MATLAB/Simulation Italy
Reductions in carbon emissions and

energy poverty and increased
economic benefits

[211] Governance model formalization to empower
EC members; implementation of RECs - Itay Good for creating ECs

[212] Modelling and optimization of RECs; algorithm
for operation of cells coupled to RESs MATLAB/Simulation - Focus on increasing REC economic

savings

[213] Less development of RECs; applied
actor–network theory approach - Italy Best for all the actors for fostering

REC initiatives and developments

[214] Optimization of RECs to consider economic
and environmental factors - - Low paybacks and high

avoided-CO2-emission results

[215] Development of an EMS, optimization, and
sensitivity analysis Simulation - Precious tool for supporting system

operators in decision-making

[216]
Energy self-consumption in RECs;
mathematical model; multi-criteria

decision-making methods
Simulation -

Economic gains; decrease in GHG
emissions; self-sufficiency

improvements; major rise in job
creation

[217]
Economic assessment; investigation of the

feasibility of a hydrogen power-to-gas system
inside an REC

Simulation Italy

Feasible to generate and market up
to approximately 3 tons/year of
green hydrogen, adhering to the
current minimum selling price

[218]
Optimization of open-loop control problem in a
receding horizon fashion; testing of algorithms

on REC control problems

Real Case Data and
Simulation -

The overall cost of members’
electricity bills significantly

decreased
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Table 5. Cont.

Ref. Focus/Highlights Software/Simulation/Other Country Benefits/Recommendations

[219]
Technoeconomic analysis; real case study;
collective self-consumption; smart BMS;
optimal BMS based on perfect forecasts

Bottom-up Simulation
Software Italy

Improved energy independence
from the national grid; the highest
possible energy independence and

economic return

[220]
Novel management mechanism to enable

preference-based energy sharing, optimization,
and behavioral economics

Simulation -
Efficacy of the proposed plan to

lower energy expenses and enhance
energy sharing among end-users

[166]

Analysis of energy-sharing directives; energy,
environmental, and economic analyses;

comparison of efficient users’ system and
conventional single users

HOMER Software (2016) EU and Italy

Avoided 39.5 t/y of CO2 with
respect to the old configuration by
not considering sharing approach;

RES local SC index of EC outcomes
greater than sharing mechanism in

new directive

[56]
REC transposition; MLG analysis; methods of

descriptive (legal) studies; comparison and
progress in both countries

- Germany and
Italy

Dynamic and encouraged
transposition in Italy, as per RED II;

sluggish and fragmented in
Germany

[32]
Operational and investment optimization;

DSM; linear bottom-up optimization model;
impact on environment and economic analysis

Python Italy

REC contributes to a clean energy
transition; implementation of

fairness index concerning equitable
distribution

[221]
Analysis of EC; district-heating networks;

energy sharing; self-sufficiency;
self-consumption

iVN simulation tool
(for 2021) Italy

Suggested design can enhance the
system performance; PV integration
decreases primary energy demand,
and EC system reduces emissions

[222] Development of a new hybrid AI method;
predictive control of a stochastic model Simulation -

The method achieved an increase in
the community’s income by up to

18.72%

[223]
REC operation, investigation, and analysis of

grid friendliness; participants’ shares and
economic benefits

- -

Needs a minimal additional
incentive for grid friendliness in

reducing peak power; might be an
economical way

[224] Economic feasibility evaluation; optimization;
multi-energy mixed-integer linear model - Flanders,

Belgium

EC can achieve a cost reduction of up
to 26% against business-as-usual
cases; only 4–6% cost reduction

compared to individual prosumers

[225] The development of a conceptual framework; a
qualitative comparative analysis MaxQDA software Germany

Organization type is crucial for
successful energy shift, and cognitive
legitimacy depends on geographical

vicinity to successful projects

[191]
Virtual net metering in ECs; the redistribution

of gains among community participants;
sharing approaches

Simulation/Python
Architecture -

Sharing system influences the fair
remuneration of profits; temporal
load profile of users has an impact

on the redistribution of profits

[226]
Quantifying effects of static and dynamic
electricity allocations in ECs, determining
economic feasibility of EC participation

Simulation -

Dynamic allocation enhances the
efficiency of electricity utilization as

compared to static allocation,
benefiting all the participants

[227]
Novel optimization strategies for RECs;

advanced mixed-integer linear
programming model

- Austria
Reductions in community costs by

15% and community carbon
emissions by 34%

[38]
Optimization of energy management with

storage; multicriteria sizing of PVs and
batteries; environmental assessment

StoRES/Simulation Italy

Business model results show positive
returns on REC investment; 2020

regulatory framework can help RES
diffusion

[228]
Evaluating the willingness to participate in an
REC; an extended model of theory of planned

behavior; analysis of data on participants
- Belgium

Good links are observed between
attitudes (toward REs,

environmental, and financial) and
willingness to change behavior and

attitude toward RECs
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6. Conclusions

This review article has provided a comprehensive analysis of renewable energy com-
munities and their concepts, benefits, types as per different application locations and
cooperatives, technological components relevant to energy efficiency measures, DREs,
energy storage and energy monitoring, progress, challenges, and future directions. RECs
offer numerous benefits across environmental, economic, social, and policy domains. They
interpose to mitigate climate change and to reduce GHG emissions, fostering local economic
development, enhancing energy resilience and security, and promoting social cohesion and
community empowerment. Additionally, RECs provide policy and regulatory advantages,
facilitating the transition toward a low-carbon and resilient energy future. Despite the
many benefits of RECs following the RED II directive and according to research articles
and sites, there is still a large gap, showing very slow progress in many countries. Some
countries show good progress by transposing the REC framework, as per RED II, while
others have partially transposed the REC framework and are in the initial stage. In this
paper, we focused on practical insights and scholarly trajectories to advance the research
activity within this field. In particular, it has been highlighted and discussed in detail that
many challenges and barriers still exist, like administrative issues, customers’ unwilling-
ness, economic and social issues, regulatory and legal challenges, policy issues, financial
and funding issues from the government, grid connection barriers, like more losses, and
technical issues, such as deteriorated voltage profiles and higher line loads. All these
aspects could represent a barrier to REC progress and development and should be properly
removed following the practical insights that were analyzed herein. Considering these
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challenges, the future recommendations and practical insights are listed and discussed in
the next section and can lead to good results after incorporating them. Furthermore, this
review paper contributes to the existing body of knowledge by providing comprehensive
and up-to-date data and an analysis of RECs, which can help policymakers, researchers,
industry stakeholders, and community members interested in fostering sustainable and
community-driven energy systems.

7. Future Recommendations

To improve the penetration of RECs in national and local energy generation, the
following future recommendation list is presented:

• Governments can introduce supportive and encouraging policies and regulations
specifically for the development of RECs, including net metering, feed-in tariffs,
and community-based RE targets. They should also establish clear guidelines and
streamlined permitting processes to facilitate the establishment of ECs and reduce
administrative hurdles. Moreover, financial support is necessary, so governments
can provide tax incentives, grants, and subsidies to incentivize the formation and
growth of RECs. Also, they can create dedicated funds or financial initiatives to help
these RECs. These funds can provide low-interest loans, grants, or venture capital for
community-led RE projects.

• Energy regulators, with government support, can update grid codes and regulations to
accommodate the integration of RESs at the community level. This includes enabling
two-way energy flow, putting smart grid technology into place, and making DR
programs easier. It should be focused on a clear understanding and procedure to check
Ec, Eg, and energy sharing, and the advantages associated with them.

• Governments and RE developers should implement community engagement strategies
in the initial stages of project development, including conducting meetings to address
community concerns thorough public consultations and involving local residents in
decision-making processes. Conducting education and awareness campaigns can give
information to communities about the gains of REs, including reduced environmental
impacts, job creation, and energy cost savings.

• Not only governments but also research institutions and industry stakeholders should
facilitate knowledge exchange platforms and networks for RECs, which include con-
ferences, workshops, and other online forums where community associates can share
experiences, best practices, and lessons learned. Moreover, collaboration is required
among the universities, research institutions, industries, and enterprises with RECs
by conducting joint research projects, providing technical assistance, and offering
guidance on policy development.

• Transdisciplinary research promotional approaches are required from authorities, like
governments, to bring together experts from various fields, including energy, social
sciences, and policy, informing the development of effective and inclusive RE policies.
Researchers can conduct comprehensive studies on the socioeconomic impacts of
RECs, including job creation, local economic development, and community well-being,
to provide evidence-based recommendations for policy formulation.

• It is also recommended that policymakers invest in the design of real REC systems as
prototypes, making high-resolution time-dependent (for example, on an hourly basis)
simulations to show for any country the economic, environmental, and social benefits
to boost REC development and increase public acceptance in the community.

• Other recommendations should also be incorporated, like the adoption of legislation
specifying smart meter operation; the development of tariff calculators to check and
compare costs; the implementation of IT solutions closely monitored by all the stake-
holders; easy-to-use tools to show all the data, including generation and consumption
profiles, addresses, and meter numbers; support mechanisms dedicated to RECs;
solid ICT structures and load management logistics; citizens’ engagement and social
acceptance awareness steps; clearly defined regulatory frameworks at regional and
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national levels; increasing grid capacities; awareness campaigns for more information;
easy administrative activities and access to finance in RECs; and a reduction in taxes
from RECs.

By implementing these recommendations, governments, stakeholders, and communi-
ties can work together to foster the development of RECs, leading to a more decentralized,
sustainable, and inclusive energy system.
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Nomenclature

ANN artificial neural network
BESS battery energy storage system
CEC citizen energy community
DSO distribution system operator
DSM demand-side management
DR demand response
DREs distributed renewable energy resources
DGs distributed generators
EES electrical energy storage
ESS energy storage system
EC energy community
EMS energy management system
EE energy efficiency
EU European Union
GHG greenhouse gas
HMI human–machine interaction
HEC homogeneous energy community
IEC International Electrotechnical Commission
MDT microgrid design toolkit
MEC mixed-energy community
PV photovoltaic
PCM phase change materials
PVGIS photovoltaic geographical information system
PHS pumped hydro storage
P2P peer-to-peer
RE renewable energy
REC renewable energy community
RED II renewable energy directive
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RES renewable energy source
REopt renewable energy integration and optimization
RET renewable energy technology
SEC self-sufficient energy community
SMES superconducting magnetic energy storage
ToU time of use
Greek letters/Symbols/Superscripts/Subscripts
A effective surface area of PV plant (m2)
D geographical distances between members
Eg energy generation (kWh)
Ec energy consumption (kWh)
ENet net energy (kWh)
G instantaneous global solar irradiance on horizontal plane (W/m2)
i member number
N number of members forming REC
Np number of prosumers
Nc number of consumers
nc PV module’s efficiency
ni efficiency, considering balance-of-system losses from inverter, cables, etc.
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