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Abstract: The energy consumption of buildings has been affected by the increase in new loads, which
is where emerging technologies have become important. In this sense, microgrids have become a
solution that has reduced the loadability of power systems. Thus, the Salesian Polytechnic University
in Quito has implemented a hybrid microgrid with three photovoltaic plants (PV), two battery storage
systems (BESS), and a connection to the public grid. This research shows a methodology to minimize
the energy consumption of the public grid by taking advantage of the existing resources in the
microgrid through the allocation of resources and demand management, for which a domotic system
based on a z-wave protocol was implemented to monitor and control the loads. The initial state and
the state after the implementation of the management equipment were compared, and the reduction
of electricity consumption in the public grid was quantified, which was around 63%.

Keywords: microgrid; photovoltaic systems; battery energy storage system; energy indicators;
optimization

1. Introduction

The increase in energy demand worldwide has caused an accelerated consumption
of fossil fuels and increased emissions of polluting gases from conventional generators.
This trend, along with growing climate awareness and the need to mitigate emissions, has
led researchers to develop renewable energy technologies to meet rising demand while
reducing environmental impacts [1,2].

Buildings account for 40% of energy use and emissions in the U.S., highlighting the
importance of intelligent management systems to improve efficiency [2]. Smart grids and
microgrids have emerged as solutions, integrating renewable generation, storage, and
intelligent controllers to optimize local resources [3].

Microgrids, in particular, provide flexibility, efficiency, and resiliency by combining
islanding capability with grid connectivity [4–6]. Islanding allows portions of the grid to
disconnect and self-supply during disturbances, while grid connectivity enables benefi-
cial import/export of power. Numerous studies have focused on optimizing microgrid
operations to balance economic and reliability objectives [7–9].

However, research specific to university campuses has been more limited [10]. Uni-
versity microgrids face unique constraints in terms of load profiles, renewable generation,
multi-stakeholder governance, and educational missions [11]. This represents a critical gap
given the research and demonstration potential on campuses.

With the energy-generating renewable energy resources, traditional power has pre-
sented several problems in maintaining stability and reliability; this has led to the de-
velopment of smart grids, as advanced systems, which allow energy management, are
presented as medium and long-term solutions essential to the global energy crisis, and
climate degradation [4,5].

Smart grids are the first step to developing a more efficient and effective microgrid; in
addition to presenting advantages, such as distributed energy resource integration, these
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grids present advantages of flexibility, deferred investment, and less pollution [2,5,12].
The most significant advantage of the microgrid is its ability to work in island mode
(disconnected from the grid) or to work in grid-connected mode. This unique feature of
microgrids is one of great importance for distributed generation systems using renewable
energy sources, local energy storage, and generator sets, as it can deliver or sell surplus
energy to the grid or consume energy missing from the grid and thus be able to supply the
energy demand of consumers connected to the microgrid or help lower the demand curve
of the main grid [13–15].

Microgrids integrate distributed generation (GD), storage, and intelligent control
systems to improve resiliency, efficiency, and sustainability [4–6]. Their unique islanding
and connectivity capacities are key advantages [14,15]. Islanding allows microgrid portions
to disconnect from the main grid and operate autonomously during disturbances [16,17].
This prevents blackouts and enables uninterrupted critical service [18]. Grid connectivity
allows beneficial electricity trading operations. Optimal microgrid dispatch has been
extensively studied, especially balancing economic and environmental objectives [19,20].

University campuses represent a crucial emerging microgrid research area [21]. Cam-
pus microgrids face distinct constraints around load variability, generation assets, multi-
stakeholder governance, and educational missions. Effective optimization could enable
sustainability goals and provide living laboratories to train students [22,23].

In Ecuador’s unstable national grid, energy supply shortfalls exasperate electricity
problems for universities. At Salesian Polytechnic University (UPS), the campus micro-
grid cannot fully meet classroom and lab demand due to inadequate installed capacity.
This motivates developing intelligent control solutions to optimize existing distributed
campus resources.

This work performs energy optimization specifically for the electrical engineering lab
on the UPS campus (Figure 1). We utilize consumption indicators and linear programming
to evaluate and enhance operational efficiency. The campus context offers a unique real-
world optimization case study. Results could provide best practices for university campuses
in Ecuador and beyond.

Load

Utility Distributed 

Generation

EV

Power Flow

Information Flow

Figure 1. Power management system in the electricity lab—UPS.

2. Smart Buildings

An intelligent building can be defined as a house, commercial premises, office, shop-
ping center, lab, etc. In buildings, daily activities and processes occur that must be per-
formed and monitored or controlled manually; these activities represent disadvantages
both in the economic and energy fields. These processes consume more resources than they
need, and it is for this reason that they currently tend to automate buildings and turn them
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into intelligent buildings to manage their resources and thus make them more efficient and
profitable [24].

Daily in buildings, various energy sources are used to comfort the inhabitants. Tech-
nological development seeks to transform conventional buildings into smart ones using
emerging technologies. The main objective of smart building development is to reduce
energy costs and environmental impact over the life cycle of the building. The develop-
ment of smart buildings aims to transform conventional cities into smart cities, which
are economically and ecologically viable through the use of smart energy technologies
and systems. The pillar to achieving a smart building is the implementation of renewable
energies, smart meters, intelligent lighting systems, etc. These technologies aim to develop
smart grids and implement the Internet of Things [16,17,25].

To transform a conventional building into an intelligent building, a platform must
be implemented; with interoperability of all systems in an integrated manner, the Smart
Building Energy Management System (SBEMS) is responsible for controlling the functions
of the building system efficiently, quickly, and safely. The SBEMS is accountable for
monitoring and controlling the electrical energy within a building; this system can control
and manage all aspects of the building, such as lighting, ventilation, security, heating
and air conditioning, alarm systems, maintenance, and energy management. SBEMS
capabilities include optimizing building and plant operations, automatic utility control,
controlling multi-building functions, and monitoring the building status and environmental
conditions [16,18].

2.1. Microgrid

The DOE (U.S. Department of Energy) defines the microgrid as interconnected genera-
tors with site-connected electrical loads that have two connection modes: (1) grid-connected
and (2) isolated mode; it can also be a low-voltage distribution network that has inter-
connected distributed energy resources (DER), feeding controllable loads and critical
loads [18,26,27].

The microgrid covers a small geographical area independent of the distribution grid
and operates either connected to the grid or isolated from the grid (island mode). When a
disturbance occurs in the distribution networks, the microgrid can disconnect from the grid
and continue to deliver power to the load through the internal DER. The microgrid com-
prises several distributed generation (DG) technologies coexisting with each other [14]. A
microgrid can manage and coordinate distributed generation systems (DGS) decentralized,
reducing the need for centralized control of the entire system. The need for centralized
coordination and management is explained in several studies [1,28]. The structure of a
microgrid is dynamic as its topology changes very often due to the entry of new DG, fault
conditions, load entry and exit, or reconfiguration of the structure for reasons such as
maintenance. An essential feature of a microgrid is its ability to disconnect from the local
power distribution grid and operate in island mode. This represents a critical opportunity
in distributed power generation (DPG) systems that use heterogeneous energy sources
(photovoltaic panels, Battery Energy Storage Systems “BESS”, diesel generators, and res-
idential power grids). However, these DPG units produce transients caused by system
disturbances, such as a load change, the connection or disconnection of a DPG unit, a
change in grid topology, and fluctuating energy resources [15].

2.2. Photovoltaic Systems

Implementing a photovoltaic (PV) system in a microgrid is an area of outstanding
research since PV has proven to have extraordinary reliability within the system and present
better power quality than the local grid. It is essential to clarify that the PV microgrid must
maintain a constant voltage and frequency, a balanced power flow between active and
reactive power, and avoid transient surges in the system [19,20].
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In [21], researchers indicate the importance of correctly dimensioning energy sources
to allocate energy resources. Equation (1) shows the generation estimation obtained by
a PV.

Ep f = Ip f HRp f (1)

where:
Ip f is the PV current during daytime.
H is the peak sun hours.
Rp f is PV performance (85–95%).
The maximum power output of the PV system allows us to extract energy transfer

more efficiently [4]. The output power calculation is given by Equation (2).

PPV = ηPV AI(t)(1− 0.005(T0(t)− 25)) (2)

where:
PPV is the power output of the PV.
A is the area of the photovoltaic cells.
ηPV is the efficiency of the solar array.
I is the solar irradiance.
T0 is the atmospheric temperature.

2.3. Battery Energy Storage System

The decreased costs associated with the Battery Energy Storage System (BESS) have
made implementing these systems economically viable. The BESS has a fast response
time to start-up, which helps to maintain power, voltage, and frequency stability in the
microgrid and helps to alleviate the demand curve [21,22,29].

In [30], the equation for modeling a battery bank is shown to indicate the state of
charge and discharge at any instant of time of the batteries; the calculation of the SOC is
shown in Equation (3).

SOC(t) = SOC(t− 1) + (PC
b + ηc −

PC
b

ηd
)∆t (3)

where:
SOC(t− 1) is the BESS discharge state at t.
PC

b is the system charging energy.
ηc is the charging efficiency of the battery bank.
ηd is the discharge efficiency of the battery bank.
∆t is a variation in the time

2.4. Grid Connected Microgrid

Energy management strategies must be implemented since the microgrid is connected
to the grid. The microgrid must be capable of exchanging energy, i.e., selling surplus
generation or consuming energy from the grid in case of an energy deficit. Equation (4)
shows the objective function’s calculation to minimize the connected microgrid’s operating
cost. The objective function takes into account the cost of the generating units. Also, it takes
into account the cost of the distributed generator units, the benefit of selling electricity to the
main grid, the cost of heat-only boiler units, the purchase price of electricity from the main
grid, the start-up cost of controllable distributed power generation units like Combined
Heat and Power Systems (CHP), and the start-up cost for heat-only boiler units (HOB),
respectively. The total grid cost is calculated by summing these terms over the number
of microgrids in the grid as given in Equation (4). The total daily cost of the microgrid is
calculated by summing CMG (t) over all intervals [23].
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min
24

∑
t=1

CMG(t)P(t) (4)

where:
CMG is the cost per generation unit.
P(t) is the power of the distributed generator.
CMG(t) is the cost per unit of production of the controllable power of the distributed

generator.
MG is the amount of energy produced per generation unit and power sold by the

microgrid to the grid.

2.5. Management System

Performing the optimization system is key in the relationship of energy management
of the microgrid to optimally control the power flow in the microgrid to meet the objective
function by setting decision variables. For this study, the objective of the optimal power flow
is to maximize the utilization of renewable energy resources and minimize the operational
cost of MG. The objective function for each interval concerning time can be defined by the
Equation (5) [24]:

F.O.min
T

∑
t=1

PPV(t)CPV + PBESS(t)CBESS + PG(t)CG (5)

where
PPV and PBESS represent the power delivered to the microgrid by photovoltaic and

BESS generation, respectively
CPV and CBESS are the operating and maintenance costs of the power output of the PV

and BESS systems, respectively.
CG is the cost of purchasing power from the main grid at time interval t.
T is the total time for the optimization problem, which ranges from 1 to 24 h.
Constraints must be considered to solve the optimization system and objective func-

tion. The power balance constraint of the system can be described by Equation (6).

∑ PLOAD(t)PPV(t)− PBESS(t)PG = 0 (6)

where:
PLOAD is the power consumption of the microgrid.
The PV and BESS power must be limited to maintain stability in the system; these

variables are limited to set maximum and PV and BESS values, in addition to maintaining
a maximum and minimum state of charge (SOC) level of BESS.

PPV
m
in ≤ PPV ≤ PPV

max (7)

PBESS
m
in ≤ PBEES ≤ PBESS

max (8)

SOCmin ≤ SOC ≤ SOCmax (9)

EBESS
min ≤ EBESS ≤ EBESS

max (10)

where:
E is the BESS capacity.
The restrictions corresponding to the energy indicators expressed in Equations (11)

and (12) must also be considered, which will indicate how consumption per user and per
area will be reduced, depending on the energy management of the electricity lab.
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USERS
LOAD

< PMG (11)

AREA
LOAD

< PMG (12)

where:
USERS are the number of users, such as teachers and students working in the microgrid,
LOAD is the energy demand required at the meter border with the utility
AREA is the space the microgrid occupies compared to the energy demand required

at the utility boundary meter.

2.6. Energy Indicators

The study of energy indicators mainly focuses on distributed energy systems as they
present a more significant energy problem. In most cases, single energy systems are used
to evaluate existing energy systems [31].

Energy indicators are chosen as the energy consumption per unit (ECPU). Factors
affecting the magnitude of ECPU are multiple and include process equipment, method of
operation, energy category, power supply material, system management, energy saving
activity, production capacity utilization, etc. [20,32].

The heuristic used is a resource allocation model, which takes into account the total
energy capacity of the microgrid, incorporating battery storage and generation capacity. It
aims to maximize efficiency in terms of metrics such as energy yield per user or per unit area.
However, it must balance these efficiency goals with the need to avoid system overload
and eminent system shutdown, so meeting critical loads is important. The heuristic poses
an optimization problem that allocates resources by determining how much energy to draw
from each source at any given time. The key control variables are the energy dispatch rate of
the generators and the discharge rates of the batteries as a function of efficiency indicators,
subject to the following constraints: the energy capacity available in the microgrid, the
efficiency indicators (user/load, area/load), the deep discharge of the batteries and the
amount of load to supply and control. By dynamically controlling these variables, the
model can achieve efficient and reliable operation despite the variability of both generation
and demand. Critical constraints, such as battery thresholds and load targets, are observed
within the optimization scheme. Thus, the heuristic controller is designed to maximize the
sustainable operation of the microgrid.

3. Problem Formulation and Methodology

Data collection and load control are performed through an integrated system utilizing
advanced metering, automation, and optimization algorithms; electrical parameters like
voltage and current are measured every minute by PAC 4200 m with TC 100A/5A current
sensors. These data are delivered via Modbus TCP/IP to a central management system.

The management system controls electrical loads in the system using a Fibaro smart
home platform and Z-Wave protocol. It uses optimization heuristics to allocate resources
and decide when to connect/disconnect loads based on the amount of energy available
from distributed generation sources. The algorithms analyze efficiency indicators to make
optimal control decisions. The metering system was calibrated using a Fluke 435 analyzer to
verify data accuracy. The methodology utilizes purpose-built metering hardware, industry-
standard home automation, and custom optimization algorithms tailored to the application
to balance generation and loads for maximum efficiency Algorithm 1. Data verification
tools ensure the accuracy of the key parameter inputs to the automated control algorithms.



Sustainability 2024, 16, 1797 7 of 16

Algorithm 1 Assignment algorithm

Step: 1 Input VAR: {PPV ; PBESS; Pload}
Output VAR: {Load[ f ; c]}

Step: 2 Initialize:

Ppv(data(1)), Pbess(data(2)), Pload(data(3));

Step: 3 i ≤ imax
j ≤ jmax

Calculate : △Pi,j,△P
Record : NPV , NBESS,△P
j← j + 1

i← i + 1

Step: 4 i ≤ imax + 1
j ≤ jmax + 1

Calculate : △Pi,j
min,△Pi,j

BESSmin,△P,△RD
j← j + 1
F.Omin ∑T

t=1 PPV(t) ∗ CPV + PBESS(t)CBESS + PG(t)CG
PPV + PBESS + RD = Pload
[Si,j] ⩽ [Smax]
[Pi,j] ⩽ [Pi] ⩽ [PMAX ]

Pmin
PV ≤ PPV ≤ Pmax

PV
Pmin

BESS ≤ PBESS ≤ Pmax
BESS

SOCmin ≤ SOC ≤ SOCmax
Emin

BESS ≤ EBESS ≤ Emax
BESSv

#USERS
LOAD < PMG

AREA
LOAD < PMG

Pi,j
BESSmin ⩽ DOH
PBESS = PPV + Putily

Pi,j
loadmin = Load[ f ; c]

i← i + 1

i← i + 1

Step: 5 Return: PPV ; PBESS; Pload; Load[ f ; c]

3.1. Microgrid Description

The microgrid was implemented at the Salesian Polytechnic University in the electrical
engineering block as a real laboratory for the study of the behavior of the RMs, which
comprises the infinite bar formed by the Utility, critical loads, and manageable loads (Smart
Home), renewable distributed generation, energy storage devices, a management and
control system supported by a communication infrastructure to monitor and control the
generation and distributed loads.

The proposed MR for the article has three photovoltaic systems; one of the largest
capacity is installed on the rooftop and has an installed power of 10 [kW], and the other is
installed in the courtyard of the electricity laboratory, which has an installed capacity of
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2 [kW], additional 500 W with sun simulation, two wind turbines with a capacity of 1 kW,
a 1000 W hydrogen cell.

The MR UPS also has 2 BESS to supply power in case of blackout or in case the demand
of the electrical laboratory cannot be supplied by the PV system if it is operating in island
mode; one of these systems has an installed capacity of 2 [kW], and the other system has
an installed capacity of 7.2 [kw]. One of the important loads is the two electric vehicle
charging points, as shown in the figure; the demand curve is shown in Figures 2 and 3.
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Figure 2. behavior of the initial electricity demand of the microgrid.
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Figure 3. initial and optimized demand behavior of the microgrid.

3.2. Description of Microgrid Operation

The microgrid system can operate in four different ways: (1) using the PV system to
charge the BESS, (2) using the PV system to deliver power to the grid, (3) using the BESS to
deliver power to the grid or microgrid, and (4) using the grid to charge the BESS. In the first
part, when there is enough radiation, the PV system can charge the batteries of the BESS. In
the second part, when there is overproduction of energy, and the BESS is fully charged, the
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energy produced by the PV system can be delivered to the national grid [33]. In the third
part, when solar power is scarce and the PV system cannot generate enough power, the
BESS can deliver power to the grid or microgrid. In the fourth part, when the peak demand
is high, to avoid power shortage in the microgrid, the grid can charge the BESS [20,32].

3.3. Problem of Study

The energy management of the microgrid in the electricity lab of the Salesian Polytech-
nic University will be carried out to reduce the electricity consumption in the electricity
lab without sacrificing the comfort of the students and teachers of the electricity course. To
achieve this goal, domotic systems will be implemented, which will allow for management
of the energy consumption in the classrooms and laboratories of the electricity lab, making
decisions to turn on or turn off lights, or optimize energy consumption depending on the
actions of students and teachers.

Also, energy optimization of the electricity lab will be carried out, considering the
generation of the two photovoltaic systems and the BESS installed in the electricity lab. In
addition, energy indicators will be deemed to measure energy consumption and savings
based on the areas of study and the number of people in the electricity lab.

4. Results Analysis

This article presents and analyzes the results of energy optimization of the microgrid
of the electricity lab of the UPS to perform the energy management of the electricity lab.
First, data collection was performed for a week, and thus, the actual power consumption
at each instant of time was recorded to understand the behavior of energy consumption,
to apply the energy indicators, and to be able to optimize the system to reduce energy
consumption.

Figure 2 shows the initial demand curve of the case study, with a peak of 4.5 kW and a
minimum power of 1 kW, with an increase in demand from 07:00 with a peak of demand
from 14:00 to 16:00. The red color indicates the curve of the photovoltaic system, this curve
shows the average data for a year, where it supplies a maximum power of 7 kW between
09:00 and 16:00 h.

In Figure 3, The initial daily energy demand is shown by the blue curve, with an
average baseline demand of 58 kWh/day. This represents the demand before applying
any energy efficiency or demand management measures. Demand after Applying Man-
agement Model: After applying the demand management model utilizing distributed
energy resources and efficiency measures, the demand is reduced significantly to an av-
erage of 20 kWh/day. This new demand profile is shown by the red curve. The demand
management model and distributed resources help reduce the initial demand by 50%
from 58 kWh/day to 20 kWh/day. This significant 50% reduction is a major outcome
highlighting the benefits and potential of the proposed management model for supporting
grid flexibility.

Figure 4 is based on the distributed resources of the microgrid starting from the
energy consumed 24 h without the management system; we have 64.2 kWh consumed
from the grid and applying the management model, we can observe the participation of the
batteries from 19:00 to 06:00 with the participation of 10.6 kWh, accompanied by the energy
coming from the electric company with an energy contribution of 9.9 kWh, from 07:00 the
photovoltaic system begins to generate until 17:00 contributing 5.2 kWh and in turn 18 kWh
for battery charging, where the management model performs the allocation of resources
giving priority to the charging of the battery system, in addition to the optimization of
energy consumption from 64.2 kWh to 25.7 kWh by controlling loads of the smart home.
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Figure 4. Allocation of distributed resources.

In Figure 5, The initial electricity demand profile of the microgrid system is shown for
a three-phase feeder (L1, L2, L3) serving block H over a 7-day measurement period before
applying the optimization model. The microgrid has a baseline peak demand of 4.5 kW on
each phase, occurring between 7 AM and 4 PM. This maximum demand is indicative of the
consumption from residential loads in the mornings and afternoons. During late night, a
minimum base demand of 1 kW is observed on each phase, likely serving essential loads.
The three-phase demand profiles exhibit similar consumption trends, with peak demand in
the afternoons driven by increased usage from households. By optimizing the microgrid
operations through demand response and distributed energy resources, the peak loads
can potentially be reduced while still serving the daily energy needs. The optimization
results can be compared to this initial 7-day demand profile to quantify the impacts of
the model. The multi-phase demand data at 10-min intervals provide insights into the
microgrid flexibility and where peak shaving measures can be targeted. Further analysis
may reveal additional observations comparing the three phases or comparing weekday
and weekend usage profiles before optimization.

Figure 6 shows that the implementation of the power consumption optimization in
the two parts of the electricity lab shows a considerable improvement concerning the
consumption presented in Figure 2. We can see that the consumption decreased by an
average of 3000 [W] of energy savings, which translates into more significant economic
savings. It is worth mentioning that the implementation of the domotic system and the
optimization of the electrical consumption was carried out first in the second part of the
electricity lab. Since it presents a lower load, it was first decided to observe the behavior of
the demand under the new conditions of the system and to determine if it is viable to be
implemented in the first part of the electricity lab. Shows a considerable decrease in energy
consumption when implementing the home automation system and the optimization of
electricity consumption in the first part of the electricity lab, which indicates that these
systems work correctly and that the electricity lab, as a whole, will show enormous energy
savings by not wasting energy and consuming only what is necessary.
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Figure 5. Daily energy demand curve in the second part of the electricity lab.
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Figure 6. Electricity demand behavior in the first part of the electricity lab.

The results were favorable, indicating that implementing these systems in the first
part of the electricity lab will substantially improve electricity consumption.

Figures 7 and 8 show the daily consumption, where the decrease in electricity consump-
tion can be seen more clearly. This is due to the energy indicators and the implementation
of measures and domotic systems, which made it possible to manage better the energy
consumed in the electricity lab, since at times when the students are absent and the lights
in the classrooms and laboratories are turned off when they do not feel a presence.
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Figure 7. Electricity demand behavior in the first part of the electricity lab.
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Figure 8. Electricity demand behavior in the first part of the electricity lab.

Figure 9 shows that once the demand curve is optimized, the quality indicators are
analyzed according to the area and energy consumed, where the initial curve shows a low
efficiency, with the highest efficiency points at night. At the same time, after applying the
management model, there is a substantial improvement of two points during working
hours, i.e., from 07:00 to 15:00.
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Figure 9. Initial and optimized demand behavior of the microgrid.

Figure 10 expresses the quality indicator as a function of the number of users (students)
that enter the microgrid, with an initial value of 0.05%. Once the management model is
implemented, an increase of 2.5% of its initial value is obtained, making it more efficient in
energy use.
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Figure 10. Initial and optimized demand behavior of the microgrid.

Analyzing the behavior of the energy indicators, we can see that, depending on the
number of users, the maximum efficiency is 2.5%, the minimum is 0.5%, and the average is
1.8%. In contrast, for the area, the indicator has a maximum of 2.2%, a minimum of 0.6%,
and an average of one, as shown in Figure 11.
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Figure 11. Initial and optimized demand behavior of the microgrid.

5. Conclusions

The optimized microgrid resource allocation algorithms developed in this work
demonstrate a strong ability to integrate high levels of solar PV, energy storage, and
responsive load management. The systemic approach enables simultaneous improvements
in the key objectives of efficiency, reliability, sustainability, and emissions reduction.

Specifically, the joint optimization model incorporates uncertainties in renewable
generation to achieve a 10% optimization of overall consumption through controlled
installed loads. Further analysis verifies energy savings of 65% versus conventional systems,
with the proposed heuristic extracting 55% savings from optimized solar PV integration
and storage dispatch. This significant penetration of renewables, accounting for 65% of
total supply, is complemented by a reduction in grid purchases, which are reduced to only
15% of demand.

These results highlight the advantages of coordinated optimization and control en-
abled by microgrid architecture. Thanks to adaptive resource management with a localized
and decentralized approach, grid efficiency increases by 1 to 3 percentage points while al-
lowing very high integration of solar PV. As a result, environmental sustainability increases
dramatically, with a 45% reduction in carbon emissions compared to grid-supplied power.

This applied microgrid research at the Universidad Politecnica Salesiana is an effective
and validated framework for scalable deployment of microgrids, aiming to increase effi-
ciency through optimized utilization of renewable energy, storage, and controllable loads.
The solutions developed create an easily extensible foundation for managing the increasing
variability of diverse distributed generators. These proven capabilities for unlocking flexi-
bility assets will prove essential as grids evolve to rely more heavily on renewables in the
coming decades.
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